九年级数学下册第二十九章《投影与视图》综合知识点(含答案解析)

合集下载

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.487.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.20.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.21.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.22.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.画出如图所示的几何体的主视图、左视图和俯视图.29.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.30.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.【参考答案】一、选择题1.C2.D3.C4.B5.C6.B7.C8.B9.D10.C11.C12.B13.B14.D二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为724.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.29.(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QD=,AC DC∴1.8 1.5=,AC10解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.30.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错.。

《常考题》初中九年级数学下册第二十九章《投影与视图》知识点(含答案解析)

《常考题》初中九年级数学下册第二十九章《投影与视图》知识点(含答案解析)

一、选择题1.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.2.下面几何体的左视图是( )A.B.C.D.3.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.94.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.从上面看下图能看到的结果是图形()A.B.C.D.6.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.7.如图,该几何体的俯视图是()A.B.C.D.8.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图9.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米10.如图所示几何体的主视图是()A.B.C.D.11.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 12.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:914.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是415.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.18.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.19.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为_____m.20.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.21.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=_____.22.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.23.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.24.图中几何体的主视图是().A BC D25.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.26.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.如图所示.(V球=43πr3).(1)三个大小相同的球恰好放在一个圆柱形盒子里,三个球的体积占整个盒子容积的(几分之几);(2)若4个大小相同的球恰好放在一个圆柱形盒子里,4个球的体积占整个盒子容积的(几分之几);(3)m个大小相同的球恰好放在一个圆柱形盒子里,m个球的体积占整个盒子容积的(几分之几).29.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.30.(1)2tan602sin30cos453︒︒-︒+;(2)已知一个几何体的三视图如图所示,求该几何体的体积.。

九年级数学人教版第二学期第29章视图与投影整章知识详解

九年级数学人教版第二学期第29章视图与投影整章知识详解

长对正:主视图和俯视图共同反映了物体左右方向的尺寸.
九年级数学第29章投影与视图
画出如图所示一些基本几何体的三视图.
九年级数学第29章投影与视图
宽相等
主视图
左视图
俯视图 宽相等:俯视图和左视图共同反映了物体前后方向的尺寸.
九年级数学第29章投影与视图


球体 主
九年级数学第29章投影与视图
九年级数学第29章投影与视图
九年级数学第29章投影与视图
29.1 投影
第2课时
九年级数学第29章投影与视图
1、能根据正投影的性质画出简单的平面图形的正投影; 2、培养动手实践能力,发展空间想象能力.
九年级数学第29章投影与视图
1.什么叫投影? 一般地,用 光线 照射物体,在 某个平面 上得到 的影子叫做物体的投影. 2.投影的分类: 由 平行光线 形成的投影是平行投影(例如太阳光,探 照灯光); 由 点光源发出的光线 形成的投影是中心投影 (例如灯 泡).
九年级数学第29章投影与视图
(2)下图是两棵小树在同一时刻的影子.请你在图中画出 形成树影的光线.它们是太阳的光线下形成的还是灯光下 形成的?画出同一时刻旗杆的影子,并与同伴交流这样做的 理由.
A
B
线段AB即为旗杆的影子
九年级数学第29章投影与视图
【例2】确定图中路灯灯泡所在的位置.
O
怎样确定一个点?
盆花的影子,树影是路灯灯光形成的.你P能确
定此时路灯光源的位置吗?
九年级数学第29章投影与视图
1.一个人离开灯光的过程中人的影长( C )
A、不变 B、变短 C、变长 D、不确定
2.同一灯光下两个物体的影子可以是( D )

初三数学下册(人教版)第二十九章投影与视图29.2知识点总结含同步练习及答案

初三数学下册(人教版)第二十九章投影与视图29.2知识点总结含同步练习及答案

描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案第二十九章 投影与视图 29.2 三视图一、学习任务1. 掌握常见物体的三视图的画法及其作用.二、知识清单三视图三、知识讲解1.三视图三视图定义将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓绘制出来的平面图形称为视图.从物体的前面向后面投射所得的视图称主视图;从物体的上面向下面投射所得的视图称俯视图;从物体的左面向右面投射所得的视图称左视图;三视图就是主视图、俯视图、左视图的总称.常见几何体的三视图 由视图到立体图形① 主视图反映物体的长和高,主要提供正面的形状;② 左视图反映物体的高和宽,主要提供左侧面的形状;③ 俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.下列几何体,主视图和俯视图都为矩形的是( )四、课后作业(查看更多本章节同步练习题,请到快乐学)解:D.如图是由个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )解:B.6如图是某个几何体的三视图,则该几何体的形状是( )A. 长方体B. 圆锥C. 圆柱D. 三棱柱解:D.根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.答案:1.某几何体的三视图如图所示,则这个几何体是A .圆柱B .正方体C .球D .圆锥D()解析:由主视图和左视图都是三角形可知,这个几何体是圆锥.答案:2.如图是由六个小正方体组合而成的一个立体图形,它的主视图是A.B .C.D .B()3. 将如图所示的绕直角边 旋转一周,所得几何体的左视图是A .B.C .Rt△ABC BC ()高考不提分,赔付1万元,关注快乐学了解详情。

答案:D .A答案:解析:4.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A.B .C .D .D此类题主要考查学生们的空间想象能力,一般考查常见的简单的几何体有圆柱,正方体及其组合体.应注意看的见的轮廓线与看不见的轮廓线的画法与圆锥与圆柱的视图的区别是否有圆心,相对来说考查的较为简单,此题故选D .()。

九年级数学下册第二十九章《投影与视图》综合知识点(答案解析)

九年级数学下册第二十九章《投影与视图》综合知识点(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.2.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.33.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.4.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.5.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个7.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图8.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.9.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④10.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱11.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.12.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是413.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.14.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.二、填空题15.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是______________16.如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是________2cm.17.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.18.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)19.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.20.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.21.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.22.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.23.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)24.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.25.写出两个三视图形状都一样的几何体:__________、__________.26.如图,在A 时测得某树的影长为4米,在B 时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题27.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .28.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).的网格中,请分别画出如图所示的几何体从三个方向看到的平面图形. 29.在下面4430.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.【参考答案】一、选择题1.C2.B3.A4.C5.B6.B7.C8.D9.D10.D11.B12.A13.D14.D二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+616.168【分析】如果用6块来搭那么搭成的大长方体表面积最小是长3×2=6cm宽4cm高3×2=6cm的长方体的表面积根据长方体的表面积公式即可求解【详解】解:长3×2=6cm宽4cm高3×2=6cm(17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定18.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影19.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱20.9【解析】试题21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体22.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为1323.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的24.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或225.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相26.6【解析】【分析】根据题意画出示意图易得:Rt△EDC∽Rt△CDF进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.2.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.3.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.B解析:B【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!7.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.8.D解析:D【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【详解】从正面看得到2列正方形的个数依次为2,1,故选D.【点睛】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.9.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意.故选D【点睛】本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键.10.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.11.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.12.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.13.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.14.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.168【分析】如果用6块来搭那么搭成的大长方体表面积最小是长3×2=6cm 宽4cm高3×2=6cm的长方体的表面积根据长方体的表面积公式即可求解【详解】解:长3×2=6cm宽4cm高3×2=6cm(解析:168【分析】如果用6块来搭,那么搭成的大长方体表面积最小是长3×2=6cm,宽4cm,高3×2=6cm的长方体的表面积,根据长方体的表面积公式即可求解.【详解】解:长3×2=6cm,宽4cm,高3×2=6cm(4×6+4×6+6×6)×2=(24+24+36)×2=84×2=168(cm2).故答案为:168.【点睛】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22)2=3π,故答案为3π.【点睛】本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 18.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.19.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.20.9【解析】试题解析:9【解析】试题∵由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6个正方体,主视图和左视图可得第2层最多有1+1=2个正方体,最上一层最多有1个正方体,∴组成该几何体的正方体最多有6+2+1=9个.所以本题的正确答案应为9个.21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体22.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.23.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短24.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.25.球;正方体【分析】找到从物体正面左面和上面看得到的图形全等的几何体即可答案不唯一【详解】解:三视图形状都一样的几何体为球正方体故答案为球正方体(答案不唯一)【点睛】考查三视图的有关知识注意三视图都相 解析:球; 正方体.【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.26.6【解析】【分析】根据题意画出示意图易得:Rt △EDC ∽Rt △CDF 进而可得代入数据可得答案【详解】如图在中米米易得即米故答案为:6【点睛】本题通过投影的知识结合三角形的相似求解高的大小是平行投影性解析:6【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △CDF ,进而可得ED CD CD FD=,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆,ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.三、解答题27.(1)见解析;(2)12m.【分析】 (1)根据中心投影的规律画图即可;(2)根据三角形相似,列比例计算即可.【详解】(1)根据中心投影的基本规律,画图如下:(2)由题意可知CAB CPO △△∴AB BC PO OC =, ∴1.62213PO =+, ∴12PO =m.【点睛】本题考查了中心投影的规律,基本作图和相似三角形,熟练掌握投影的基本规律,灵活运用三角形的相似是解题的关键.28.【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.29.详见解析【分析】根据几何体三视图的画图要求画图即可.【详解】如图所示:【点睛】此题考查几何体的三视图,此类题要求学生有一定的空间想象能力.30.(1)见解析;(2)104平方厘米;(3)2【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【详解】解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)如图,可以在A和B的位置上各加一个小正方体,这个几何体的左视图和俯视图不变.所以最多可以再添加2个小正方体.故答案为:2.【点睛】此题主要考查了画三视图以及几何体的表面积,正确得出三视图是解题关键.。

第二十九章 投影与视图(解析版)

第二十九章  投影与视图(解析版)

班级姓名学号分数第二十九章投影与视图(A卷·知识通关练)核心知识1. 投影1.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子【分析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有A选项得到的投影为中心投影.故选:A.【点评】此题主要考查了中心投影的性质,解决本题的关键是理解中心投影的形成光源为点还是平行光线.2.如图,小亮居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【分析】根据中心投影的性质得出小亮在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小亮走到灯下以前:l随S的增大而减小;当小亮走到灯下以后再往前走时:l 随S 的增大而增大,∴用图象刻画出来应为B .故选:B .【点评】此题主要考查了函数图象以及中心投影的性质,得出l 随S 的变化规律是解决问题的关键.3.如图,11A B 是线段AB 在投影面P 上的正投影,20AB cm =,170ABB ∠=︒,则投影11A B 的长为( )A .20sin70cm ︒B .20cos70cm ︒C .20tan70cm ︒D .20sin 70cm ︒【分析】如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,解直角三角形求出AH ,可得结论.【解答】解:如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,11AH A B ∴=,在Rt ABH ∆中,sin7020sin70()AH AB cm =⋅︒=⋅︒,1120sin 70()A B AH cm ∴==︒.故选:A .【点评】本题考查平行投影,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点评】本题考查了平行投影特点,难度不大,注意结合选项判断.5.人从路灯下走过时,影子的变化是()A.长→短→长B.短→长→短C.长→长→短D.短→短→长【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为人在路灯下行走的这一过程中离光源是由远到近再到远的过程,所以人在地上的影子先变短后变长.故选:A.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.6.由四个相同小立方体拼成的几何体如图所示,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影是()A.B.C.D.【分析】根据平行投影的定义进行判定即可得出答案.【解答】解:根据题意可得,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影有4个小正方形组成,如图.故选:A.【点评】本题主要考查了平行投影,熟练掌握平行投影的应用进行求解是解决本题的关键.7.太阳发出的光照在物体上是(),路灯发出的光照在物体上是()A.平行投影,中心投影B.中心投影,平行投影C.平行投影,平行投影D.中心投影,中心投影【分析】根据平行投影与中心投影的定义判断即可.【解答】解:太阳发出的光照在物体上是平行投影,路灯发出的光照在物体上是中心投影.故选:A.【点评】本题考查中心投影,平行投影等知识,解题的关键是理解中心投影,平行投影的定义,属于中考常考题型.8.下列现象是物体的投影的是()A.灯光下猫咪映在墙上的影子B.小明看到镜子里的自己C .自行车行驶过后车轮留下的痕迹D .掉在地上的树叶【分析】利用投影的定义确定答案即可.【解答】解:A 、灯光下猫咪映在墙上的影子是投影,符合题意;B 、小明看到镜子里的自己是镜面对称,不是投影,不符合题意;C 、自行车行驶过后车轮留下的痕迹不是投影,不符合题意;D 、掉在地上的树叶不是投影,不符合题意,故选:A .【点评】考查了中心投影和中心对称的知识,判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.9.如图,在平面直角坐标系中,点光源位于(2,2)P 处,木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的影长CD 为( )A .3B .5C .6D .7【分析】利用中心投影,作PE x ⊥轴于E ,交AB 于M ,如图,证明PAB CPD ∆∆∽,然后利用相似比可求出CD 的长.【解答】解:过P 作PE x ⊥轴于E ,交AB 于M ,如图,(2,2)P ,(0,1)A ,(3,1)B .1PM ∴=,2PE =,3AB =,//AB CD ,∴AB PM CD PE =, ∴312CD =, 6CD ∴=,故选:C .【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.10.如图,EB 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区EB 的长度是6米,则车宽FA 的长度为( )米.A .117B .127C .137D .2 【分析】通过作高,利用相似三角形的对应高的比等于相似比,列方程求解即可.【解答】解:如图,过点P 作PM BE ⊥,垂足为M ,交AF 于点N ,则 1.6PM =,设FA x =米,由32FD FA =得,23FD x MN ==, 四边形ACDF 是矩形,//AF CD ∴, PAF PBE ∴∆∆∽,∴PN FA PM EB=, 即1.66PN x =, 415PN x ∴=, PN MN PM +=,∴42 1.6153x x +=, 解得,127x =, 故选:B .【点评】本题考查视点、视角、盲区的意义,此类问题可以转化为相似三角形的知识进行解答.核心知识2.简单几何体的三视图11.下列几何体中,从左面看到的形状为三角形的是()A.B.C.D.【分析】四个几何体的左视图:长方体是长方形,圆锥是等腰三角形,圆柱是矩形,三棱锥是长方形,由此可确定答案.【解答】解:因为圆柱、三棱锥的左视图是矩形,圆锥的左视图是等腰三角形,长方体的左视图是长方形,故左视图是三角形的几何体是圆锥;故选:B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.12.如图所示,下列几何体中主视图是圆的是()A.B.C.D.【分析】根据球体、圆锥、圆柱、正方体的主视图的形状进行判断即可.【解答】解:球体的主视图是圆,圆锥体的主视图是三角形,圆柱的主视图是长方形,正方体的主视图是正方形,故选:A.【点评】本题考查简单几何体的三视图,掌握圆柱、圆锥、正方体、球的三视图的形状是正确判断的前提.13.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是()A.1 B.2 C.3 D.4【分析】根据三视图的定义一一判断即可.【解答】解:正方体的主视图,俯视图相同,都是正方形;三棱柱的主视图是矩形(包括中间的一条虚线),俯视图是三角形.圆柱的主视图是矩形,俯视图是圆.圆锥的主视图是三角形,俯视图是圆(包括圆心).故选:C.【点评】本题考查简单几何体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.14.襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【分析】根据主视图的意义,从正面看该立体图形所得到的图形进行判断即可.【解答】解:从正面看,是一个矩形,故选:A.【点评】本题考查简单几何体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.15.下面立体图形中,从左面看到的平面图形与其他三个不一样的是()A.B.C.D.【分析】A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形.【解答】解:A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形,故选:C.【点评】本题考查了常见几何体三视图的相关知识,关键在于要知道从哪个方位进行观察.16.分别观察如图所示几何体,其中主视图、左视图和俯视图完全相同的有()A.1个B.2个C.3个D.4个【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】三棱柱的主视图和俯视图是矩形,左视图是三角形;球的三视图都是圆;圆柱的主视图和左视图是矩形,俯视图是圆;正方体的三视图都是正方形.所以主视图、左视图和俯视图完全相同的有2个.故选:B.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.17.如图,从左面观察这个立体图形,得到的平面图形是()A.B.C.D.【分析】根据解答组合体的三视图的画法画出左视图即可.【解答】解:这个组合体的左视图如下:故选:A.【点评】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体的三视图的画法及形状是正确解答的前提.18.如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:根据题意知,组合体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.19.如图,将一个规则几何体的上半部分钻一个圆孔,则该几何体的俯视图是()A.B.C.D.【分析】根据几何体的俯视图得出结论即可.【解答】解:由题意知,几何体的俯视图为,故选:A.【点评】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.20.图所示的几何体的左视图是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:由题意知,几何体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.21.如图,该几何体的左视图是()A.B.C.D.【分析】根据几何体的左视图得出结论即可.【解答】解:根据题意知,几何体的左视图为,故选:D.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.22.如图,是由两个正方体组成的几何体,则从上面看该几何体的形状图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看到的几何体的形状图是C,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.23.如图所示的几何体的左视图()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,是一个矩形,矩形的中间有一条横向的虚线,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.24.一个圆柱和正三棱柱组成的几何体如图水平放置,其主视图是()A.B.C.D.【分析】根据简单组合体的三视图的定义画出其主视图即可.【解答】解:这个组合体的主视图如下:故选:B.【点评】本题考查简单组合体的三视图,理解视图的定义掌握简单组合体三视图的画法是正确解答的前提.核心知识3.由三视图判断几何体25.已知圆锥的三视图及相关数据如图所示,则这个圆锥的侧面展开图(扇形)的圆心角度数为( )A .270︒B .216︒C .108︒D .135︒【分析】根据展开图的扇形的弧长等于圆锥底面周长计算.【解答】解:观察三视图得:圆锥的底面半径为3cm ,高为4cm ,所以圆锥的母线长为5cm ,56180n ππ=, 解得216n =︒.故选:B .【点评】考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.26.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的左视图为( )A .B .C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1.据此可作出判断.【解答】解:该几何体的左视图为.故选:A.【点评】本题考查了几何体的三视图的画法,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.27.用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是( )A.B.C.D.【分析】在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:则这个几何体可能是.故选:B.【点评】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.28.如图是从三个方向看到的由一些相同的小正方体构成的几何体的形状图,则构成这个几何体的小正方体的个数是()A.8 B.7 C.6 D.5【分析】由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【解答】解:由三视图易得最底层有6个正方体,第二层有2个正方体,那么共有628+=个正方体组成.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.29.如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.【分析】先画出各个图形从正面看的视图,再判断即可.【解答】解:A、图形从正面看得出的图形为,故本选项不符合题意;B、图形从正面看得出的图,故本选项不符合题意;C、图形从正面看得出的图形为,故本选项符合题意;D、图形从正面看得出的图形为,故本选项不符合题意;故选:C.【点评】本题考查了简单组合体的三视图,能理解三视图的定义是解此题的关键.30.一个几何体是由7个完全相同的小正方体搭建而成的,从上面看到的形状图如图所示,则从正面看到的形状图不可能是()A.B.C.D.【分析】根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,即可判断出答案.【解答】解:根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,所以主视图不可能为C.故选:C.【点评】本题考查了简单组合体的三视图,利用了主视图的定义.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.31.一个立体图形,从上面看到的平面图形,从左面看到的平面图形,搭成这样的几何体所需要的小正方体个数为()A.5 B.6 C.7 D.5或6【分析】根据从上面看到的图形结合从左面看到的图形,可以确定这个立体图形需要小正方体的个数.【解答】解:如图,这个几何体需要的小正方体个数为21115+++=(个)或22116+++=(个).故选:D.【点评】本题考查由三视图判定几何体,简单的三视图等知识,解题的关键是理解三视图的定义,属于中考常考题型.32.一个长方体,从左面、上面看得到的图形及相关数据如图,则从正面看该几何体所得到的图形的面积为()A.6 B.8 C.12 D.9【分析】先根据从左面、从上面看到的形状图的相关数据可得,从正面看到的形状图是长为4宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从上面看到的形状图的相关数据可得:从正面看到的形状图是长为4宽为2的长方形,则从正面看到的形状图的面积是428⨯=;故选:B.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从上面看到的形状图的相关数据得出从正面看到的形状图是长为4宽为2的长方形.33.如图,三视图所对应的立体图形是下面的()A.圆柱B.正方体C.三棱柱D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据给出的三视图,分析、判定出即可.【解答】解:根据题意,从俯视图中知,这个立体图形有3条棱,底面为三角形,从左视图中可知,侧面是长方形,从主视图可知,正面是长方形,因此,符合条件的几何体是三棱柱.故选:C .【点评】本题主要考查了由三视图判定几何体,主要考查了学生的抽象思维能力和空间想象能力.34.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的左视图中a 的值为()A .1.8B .1.7C 3D .2【分析】根据三视图的定义以及正三角形的性质进行计算即可.【解答】解:如图,由图形中所标识的数据可知,在俯视图中,2AB =,ABC ∆是正三角形,过点C 作CM AB ⊥于M ,112AM BM AB ∴===,33CM AM ∴==,即左视图中a 3故选:C .【点评】本题考查由三视图判断几何体,简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的形状以及正三角形的性质是解决问题的前提.35.一个圆锥体容器的主视图如图1所示,向其中注入一部分水后,水的高度如图2所示,则图2中,上水面所在圆的半径长为( )A .1cmB .2cmC .3cmD .6cm【分析】根据相似三角形的性质列出算式计算即可求解.【解答】解:设上水面所在圆的半径长为为x cm ,依题意有:2123812x -=, 解得3x =.故选:C .【点评】本题考查了由三视图判断几何体,关键是得到上水面所在三角形与主视图所在三角形相似.。

人教版数学九年级下册:第二十九章《投影与视图》知识点

人教版数学九年级下册:第二十九章《投影与视图》知识点

第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。

二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。

难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。

四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。

在简答题中会在几何题中穿插应用,本章约占3-5分。

第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。

4.正投影:投影线垂直于投影面产生的投影叫做正投影。

例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。

部编版九年级数学下册第二十九章投影与视图带答案知识点汇总

部编版九年级数学下册第二十九章投影与视图带答案知识点汇总

(名师选题)部编版九年级数学下册第二十九章投影与视图带答案知识点汇总单选题1、底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为()A.1:1B.1:3C.1:6D.1:92、下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子3、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个4、下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.5、把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为()A.QB.RC.SD.T6、下列立体图形中,主视图是圆的是()A.B.C.D.7、下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱8、下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.填空题9、如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为_____m.10、下列投影:①中午林荫道旁树的影子;②海滩上撑起的伞的影子;③跑道上同学们的影子;④晚上路灯下亮亮的手在墙上的投影.其中是平行投影的是_____(填序号).11、在一个仓库里堆放着若干个相同的正方体货箱,仓库管理员从不同的方向观察这堆货箱,如图6,则这堆货箱共有________箱.解答题12、画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.(1)请画出从正面看、从左面看、从上面看的平面图形.(2)小立方体的棱长为3cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.13、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请在网格中画出几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为 cm2.部编版九年级数学下册第二十九章投影与视图带答案(四十七)参考答案1、答案:D分析:根据V圆锥=13S底面积ℎ高,V圆柱=S底面积ℎ高,结合已知条件可得答案.解:设圆锥与圆柱的底面半径为r,圆锥的高为ℎ,则圆柱的高为3ℎ,∴V圆锥=13πr2ℎ,V圆柱=πr2×3ℎ=3πr2ℎ,∴V圆锥V圆柱=13πr2ℎ3πr2ℎ=19.故选D.小提示:本题考查的是圆锥的体积与圆柱的体积的计算,掌握以上知识是解题的关键.2、答案:A分析:根据中心投影的性质,找到光源是灯光即可得.解:A、晚上人走在路灯下的影子,光源是灯光,是中心投影,则此项符合题意;B、中午用来乘凉的树影,光源是阳光,是平行投影,则此项不符题意;C、上午人走在路上的影子,光源是阳光,是平行投影,则此项不符题意;D、阳光下旗杆的影子,光源是阳光,是平行投影,则此项不符题意;故选:A.小提示:本题考查了中心投影,解决本题的关键是理解中心投影的形成光源为灯光.3、答案:B分析:根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19.错误,应该是a=6,b=11,a+b=17.故选:B.小提示:此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.4、答案:B分析:根据平行投影的意义和性质,得出影子与实物的位置和大小关系得出答案.解:太阳光和影子,同一时刻,杆高和影长成正比例,且影子的位置在物体的统一方向上可知,选项B中的图形比较符合题意;故选:B.小提示:本题考查平行投影的意义,掌握平行投影的特征和性质是正确判断的前提.5、答案:B分析:本题考查了三棱柱的展开与折叠.如图①可以看出边长为3的边挨着R、和P两面,P为三角形,所以从左侧看是R,也动手折叠看看,充分发挥空间想象能力解决也可以.解:由图可得,宽为3的长方形是R,则从左侧看到的面为R.故选B.小提示:本题考查了图形的展开与折叠,解决此类问题,要充分考虑带有各种符号的面的特点及位置.6、答案:D分析:分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;圆柱的主视图是矩形,不符合题意;圆锥的主视图是等腰三角形,不符合题意;球体的主视图是圆,符合题意;故选:D.小提示:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7、答案:D分析:根据三视图逆向即可得.解:此几何体为一个圆柱.故选:D.小提示:此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8、答案:BA、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图是矩形,俯视图均为圆,故C选项错误;D、主视图为梯形,俯视图为矩形,故D选项错误.故选:B.9、答案:4分析:根据题意得△ABC∽△EDC,相似三角形成比例得解.∵△ABC∽△EDC,∴EDAB =CDCB,1.64.8=2CB,CB=6,BD=6-2=4.故BD为4m.小提示:本题考查相似三角形,解题的关键是清楚相似三角形的性质.10、答案:①②③分析:对于①②③,光源都是太阳光线,是平行投影;而④中的路灯是点光源,其光线不平行,是中心投影,由此可得出答案.根据平行投影的定义:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.因为①②③中的光源都是太阳光,所以①②③都是平行投影;④中的路灯是点光源,不是平行投影,故④错误,所以答案是:①②③.小提示:本题考查的是平行投影和中心投影,明确平行投影和中心投影的联系与区别是解本题的关键.11、答案:9分析:根据三视图可得出,货箱的底层共有3+2+1个箱子,第二层有2层,第三层有1箱.综合三视图可以得出,这堆货箱的底层有3+2+1=6箱,第二层有2箱,第三层应该有1箱,因此这堆正方体货箱共有6+2+1=9箱.小提示:本题考查由三视图判断几何体,解题的关键是掌握由三视图判断几何体.12、答案:(1)见解析;(2)315cm2;(3)2分析:(1)根据三视图的画法,画出这个简单组合体的三视图即可;(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.(1)解:如图所示,即为所求:(2)解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,∴一共用12+18+5=35个面需要涂色,∴涂上颜色部分的总面积=3×3×35=315cm2(3)解:如图所示,一共有2种添加方法.小提示:本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.13、答案:(1)见解析(2)6(3)26分析:(1)根据三视图的画法画出相应的图形即可;(2)观察几何体可得结果;(3)根据三视图的面积求出该几何体的表面积.(1)解:如图所示:(2)由图可知:图中共有6个小正方体;(3)(4+4+5)×2=26(cm2)答:该几何体的表面积为26cm2.小提示:本题考查解答几何体的三视图,画三视图时应注意“长对正,宽相等,高平齐”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.如图所示的几何体的主视图是()A.B.C.D.3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.4.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.65.下列说法错误的是()A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B.对角线互相垂直的四边形是菱形C.方程x2=x的根是x1=0,x2=1D.对角线相等的平行四边形是矩形6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时7.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m9.如图,水杯的俯视图是()A.B.C.D.10.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.11.如图是由5个相同的正方体搭成的几何体,其左视图是()A .B .C .D .12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A .B .C .D . 13.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+二、填空题15.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.19.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.20.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.21.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______22.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.23.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.24.如图为一个长方体,则该几何体主视图的面积为______cm2.25.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,画出该物体的三视图28.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).29.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要个小立方体.30.画图,探究:(1)一个正方体组合图形的主视图、左视图(如图1)所示.①这个几何体可能是(图2)甲、乙中的;②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.①画线段AB,射线AD;②找一点M,使M点即在射线AD上,又在直线BC上;③找一点N,使N到A、B、C、D四个点的距离和最短.【参考答案】一、选择题1.B2.C3.C4.A5.B6.A7.B8.A9.A10.A11.A12.D13.D14.B二、填空题15.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键16.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB18.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的19.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m20.4或5【解析】如图方块有4或5块21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭22.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=23.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题24.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知25.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.3.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.4.A解析:A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.5.B解析:B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x2=x的根是x1=0,x2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.6.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.B解析:B【解析】【分析】主视图就是正面看去所得图形,左起第一列为两个小正方形,第二列只有一个小正方形.【详解】解:主视图从左往右,每一列的小正方形数量分别为2、1,故选择B.【点睛】本题考查了主视图的概念.8.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 9.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A .10.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A .【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.11.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A .【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.12.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l,再根据圆锥侧面积公式S=πr l计算即可.【详解】圆锥半径:r=8÷2=422345l=+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.16.7【分析】利用主视图左视图中每列中正方形的个数判断俯视图中正方形的个数然后得出结果【详解】解:主视图从左往右2列正方形的个数依次为33;左视图从左往右2列正方形的个数依次为31;则俯视图中正方形的个解析:7【分析】利用主视图、左视图中每列中正方形的个数,判断俯视图中正方形的个数,然后得出结果.【详解】解:主视图从左往右2列正方形的个数依次为3,3;左视图从左往右2列正方形的个数依次为3, 1;则俯视图中正方形的个数如下图示:即小正方体有7个,故答案为:7.【点睛】考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.18.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的解析:-4【解析】【分析】根据正方体相对面上的两个数互为相反数,可得x、y的值,继而可得x+y的值.【详解】由题意得,x与1相对,y与3相对,则可得x=-1,y=-3,∴x+y=-4.故答案为:-4.【点睛】本题考查了正方体的展开,注意正方体的空间图形,从相对面入手,分析及解答问题.19.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm ,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.20.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.21.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.22.8【分析】设小明这个时刻在水平地面上形成的影长为x 米利用同一时刻物体的高度与影长成正比得到=解得x =2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x 米根据题意得=解得x = 解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2,小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.23.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题解析:7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案.【详解】由题意得:这个几何体是由2行2列组成,所需的小正方体的个数最多的搭配是3121,其中,数字表示所在行列的小正方体的个数,则31217+++=,故答案为:7.【点睛】本题考查了三视图中的主视图和左视图,掌握理解三视图的相关概念是解题关键.24.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.25.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=解析:12【分析】观察图形知道,露在外面的面:上面一层是3个,下面一层是9个,所以一共是3+9=12个,由此根据正方形的面积公式S=a×a,求出一个正方形的面积,再乘12即可.【详解】解:1×1×(3+9)=1×12=12(平方分米);∴露在外面的面积是:12平方分米.故答案为:12.【点睛】本题考查了求表面积,此题关键是正确数出露在外面的面有几个,再根据正方形的面积公式解决问题.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.见详解【分析】根据三视图的画法要求结合所给的几何体画出对应的视图即可.【详解】解:三视图如下:【点睛】本题主要考查了三视图的画法,要注意主视图与左视图的高平齐,左视图与俯视图的宽相等,三视图位置规定:主视图在左上方,它的下方是俯视图,左视图坐落在右边.28.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.29.(1)主视图、左视图和俯视图如图所示,见解析;(2)这个组合几何体的表面积为38平方单位;(3)这样的几何体最多要14个.【分析】(1)根据主视图、左视图、俯视图的定义画出图形即可;(2)根据几何体的露在外面的面个数以及底面,即可得到表面积;(3)根据保持这个几何体的左视图和俯视图不变,几何体的第二排的高度都是2,第三排的高度都是3个,可得这样的几何体最多要:3+3+3+2+2+1=14个小立方体.【详解】解:(1)主视图、左视图和俯视图如图所示:(2)这个组合几何体的表面积为:6×2×3+2=38(平方单位)故答案为:38.(3)这样的几何体最多要3+3+3+2+2+1=14个小立方体.【点睛】此题主要考查了作图——三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.(1)①乙;②9;图见解析;(2)①见解析;② 见解析;③见解析;【分析】(1)①结合主视图和左视图对甲、乙逐一判断可得;②当第一层有6个,第二层有2个,第三层有1个时,小正方体个数最多;(2)根据要求用直尺画图即可.【详解】解:(1)①甲图的左视图不合题意,乙图符合题意;故答案为乙;②这个几何体最多可由9个小正方体构成,其俯视图如图所示:故答案为9;(2)①如图所示,线段AB,射线AD即为所求;②如图所示,点M即在射线AD上,又在直线BC上;③如图所示,点N到A、B、C、D四个点的距离和最短.【点睛】本题主要考查了三视图以及基本作图,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.。

相关文档
最新文档