两列波的相位差和波程差

合集下载

大学物理教案——光的干涉

大学物理教案——光的干涉

D , d
D D 3D d d d d 0.2 10 3 ( x 4 x1 ) 7.5 10 3 。 3D 3 1 x 4 x1 4 5 10 7 m 5000 A
(2)当 6000 A 时,相邻明纹间距为


x
这两个振动的叠加,得到的合振动的振幅为
Ap A1 A2 2 A1 A2 cos
2 2
因波的强度正比于幅的平方,对上式两边平方,有
I p I1 I 2 2 I1 I 2 c o s
其中
2 - 1 - 2
r2 r1

两列波满足相干条件,则相位差就只是位置的函数,空间中一定的点它的相位差是一定的,它不会 随时间变化,因此,一定的点,波的强度是一定的。对于不同的点,因为位置不同,r2-r1 得值不同, ⊿φ 的值不同,使得波的强度也不同。当
2k
振动加强,波的强度最大,干涉相长;当
(2k 1)
振动减弱,波的强度最小,干涉相消。 空间中,有的地方振动始终加强,有的地方振动始终减弱,且不随时间变化,这就是干涉现象。 光波是一种电磁波,它的振动方程由电场强度矢量和磁场强度矢量来描述,光波中,产生感光 作用的是电场强度,电场强度的振动称为光振动,因此描述光振动的方程为:
2 - 1 - 2
波程差为:
r2 r1

2
r2 r1

2

r2 r1 ,
从 S1 到 B 画一条直线,使得线段 PB 和 PS1 相等,则波程差为 S2B。因为 d<<D,则 S1B 近于和 r1 与 r2 两者都垂直,则它与 MP 也近似垂直,因此 S 2 S1 B 与角 PMO 近似相等,都用 θ 表示,则有

工科物理大作业13-波动

工科物理大作业13-波动

1313 波动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1. 在下列关于机械波的表述中,不正确的是:A. 机械波实际上就是在波的传播方向上,介质中各质元的集体受迫振动;B. 在波的传播方向上,相位差为2π 的两质元之间的距离称为波长;C. 振动状态在介质中传播时,波线上各质元均可视为新的子波波源;D. 波的振幅、频率、相位与波源相同;E. 波线上离波源越远的质元,相位越落后。

(D ) [知识点] 机械波的概念。

[分析与题解]平面简谐波在弹性介质中传播,介质中各质元都做受迫振动,各质元均可视为新的子波波源,因此,各质元的振幅、频率与波源是相同的,但各质元的相位是沿传播方向逐点落后的。

2. 平面简谐波波函数的一般表达式为])(cos[ϕω+=uxt A y ,则下列说法中不正确的是:A .ux ω表示波线上任一质元落后于原点处质元的相位,或者说是波线上相距为x 的两质元的相位差;B .ux表示波从x = 0 传到 x 处所需时间; C .)(u x -中的负号表示相位落后;)(ux +中的正号表示相位超前;图13-1(a)图13-1(b)D .ty∂∂是任一时刻波线上任一质元的振动速度v ,它并不等于波速u ; E .ty∂∂表示波速u ,它与介质的性质有关。

(E ) [知识点] 波动方程中各物理量的意义。

[分析与题解]t y ∂∂表示波动某一质元的振动速度v ,它并不等于波速u 。

一般来说ty ∂∂是时间的函数并且与质元位置x 有关,而波速u 只与介质的性质有关。

3.在下列关于波的能量的表述中,正确的是: A .波的能量2p k 21kA E E E =+=; B .机械波在介质中传播时,任一质元的E k 和E P 均随时间t 变化,但相位相差2π; C .由于E k 和E P 同时为零,又同时达到最大值,表明能量守恒定律在波动中不成立; D .E k 和E P 同相位,表明波的传播是能量传播的过程。

光程-杨氏双缝干涉

光程-杨氏双缝干涉



0

2

2
P
E 2 E12 E22 2E1E2 cos
P点光强:
I I1 I2 2 I1I2 cos
干涉项
光的干涉
非相干光源: cos 0
I I1 I2 —非相干叠加 完全相干光源: cos cos ▲ 相长干涉(明) 2k π,(k = 0,1,2…)
v 1
0r 0r
E0 c B0
n rr
E B
v c n
光矢量 E 矢 光量的能干引涉起人眼 视觉和底片感 光,叫做光矢 量
v
1
0r 0r
c 1
0 0
n rr
v c n
光的干涉
一、普通光源(light source) 光源的最基本的发光单元是分子、原子。
r1
P
s 2*
r2 n
(2)光程差 (两光程之差)
光程差 Δ nr2 r1
相位差 Δ 2π Δ
λ
沿光的传播方向相位逐点落后
光的A干涉
n1 A、B 两点之间的光程为
n2
L nili
i
回顾
l
ni
沿光的传播方向相位逐点落后
光由A传到B所带来 B
的相位的落后
2 l 2 nl
➢量子光学:以光的量子理论为基础,研究 光与物质相互作用的规律。
光的干涉
关于光的本性:两大学说之争
以牛顿为代表的一派认为:“光是 一种物质微粒,在均匀的介质中以 一定的速度传播”
最伟大、最有影响的科学家
以惠更斯为代表的一派认为:“光 是在空间传播的某种波”
荷兰物理学家,天文学家

大学物理惠更斯原理波的衍射

大学物理惠更斯原理波的衍射

6.5 波的干涉
6.5.1 波的叠加原理 1. 波传播的独立性原理
几列波在空间某点相遇后,每一列波都能独立地 保持自己的原有特性(频率、波长、振动方向等) 传播,就像在各自路程中,并没有遇到其它波一样.
例如: 管弦乐队合奏;
几个人同时讲话;
天空中多个无线电波.
2. 波的叠加原理
几列波在某点相遇时,该处质点的振动为各列波 单独在该点引起的振动的合振动.














讨论
1. 波的衍射现象是否明显,取决于障碍物的线度与波长的关系
小孔的直径远小于 波长时的衍射现象
小孔的直径大于 波长时的衍射现象
2. 室温下,声速为340m/s,频率20-20000Hz,波长范围:
u 0.017 ~ 17m
与障碍物尺度相当,所以声波的衍射现象较显著.
相遇前
相遇时
相遇后
6.5.2 波的干涉条件和公式
频率相同、振动 方向平行、相位 相同或相位差恒 定的两列波相遇 时,某些地方振 动始终加强,另 一些地方振动始 终减弱的现象, 称波的干涉现象.
波的相干条件:
(1) 频率相同;
S1
(2) 振动方向平行;
(3) 相位相同或相位差恒定. S2
r1
*P
r2
当(2 1) 2k 时
A = A1+ A2 —合振幅最大,同相
当(2 1) (2k 1) 时 A = |A1A2 | —合振幅最小,反相
波函数的求解:
上次课内容小结
1. 先求出某点O的振动方程: yO Acos(t )
由初始条件求振幅和初相位:

物理学教程(第二版)上册课后答案第六章

物理学教程(第二版)上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为π (B )B 点静止不动 (C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质 的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示.x =1.0m 处质点的运动方程为 ()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为 ()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-6-7 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ20 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ20 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=d y /d t .解 (1) 从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103 m·s-1 .根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =7.5m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x =1.0 m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A =0.40 m,t =0 时位于x =1.0 m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) rad .s -1 .由上述特征量可写出x =1.0 m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x =1.0 m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x =1.0 m 处的运动方程作比较,可得φ0 =-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y 6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差. 解 (1)将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ=1.0 m .这样,x 1=0.80 m 与x 2=0.30 m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m 和10.0 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 =5.0 m 、r 2 =10.0m 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /υ=4.0 m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1 )题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1 在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d =2.00 mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===d u u λν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ=1.3 kg·m -3 )中以u =340 m·s -1 的速度传播,到达人耳时,振幅约为A =1.0 ×10 -6 m .试求波在耳中的平均能量密度和声强.解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约1.0×10-6W·m -2 左右. 6-18 面积为1.0 m 2 的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 =1.0 ×10-12 W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS .解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为 P =IS =10L I 0S =1.0 ×10-4 W6-19 一警车以25 m·s -1 的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1 的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1 )分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1 运动时,静止于路边的观察者所接收到的频率为s u u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su u v v υ 警车驶离观察者时,式中υs 前取“+”号,故有 Hz 7.7432=+='s u u v v υ (2) 客车的速度为0υ=15 m·s -1 ,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ 6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40s u =υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为400u =υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为s υ-='u uvv ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz 41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u u v u u v u u v υυυυυ。

108839-大学物理-普通物理学-chap-18-5

108839-大学物理-普通物理学-chap-18-5
S1
Sd
S2
从点光源发出的同一波阵面上取出两个部分作为 相干光源
2. 振幅分割法
利用光在两种介质分界面上的反射光和透射光作 为相干光源
18.1 分波前干涉 一. 光的干涉 -波阵面分割法
1. 机械波
同频率,同振动方向,相位相同或相位差恒定的相干波 干涉
2k ,k 0,1,2,
合振动加强
( 2k 1) ,k 0,1,2, 合振动减弱
D2
明暗条纹相反, 接触屏O处为暗纹
4. 光强公式
I I1 I2 2 I1I2 cos,

I1 = I2 =
I0 ,

I
4I0
cos2
2
( d sin 2 )
观测屏上
I
光强曲线
4I0
-4 -2 0 2 4
-2
-1
0
1
2
k
x -2 x -1 0
x1
x2
x
-2 /d - /d 0 /d 2 /d sin

2
暗环半径 r kR (k 0,1,2,)
1)从反射光中观测,中心点是暗点还是亮点? 从透射光中观测,中心点是暗点还是亮点?
(n 1)e k
k (n 1)e 7
▲ 讨论:
如果已知屏幕上覆盖后的第k级明条纹移到覆盖前 的中央零级位置,则情况如何?
L r2 r1 0
L r2 (r1 e) ne k
18.2 薄 膜 干 涉
一. 薄膜干涉
1. 光路分析
P
S
b
a n1
i
n2 A
a' b'
B d
C
薄膜上下表面的反射光

6-2 惠更斯原理 波的干涉

6-2 惠更斯原理 波的干涉

15
讨论
A
A A 2 A1 A2 cos
2 1 2 2
2 1 2π
r2 r1
若 1 2 则 2 π

波程差
r2 r1
k
k 0,1,2,
振动始终加强
A A1 A2
3)
(k 1 2)
2.在其后任意时刻,这些子波的包络就是新的波 前。
t 时刻波面 t+t时刻波面
波传播方向
t+ t
u t 平面波
3
克里斯蒂安· 惠更斯 惠更斯: (ChristianHaygen, 1629—1695) 荷兰物理学家、数学家、天 文学家。1629年出生于海牙。 1655年获得法学博士学位。 1663年成为伦敦皇家学会的第一位外国会员。 克里斯蒂安· 惠更斯(Christian Huygens 1629-1695)是与牛顿同一时代的科学家,是 历史上最著名的物理学家之一,他对力学的发 展和光学的研究都有杰出的贡献,在数学和天 文学方面也有卓越的成就,是近代自然科学的 4 一位重要开拓者。
2 1 2 2
减弱条件
2 1
2
2 cos r2 r1 2 1 1
当 1 2 时,波程差为

r2 r1 (2k 1) , ( k 0,1,2)

( k 0,1,2)
r r2 r1 (2k 1) ,
2 A A A 2 A1 A2 cos r2 r1 2 1
2 1 2 2
加强条件
2 1
2
2 cos r2 r1 2 1 1

大物习题答案第5章 机械波

大物习题答案第5章 机械波

第5章 机械波5.1基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件. 4.理解驻波及其形成。

5.了解机械波的多普勒效应及其产生的原因.5.2基本概念 1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。

它可以分为横波和纵波。

2.波线与波面 沿波的传播方向画一些带有箭头的线,叫波线。

介质中振动相位相同的各点所连成的面,叫波面或波阵面。

在某一时刻,最前方的波面叫波前。

3.波长λ 在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。

4.周期T 与频率ν 一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。

周期的倒数称为频率,波的频率也就是波源的振动频率。

5.波速u 单位时间里振动状态(或波形)在介质中传播的距离。

它与波动的特性无关,仅取决于传播介质的性质。

6.平面简谐波的波动方程 在无吸收的均匀介质中沿x 轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。

波函数是x 和t 的函数。

给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。

7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两列波的相位差和波程差
相位差与波程差的关系是什么?
Nxpi的关系,2π除以波长乘以光程差等于相位差。

波程差是指两列波传播到某一质点的路程之差。

在波的干涉中,当两波源的相位差为0时,若某质点波程差为整数倍的波长,则该质点为振动被加强的点,若某质点波程差为(n+1/2)倍波长,则该质点为振动被减弱的点。

当两波源的相位差为π时,若某质点波程差为(n+1/2)倍波长,则该质点为振动被加强的点,若某质点波程差为整数倍波长,则该质点为振动被减弱的点。

相关文档
最新文档