通原软件实验一:抽样定理的验证

合集下载

通信原理实验-抽样定理实验

通信原理实验-抽样定理实验

电子与信息工程系《通信原理实验》任务及报告书实验名称抽样定理实验指导教师班级姓名学号总成绩一、实验目的1.掌握抽样定理的概念;2.掌握模拟信号抽样与还原的原理与实现方法;3.了解模拟信号抽样过程的频谱。

二、实验内容1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱;2.采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱。

三、所需设备1.信号源模块;2.模拟信号数字化模块;3.20MHz双踪示波器;4.频谱分析仪(可用数字存储示波器代替)。

四、实验原理1.简述抽样定理的概念及实现方法……2.抽样信号的还原……五、实验步骤1.将所用模块固定在机箱中,确保电源接触良好;2.连线:信号源模块模拟信号数字化模块2K正弦基波—————————————抽样信号DDS-OUT —————————————抽样脉冲模拟信号数字化模块模拟信号数字化模块PAM输出—————————————解调输入3.接通电源(220V AC输入开关、模块电源开关要全部打开);4.调节信号源模块“2K调幅”旋钮,使“2K正弦基波”输出3V左右;5.不同频率方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋钮,使其峰峰值为3V左右;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波A的频率为4KHz、8KHz、116KHz、32KHz等典型频率值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各典型频率值时抽样信号还原的效果。

6.同频率但不同占空比方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波B”,调节“DDS调幅”旋钮,使其峰峰值为3V左右、输出频率为4KHz;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波B的占空比为5%、20%、35%、50%、80%等值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各占空比值时抽样信号还原的效果。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。

由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。

在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒。

图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

SystemView抽样定理验证实验

SystemView抽样定理验证实验

实验四、抽样定理验证实验
一、实验目的
1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。

2、通过实验进一步掌握低通抽样定理的原理。

二、实验内容
用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。

三、思考题
1、观察仿真电路中各个模块输出波形变化,理解低通抽样定理原理。

2、调节抽样速率的大小(f=80Hz、100Hz、200Hz),观察低通滤波器输出波形变化,理解变化原因。

观察模拟信号与抽样信号的功率谱密度,观察有何变化,说明原因。

四、电路构成
参数设置:
Token0:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度)
Token1:Multiplier
Token2:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度0.000001,偏移0V,相位0度,抽样速率可调)
Token3:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass ——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率)。

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。

实验器材:
示波器、函数信号发生器、导线、面包板。

实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。

2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。

5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。

6.将采样频率设置为30kHz,并观察波形。

7.继续提高采样频率直至可清晰观察到原始信号的波形。

实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。

在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。

实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。

在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。

通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。

通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。

通信原理实验报告

通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。

就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。

抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。

(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。

(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。

(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。

2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。

P09 测试点可用于抽样脉冲的连接和测量。

该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。

3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。

抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。

本实验旨在通过实际操作验证抽样定理在通信原理中的应用,加深对抽样定理的理解,掌握其实际应用方法。

二、实验原理。

抽样定理是指在一定条件下,对信号进行抽样采集后,可以准确还原原始信号。

在通信原理中,抽样定理是确保数字信号可以通过采样准确地表示模拟信号的重要基础。

三、实验仪器与材料。

1. 示波器。

2. 信号发生器。

3. 电缆。

4. 电脑。

5. 实验电路板。

四、实验步骤。

1. 将信号发生器与示波器连接,调节信号发生器输出频率为50Hz;2. 将示波器触发方式设置为自动触发;3. 调节示波器的水平和垂直灵敏度,使波形在示波器屏幕上居中显示;4. 通过示波器观察信号波形,并记录采样率;5. 逐渐增大信号发生器的频率,观察波形的变化;6. 将实验数据导入电脑,进行数据处理和分析。

五、实验结果与分析。

通过实验操作,我们得到了不同频率下的信号波形,并记录了相应的采样率。

在数据处理和分析过程中,我们发现随着频率的增大,如果采样率不足,将会出现混叠现象,导致信号失真。

这验证了抽样定理的重要性,即采样频率必须大于信号频率的两倍,才能准确还原原始信号。

六、实验总结。

通过本次实验,我们深刻理解了抽样定理在通信原理中的重要性,了解了采样率对信号重建的影响。

在实际应用中,我们需要严格按照抽样定理的要求进行信号采样,以确保数字信号能够准确地表示模拟信号。

七、实验感想。

本次实验使我对抽样定理有了更深入的理解,也增强了我对通信原理的实际操作能力。

通过实验,我意识到理论知识与实际操作相结合的重要性,也更加重视了实验数据的准确性和分析的重要性。

八、参考文献。

[1] 《通信原理》,XXX,XXX出版社,2018年。

[2] 《电子技术基础》,XXX,XXX出版社,2017年。

以上为本次实验的报告内容,希望能对大家的学习和实践有所帮助。

通信原理MATLAB验证低通抽样定理实验报告

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。

2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。

三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。

2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。

四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

4、对信号进行谱分析,观察与3中结果有无差别。

5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。

五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。

clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形, 幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。

通信原理-抽样定理(PAM)实验报告

通信原理-抽样定理(PAM)实验报告
3、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V左右。
4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT—————— 抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
通信原理-抽样定理(PAM)实验报告
实验目的
1、掌握抽样定理的概念。
2、掌握模拟信号抽样与还原的原理及实现方法。
3、了解模拟信号抽样过程的频谱
实验要求
按照实验指导书完成实验内容
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
(2)示波器双踪观测“抽样信号”与“PAM输Hz等典型频率值时“PAM输出”测试点波形及频谱的区别。
这里可采用频谱分析仪或数字存储示波器的频谱分析功能进行信号频谱分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京邮电大学通原软件实验实验一:抽样定理的验证
专业:信息工程
学生姓名:×××
指导教师:××
完成时间:×××××
一、实验目的
1、熟悉SystemView软件的操作。

2、通过分析验证低通抽样定理。

二、实验原理
抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。

对上限频率为f H的低通型信号,低通抽样定理要求抽样频率应满足:f S≥2f H 三、实验内容
按照低通抽样定理,对构造的低通型信号,抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理。

四、实验结果
1、电路框图
图1:电路框图
2、元件参数
编号属性类型参数设置
0 Source Sinusoid Amplitude=1V,Frequency=10Hz
1 Source Sinusoid Amplitude=1V,Frequency=12Hz
2 Source Sinusoid Amplitude=1V,Frequency=14Hz
3 Adder ————
4 Sink Analysis 显示波形
5 Sink Analysis 显示波形
6 Sink Analysis 显示波形
7 Sink Analysis 显示波形
8 Multiplier ————
9 Source Pulse Train 产生抽样脉
冲,Frequence=50Hz,Amplitude=1V,
Pluse Width=0.0001s
10 Sink Analysis 显示波形
11 Operator Linear Sys Butterworth, 10 Poles, Low Fc = 25Hz,
12 Sink Analysis 显示波形
图2:元件参数列表
3、仿真波形
①正常情况
图3:三个输入正弦波的时域波形
图4:合成波形、抽样波形、恢复波形
图5:源正弦波、合成正弦波、采样后信后、恢复信号分别对应的频域波形②抽样不足
图6:抽样频率为10Hz时各信号频域波形
③截止错误
图7:巴特沃夫低通滤波器截止频率为40Hz时各信号频域波形
五、实验分析
1、延时
即使在正常的采样频率和截止频率的情况之下,恢复后的信后相对于原信号还是有一定的延时,这是由滤波器自身的延时特性所决定的,不能够消除。

实验中也正好验证了这点(图中已用红线标注出延时差异)。

2、抽样频率与截止频率
在实验中,除了设置正确的参数外,我还特意设置错误的参数以查看变化。

比如我把采样频率降低为10Hz,或者把巴特沃夫滤波器的截止频率提高到40Hz,其输出的波形都是不正确,且符合理论的。

六、实验总结
此次试验首次接触SystemView软件,熟悉软件的操作花了我不少时间。

在实验课上有些问题还没搞明白,所以回去后下载安装了此软件重做一次试验,收获良多,我对抽样定理又多了一些了解。

相关文档
最新文档