电石法PVC生产原理
电石法pvc生产工艺

电石法pvc生产工艺电石法PVC生产工艺PVC(聚氯乙烯)是一种广泛应用于建筑、汽车、电器等各个领域的塑料材料。
其中,电石法是制备PVC的一种常见方法。
下面将介绍电石法PVC生产工艺的主要步骤。
首先,电石法PVC生产工艺的第一步是制备乙炔气。
通过加热石灰石(CaCO3)和煤进行反应,产生一氧化碳和氢气。
通过将这两种气体混合,然后通过电弧放电反应,可以制备出乙炔气。
接下来,乙炔气经过净化处理,去除其中的杂质和水分,以确保后续反应的顺利进行。
然后,将乙炔气与氯气混合,在适当的温度和压力下进行氯乙烯(VC)的氯化反应。
这个反应过程是一个高温、高压的反应,需要严格控制反应条件,以获得高品质的氯乙烯产物。
氯乙烯的氯化反应得到的产物中包含了一系列的不饱和化合物,需要进一步反应才能得到PVC。
这一步骤是通过将氯乙烯与过氧化氢(H2O2)或过硫酸盐进行自由基聚合反应来完成的。
在反应中添加适量的过氧化氢或过硫酸盐,并控制反应温度和时间,可以得到所需的PVC产物。
在得到PVC后,还需要进行加工和改性,以满足不同应用领域的要求。
常见的一种改性方法是添加稳定剂和增塑剂。
稳定剂可以防止PVC在高温条件下分解,而增塑剂可以提高PVC的柔韧性和可加工性。
最后,经过加工和改性后的PVC可以以颗粒或片状的形式出售,用于不同产品的制备。
例如,通过热塑性成型或挤出工艺,可以将PVC颗粒制成各种形状的管道、板材等。
总结一下,电石法PVC生产工艺主要包括乙炔气的制备、氯乙烯的氯化反应、PVC的聚合、加工和改性等步骤。
通过严格控制反应条件和添加适当的添加剂,可以得到高质量的PVC产品。
电石法PVC生产工艺在塑料制品生产领域具有广泛的应用前景。
采用电石法生产聚氯乙烯

采用电石法生产聚氯乙烯(PVC)的上市公司一览◇电石法:利用电石(碳化钙CaC2),遇水生成乙炔(C2H2),将乙炔与氯化氢(HCl)合成制出氯乙烯单体(CH2CHCl),再通过聚合反应使氯乙烯生成聚氯乙烯—[CH CHCI]n—的化学反应方法。
具体代表厂家为:新疆天业(600075)、中泰化学(002092)、青岛海晶等。
◇乙烯法:从石油中提取乙烯(C2H4),让氯气与乙烯发生取代反应,制得氯乙烯单体,经聚合反应生成聚氯乙烯树脂。
代表厂家为:齐鲁石化、上海氯碱等。
电石法比石油法成本低,但电石法生产的氯乙烯单体在质量上比石油法稍差(也就造成了石油法PVC稍优于电石法),且电石法造成的污染较大。
但石油价格的持续走高,使电石法的生存空间和利润空间不断扩展。
有相当多的企业或投资人正在进入这一行业,特别是西部企业,在资源(电石多由西部企业生产、煤矿也较丰富)、能耗(水电成本较低)、人力(人工成本低)等方面都具有优势。
近两年内,西部将有几百万吨的电石法PVC投产,行业竞争将愈演愈烈。
同时随着PVC出口退税的调整(从11%降至5%)以及国家对两高一资企业的限制(电石将极其紧张),国内市场将极其惨烈。
◇西部电石法生产企业成本优势突出在电力成本支撑电石价格难以下跌的情况下,拥有一体化优势的西部企业利用自备电厂或当地较为便宜的电石价格,拥有成竞争优势。
自备电厂的发电成本仅为0.18-0.20 元/度,远低于0.37-0.39 元/度的电网电价;电石供应价格也在2400-2600 元/吨,低于内地电石价格200 元/吨以上。
在市场价格偏低、行业内企业普遍开工不足的情况下,西部电石法PVC 生产企业依旧保持了较高的开工率和合理的库存水平,拥有自备电厂的企业,在目前的价格水平下依旧拥有较强盈利能力。
英力特一季度开工率约为70%,随后逐步提高至二季度90%、三季度的100%;新疆天业也从一季度约80%开工率提升至三季度的100%;中泰化学更是一直保持了100%的满负荷生产。
电石法PVC生产中降低电石消耗的方法

电石法PVC生产中降低电石消耗的方法电石法是一种常见的生产聚氯乙烯(PVC)的方法,然而在这个过程中,大量的电石被消耗。
为了降低这种消耗,许多公司和研究机构对此进行了深入研究。
本文将探讨一些降低电石消耗的方法,以期能够对电石法PVC生产中的技术改进提供一些有益的参考。
需要了解电石法PVC生产过程中电石是如何被消耗的。
电石法PVC生产是以电解氯化钠溶液为原料,通过电解产生氯气和氢气,然后氯气与乙烯在催化剂的作用下发生氯化反应生成1,2-二氯乙烯(EDC),再将EDC裂解为氯乙烯,最后再将氯乙烯聚合成PVC。
在这个过程中,用于产生氯气的氯化钠和用于产生环氧乙烷(VCM)的氯乙烯都需要大量的电石。
要降低电石的消耗,需要从原料的使用效率、反应条件的优化、设备的改进等方面入手。
一种常见的降低电石消耗的方法是改善电解反应的效率,特别是减少氯化钠的消耗。
电解氯化钠的结果是生成氯气和氢气,而氢气是一种被广泛使用的化工原料,可以用来制备氨、水热氢等产品。
通过改善电解反应的条件和提高氢气的回收率,可以达到降低氯化钠消耗的目的。
还可以通过改进EDC裂解和聚合反应的条件来减少VCM的消耗。
EDC裂解是将1,2-二氯乙烯分解成氯乙烯的过程,而聚合反应则是将氯乙烯聚合成PVC的过程。
通过优化这两个反应条件,可以提高反应的选择性和收率,减少VCM的损失,从而减少电石的消耗。
除了改进反应条件,设备的改进也是降低电石消耗的重要途径。
在电解部分,采用高效的电解槽和电解膜可以提高电解效率,减少电能的消耗,从而降低氯化钠的消耗。
在EDC裂解和聚合部分,采用高效的催化剂和反应器也可以提高反应的效率,减少VCM的损失,减少电石的消耗。
要降低电石的消耗,还需要从原料的选择和利用效率的角度出发。
可以探索其他替代原料来减少对电石的需求,或者通过提高原料的纯度和利用效率来减少原料的消耗。
在这方面,合成氢氯酸和其他氯化物的方法可能会成为未来的发展方向。
电石法PVC生产中降低电石消耗的方法

电石法PVC生产中降低电石消耗的方法电石法是PVC生产过程中常用的制备乙烯基单体的方法之一,该方法的核心是通过高温分解石灰石制备含有碳化钙和氯化钙的电石,然后将电石与氯气反应,得到氯乙烯和氢氯酸等化学品。
不过,电石的消耗量很大,不仅增加了成本,还会对环境造成不良的影响。
因此,PVC生产中需要采取降低电石消耗的措施。
1. 优化电石石灰石煅烧过程电石的制备中,石灰石煅烧环节是消耗能量和电石的主要环节。
优化该环节可节约大量的电石和能源。
现在一些PVC生产厂家采用煤或天然气取代原来石灰石煅烧的燃料,以节约能源成本。
此外,采用预余热回收系统可以进一步提高能源利用效率。
该系统将电石窑排出的高温气体通过换热器回收余热,用于预热石灰石和电石,以减少电石窑运行所需的总燃料。
2. 使用高效传导剂和合理的石灰石配比传导剂石墨是电石窑热能传导的重要中介,在电石石灰石煅烧过程中起到了传导和促进碳化钙分解的作用。
传统方法采用煤焦油作为传导剂,不仅价格昂贵,还会降低石灰石的分解速度。
近年来,一些新的高效铁基传导剂被提出,如铁素体不锈钢,它不仅比煤焦油更耐高温,而且能够更快地传导热能。
另外,合理的石灰石配比也可以降低电石消耗。
石灰石与炭组成的电石炉料中,碳的摩尔比例约为1:1.1,而石灰石的摩尔比例应当略高于理论值。
如果石灰石摩尔比例过高,则电石的生成量不足,反之则电石的生产成本会增加。
3. 优化电石合成工艺一些优化工艺可以帮助PVC生产商降低电石消耗。
例如,采用先进的脱碳工艺将氯气与乙烯单体反应,而不是直接与电石反应。
这种方法可以显著降低电石消耗,可以有效地提高氯乙烯纯度,避免产生副产物。
此外,PVC生产厂家可以考虑采用高效的热交换系统。
该系统可以将电石窑废气中的热能回收进行热交换。
这可以降低整个PVC生产过程的能源成本,减轻对天然气和电力的依赖。
热交换系统还可以帮助厂家在不影响PVC生产质量的情况下,提高生产效率。
总之,通过优化电石工艺的各个环节和调整设备配置,可以有效地降低电石消耗,提高PVC生产的效率和环保性能。
电石法聚氯乙烯生产工艺培训讲座

低碳发展
推动低碳生产模式,降低 碳排放强度,促进企业可 持续发展。
06
电石法聚氯乙烯生产工艺案例分析
成功案例分享
案例一
某大型化工企业通过改进 电石法聚氯乙烯生产工艺 ,实现了高产出、低能耗 的目标。
具体措施
采用新型催化剂、优化反 应条件、加强设备维护等 。
成果
提高了产品纯度,降低了 生产成本,增强了市场竞 争力。
电石法聚氯乙烯生产工艺培训 讲座
目
CONTENCT
录
• 电石法聚氯乙烯生产工艺简介 • 电石法聚氯乙烯生产原料与设备 • 电石法聚氯乙烯生产工艺技术参数 • 电石法聚氯乙烯生产工艺操作规程 • 电石法聚氯乙烯生产工艺优化与改
进 • 电石法聚氯乙烯生产工艺案例分析
01
电石法聚氯乙烯生产工艺简介
定义与特点
生产设备一览
电石破碎机
01 用于破碎电石,以便与水反应
。
乙炔发生器
02 用于将电石和水反应生成乙炔
。
氯化氢合成炉
03 用于将氢气和氯气反应生成氯
化氢。
聚氯乙烯聚合釜
04 用于将乙炔和氯化氢反应生成
聚氯乙烯。
冷却塔和循环水系统
05 用于控制反应温度和提供冷却
水。
压缩机组和鼓风机
06 用于提供保护气和反应气体。
压力控制
总结词
压力是电石法聚氯乙烯生产过程中的另一个重要参数,它对产品的质量和产量有 着显著的影响。
详细描述
在反应过程中,需要维持一定的压力条件,以确保反应物能够充分接触和反应。 压力过高可能导致设备损坏或安全事故,而压力过低则可能影响反应速率和产品 质量。因此,精确的压力控制对于电石法聚氯乙烯的生产至关重要。
电石法PVC生产中降低电石消耗的方法

电石法PVC生产中降低电石消耗的方法电石法是一种用电石和氯乙烯为原料生产聚氯乙烯(PVC)的方法,其中电石是生产氯的重要原料。
由于电石的消耗量大、造成环境污染,以及电石资源日渐枯竭等问题,如何降低电石消耗成为了PVC生产过程中亟待解决的问题。
本文将探讨一些降低电石消耗的方法。
控制氯乙烯的生产过程。
在PVC生产中,氯乙烯是电石和乙烯在催化剂的作用下生成的。
控制氯乙烯的生产过程可以减少电石的消耗。
在生产过程中提高反应温度和压力,优化催化剂的选择,可以提高氯乙烯的产率,从而降低电石的消耗。
改进电石的制备工艺。
电石是一种以石灰石和氯化钠为原料制备的含氯化合物,它是PVC生产中的重要原料。
改进电石的制备工艺,可以减少电石的消耗。
可以采用先进的电解设备和工艺,提高电石的纯度和产率,从而减少电石的消耗量。
优化PVC生产工艺。
在PVC生产过程中,可以通过改进聚合反应工艺和配方设计,减少PVC生产中电石的消耗。
可以控制反应温度、催化剂的选择和添加量、改进聚合反应的条件等,可以提高PVC的产率,减少废品率,从而降低电石的消耗。
加强废气处理和资源回收利用。
在PVC生产中,会产生大量的废气和废水,其中含有电石的有害物质。
加强废气处理和资源回收利用,可以减少电石的消耗。
在废气处理中使用先进的洁净技术和设备,将有害气体转化为无害气体排放或转化为可再利用的物质,可以减少电石的消耗。
加强管理和节能减排。
加强PVC生产过程中的管理,合理配置生产资源,提高资源利用率,减少浪费,可以降低电石的消耗。
加强节能减排工作,采用节能设备和技术,优化生产过程,减少能源消耗和排放,也可以降低电石的消耗。
降低电石消耗是PVC生产中亟待解决的问题。
通过改进氯乙烯的生产过程、改进电石的制备工艺、优化PVC生产工艺、加强废气处理和资源回收利用、加强管理和节能减排等方法,可以有效降低电石的消耗,提高PVC生产的效率和环境保护水平。
希望在各方的共同努力下,能够找到更多降低电石消耗的方法,为PVC生产的可持续发展做出更大的贡献。
电石法pvc生产工艺

电石法pvc生产工艺PVC(聚氯乙烯)是当今世界公认的最实用的塑料之一,它被广泛应用于建筑材料、家用电器、电缆和消防管道等制造领域。
它的主要原料是石油,但其制备工艺却受到了电石的深刻影响,几乎可以说它成为了PVC的核心生产工艺。
本文将重点介绍电石法PVC的生产工艺以及其背后的科学原理。
传统电石法生产PVCPVC的主要原料是苯乙烯和氯乙烯,在氯乙烯加入电石中,然后经过熔融结晶,分解后生成聚氯乙烯。
当氯乙烯接触电石时,发生的化学反应如下:C2H3Cl + MgCl2 C2H3MgCl + HCl即氯乙烯与氯化镁反应,产生氯化镁乙烯和盐酸。
随着反应的继续,氯化镁乙烯被进一步氯化,分解出苯乙烯和氯乙丙烯。
C2H3MgCl + Cl2 C2H3MgCl2 + C2H3Cl最终,氯乙丙烯和苯乙烯会聚合反应,形成聚氯乙烯:C2H3Cl + C6H6 C8H9Cl由于电石法生产PVC的过程简单、成本低,是当今PVC生产中最常用的工艺,尤其在低档PVC中如电塑管、衣服布料等。
改进的电石法生产PVC随着科技的发展,电石法PVC的生产工艺也发生了很大的变化,改进的工艺可声称生产的聚氯乙烯的性能更优良。
首先,在反应槽中添加了抗氧化剂,有效延长PVC的寿命,使其强度和热稳定性得到提升。
其次,从原料的角度改善了电石法生产PVC的过程,采用经济实惠的乙烯和乙烷两种原料,这极大地降低了生产成本。
最后,加入了快速扩散剂和控制剂,提高了聚合反应的效率,从而改善了PVC制品的物性。
综上所述,电石法生产PVC技术有着简单易行的传统工艺,已经拥有不错的应用前景,但同时也有许多的缺点,比如低温下易析出、热稳定性差,有害物质含量高等等,因此,还需要更进一步的改进,以实现更高效的PVC生产。
PVC生产工艺介绍

1.搅拌轴 4.耙臂 图1 乙炔发生器
14
2.人孔 5.括板
3.溢流口 6.挡板
7.溢流口 10.乙炔出口
8.排渣口 9.电石入口 11.气相平衡管
二、乙炔工艺——清净工艺 工序任务:
乙炔气从正水封进入水洗塔和冷却塔 进行洗涤冷却,冷却后的乙炔气一路进 气柜,一路经水环泵加压后进入第一清 净塔,第二清净塔。乙炔在1#和2#清净 塔与次氯酸钠逆流接触,除去气体中的 硫、磷杂质。经清净后乙炔气呈酸性, 进入中和塔被碱液中和,中和塔出来的 乙炔气纯度达到98.5%以上,经过冷却器 冷却后,送往转化工序。
两种工艺的物料流程
2
电石法PVC工艺生产成本
电石法PVC生产成本构成
电石消耗 氯化钠消耗 电耗 一次水消耗 触媒消耗 其它乙二醇、氯化钙、引发剂、分散剂、 终止剂等辅材消耗
3
电石法PVC工艺生产成本
电石消耗计算
电石 电石 发气 乙炔 乙炔 VCM 精镏 PVC 吨位 量 收率 纯度 转化 收率 转化 PVC产 电石 t L/kg % % 率% % 率% 量t 消耗 1 300 95 98.5 98.5 99 98 0.697 1.434 1 285 95 98.5 98.5 99 98 0.663 1.509 1 265 95 98.5 98.5 99 98 0.617 1.623 1 235 95 98.5 98.5 99 98 0.548 1.830 PVC产量M=m*q/24.04*x1*x2*x3*0.0625*x4*x5
产热量:CaC2反应放热: Q1=1×106×0.8/64×129.6=1620000kJ
CaO反应放热:Q2=1×106×0.1/56×63.56=99300kJ 传热量: 乙炔吸热量:Q3=1×300/24.04×0.95×26×1.848×85=48400kJ 水蒸汽吸热量:Q4=0.58/(1.083-0.58) ×308/26×1000×40.8=557700kJ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21乙炔总管乙炔纯度≥98%分析工
22废次钠贮槽废次钠贮槽液位30%~78%发生工
23回收罐压缩机工作水回收罐液位1/3~3/4清净工
岗位操作法
开车前准备:
加料岗位:
1.1.1.1检查本岗位设备、阀门、电气、仪表是否灵活好用,排空管是否畅通。
1.1.1.2蝶阀是否严密,不得有泄漏。
1.1.1.18.4将计量好的电石吊斗慢慢放到加料口上。
1.1.1.18.5向贮斗加料,完毕后,关闭一贮斗蝶阀、氮气阀、排空阀,将吊斗放回提升井下。
1.1.1.18.6准确记录好每次加料的电石重量。
发生岗位:
1.1.1.19开车:
1.1.1.19.1将发生器正、逆、安全水封液面控制在正常范围。
1.1.1.19.2打开气柜大阀.
14次钠贮槽次钠含有效氯0.06~0.12%清净工
次钠贮槽pH值7~8清净工
15中和塔中和塔碱含量10~15%清净工
中和塔Na2CO3<10%(冬天<8%)清净工
16洗涤塔洗涤塔液位1/2~2/3清净工
17清净塔清净塔1/2~2/3清净工
18中和塔中和塔液位1/2~2/3清净工
19乙炔总管乙炔含硫、磷无(AgNO3试纸不变色)清净工
由纯水工段送来的15%的碱液进入浓碱贮槽,定期用碱泵抽至中和塔内循环使用。
由氯碱分厂送来的10%的浓次钠溶液进入浓次钠池澄清后,借用浓次钠泵送到浓次钠高位槽贮存供配制使用。
自浓次钠高位槽来的浓次钠,与氯水(或氯气)、水一起分别经流量计计量后进入混合器内配制,配制好的新鲜次钠液流入配制槽,分析合格后,用新鲜次钠泵连续送到次钠高位槽供清净岗位使用,当高位槽内液位低时,报警器启动,此时应加大高位槽次钠补充量;当液位过高时,则自动溢流回配制槽内,以保持配制槽和高位槽内的次钠量。
发生器内水解反应放出的热量和产生的渣浆,借废次钠泵注入的废次钠液维持发生器温度,稀渣浆由溢流管不断排出以维持发生器液位,电石渣由耙齿耙至发生器锥形底部,经排渣考克间歇排放。残渣与渣浆一起流至排渣场处理。
当发生器压力高时,乙炔气由安全水封自动排空;当压力过低时,气体由气柜经逆水封进入发生器,以保持发生器内正压。
g)通知加料工进行一贮斗加料。
1.1.1.19.5启动电磁振荡器,搅料时注意电磁振荡器的电流。
1.1.1.19.6打开带溢流水阀。
1.1.1.19.7当发生器温度达85℃,启动废次钠泵开始向发生器注水,并维持反应温度和发生器液面。
1.1.1.20正常操作:
1.1.1.20.1按生产需要,调节电磁振荡器电流,维持气柜高度。
1.1.1.16系统置换:
系统置换由合成工段决定放空位置,待联系妥当后,关闭气柜大阀,各自动排水口阀门,根据具体情况从发生器或清净塔进口开氮气阀,并开通乙炔管线开始置换,至分析合格关闭氮气进口阀,通知合成关闭放空阀,乙炔总阀。
待全系统置换完华,与合成工序联系决定通乙炔时间,发生、加料岗位提前加料,将气柜升到适当高度(~500m3)待用。
1.1.1.8.2系统置换则打开中和塔出口总管放空阀,关闭发生器排空阀、总管蝶阀、气柜大阀、自动排水阀,待清净系统各设备加好液位后,开通乙炔管径,从发生器加氮气置换系统,待分析合格后关闭相关阀口。
1.1.1.8.3气柜置换:
关闭气柜总管自动排水水封出口阀,打开氮气阀,待气柜升至适当高度,打开气柜放空阀将气柜放平后关闭排空阀,再将气柜升起,再放空直至取样分析合格。
H2S+4NaClO→H2SO4+4NaCl
PH3+4NaClO→H3PO4+4NaCl
SiH4+4NaClO→SiO2+2H2O+4NaCl
AsH3+4NaClO→H3AsO4+4NaCl
上述反应生成的H2SO4、H3PO4等酸类物质,部份夹带于气体中,进入中和塔,在塔内与氢氧化钠进行中和反应,主要的反应式如下:
序号控制点控制项目控制指标控制人备注
1电石破碎机电石粒度20~30mm破碎工
2氮气
氮气总管氧气含量<3%分析工
氮气总管纯度>97%分析工
氮气总管压力≥0.2MPa加料工
3一贮斗加料排氮压力40~60mmHg加料工
4一贮斗加料前氮气置换时间≥2min加料工
5发生器中部发生器温度85~90℃发生工
6发生器顶部发生器压力600~1000mmH2O发生工
1.1.1.11将贮存在碱贮槽内的合格的碱液打到中和塔,待中和塔液位正常时关闭碱贮槽出口,中和塔打循环。
1.1.1.12冼涤塔、清净塔加液面到规定位置。
1.1.1.13将压缩机气水分离器及+5℃水热交换器加水到规定位置(+5℃水热交换器内注满)。
1.1.1.14各自动排水水封加水到规定位置。
1.1.1.15开启机后冷却器、乙炔预冷器及压缩机+5℃水热交换器的冷却上水、回水阀,冷却水系统启动。
H3PO4+3NaOH→Na3PO4+3H2O
H2SO4+2NaOH→Na2SO4+2H2O
生成的盐类物质溶解于液相中,通过排碱时排放。
工序任务
将破碎好的电石加入发生器内与水发生水解反应,按生产需要,调节电磁振荡器电流,维持气柜高度,生成的粗乙炔气进行冷却、压缩、清净(除去粗乙炔气中的H2S、PH3等杂质),使其纯度达到98%以上,满足合成工序流量要求。
1.1.1.19.3启动发生器搅拌。
1.1.1.19.4向第二贮斗放料。
a)检查发生器液位是否正常。
b)当一贮斗料加好后,确定二贮斗电石用完(第一次可略)。
c)通知发生操作室操作人员停电磁振荡器。
d)打开二贮斗蝶阀,使一贮斗内电石加入二贮斗。
e)如电石粒度大卡住,用铜锤或仓壁振动器敲击一贮斗。
f)待向二贮斗加完电石后,关闭二贮斗蝶阀(需反复开关2~3次)。
由总管来的乙炔气体,经SK-30、SKA-303压缩机或纳氏泵加压后进入机后冷却器,用工业水冷却后的乙炔气体,进入三组并联的清净系统(每组由两台清净塔,一台中和塔串联构成)在塔内粗乙炔气与氢氧化钠溶液或NaClO溶液逆向接触反应,以除去粗乙炔气中的硫、磷等杂质气体。从中和塔塔顶出来的乙炔气体汇集在总管内,通过乙炔预冷器用+5℃水冷却后又进入三台并联的固碱干燥器,脱水后的精乙炔气纯度达98%以上,送到合成工序使用。
2~50 305
305
300 295
295
290 280
280
275 255
255
250
乙炔中磷化氢,%(V)≤ 0.06 0.08 0.08 0.08
乙炔中硫化氢,%(V)≤ 0.10 0.10 0.15 0.15
电石粒度应符合(表2)要求。
表2电石粒度标准
粒度,mm限度内粒度,%2mm筛下物,%
1.1.1.3检查氮气压力是否合格。
1.1.1.4通知分析工分析氮气纯度。
发生岗位:
1.1.1.5检查各设备、阀门、仪表是否灵活好用。
1.1.1.6系统无泄漏、传动设备正常,加足润滑油。
1.1.1.7气柜、发生器、安全水封、正、逆水封加水到规定位置。
1.1.1.8氮气置换:
1.1.1.8.1发生器系统局部置换则打开发生器和二贮斗排空阀,打开发生器及二贮斗氮气进口阀,控制发生器压力及液面,用合格的氮气置换至分析系统含氧气<3%为合格,关闭相关阀门。
正常开车:
加料岗位:
1.1.1.17电动葫芦提运电石
1.1.1.17.1移动电动葫芦将挂钩垂直放至提升井下,与破碎工密切配合挂好电石吊斗。
1.1.1.17.2当破碎工把吊斗挂牢于葫芦挂钩上,通知加料工提运后,向上点动葫芦,重斗试葫芦运行情况,确认葫芦正常后方可向上提料,至吊斗安全离开斗车后停顿,待破碎工把斗车移开后再继续向上提料。
1.1.1.8.4全系统置换:
与合成联系,由合成工段决定具体放空位置,待合成打开排空阀后,开通乙炔管径,从发生器加氮气开始置换,至分析合格后关闭相关阀门。
清净岗位:
1.1.1.9检查各设备、管道、电气、仪表是否正确完好。系统无泄漏,传动设备检查无误,转向正确,加足润滑油。
1.1.1.10将准备好的浓次钠液用泵送到浓次钠高位槽,并配制合格的新鲜次钠液,启动新鲜次钠泵将配制槽内的新鲜次钠送到次钠高位槽备用。
1.1.1.17.3用地磅准确称量电石重量,确保一贮斗碟阀能关严。
1.1.1.18向一贮斗加料:
1.1.1.18.1检查第一贮斗内的电石是否全部放完(第一次可略)。
1.1.1.18.2打开一贮斗排空阀、氮气进口阀,稳定排氮压力,置换贮斗,时间不少于2分钟。
1.1.1.18.3待一贮斗置换合格,关闭其氮气进口阀,开启碟阀,加料口冲氮气。
表3工序动力参数
序号名称动力参数备注
1电磁振荡器、仓壁振荡器220V
2电动葫芦、压缩机、清净泵、洗涤泵、碱泵、搅拌电机、新鲜次钠泵等380V
3工业水≥0.3MPa
4循环水≥0.3MPa
5上清液≥0.3MPa
6凉水塔上清液温度≤40℃洗涤泵进口(上清液)温度
7空气≥0.2MPa
8氮气≥0.2MPa
9 +5℃水≤10℃
81~150 85以上≤3
51~81 85以上≤3
2~50 76(16mm以上)≤4
氮气
纯度: ≥97%
含氧: ≤3%
不含水
压力≥0.2MPa
碱液
Na(OH)>15%
NaCl<5%
Na2CO3<1%
氯气
纯度: ≥90%
含氢:>0.4%
含水:>0.03%
浓次氯酸钠
有效氯:≥10%
工序动力参数要求(表3)
工序岗位职责
熟悉本工序工艺流程,设备结构,物料性能,掌握操作法及基本生产原理,以及安全、消防环境保护要求。