杭师大附中2018年高考仿真卷

合集下载

2018年浙江省杭州高中高考语文仿真试卷

2018年浙江省杭州高中高考语文仿真试卷

2018年浙江省杭州高中高考语文仿真试卷一、语言文字运用(共20分)1. 下列各句中,没有错别字且加点字的注音全都正确的一项是()A.建设美丽乡村,要做到春风化雨、润物无声,必须在落细落实上下功夫。

不妨让更多“身边最美”造福桑梓(zǐ)、守望邻里,不妨多采用新媒体让核心价值无远弗(fú)届。

B.种种怪现状催生了一些看似光鲜靓丽,实则空洞浅薄、制作粗糙(cāo),备受观众诟病的“流星”式作品,这已然成为影响我国影视产业健康有序发展的一大掣(chè)肘因素。

C.中国人慎(shèn)终追远,讲究家风传承,是为旌表前贤、构建自身、警策后人,这是传统文化的精髓(suí);而攀附权贵、篡改家谱、冒认阔祖宗,则是传统文化的糟粕D.习总书记有关“功成不必在我”与“功成必定有我”的论述高屋建瓴(líng)、振聋发聩,充满哲学思辩,为党员干部如何树立正确的历史观、发展观、名利观确立了标杆(gān)二、阅读2. 【甲】天下没有免费的午餐,多劳多得、少劳少得、不劳不得,这些道理都是社会分配的基本原则和基础常识。

常识一旦被忽略,就会滋生问题。

【乙】“钱多、活少、离家近”,现在不少毕业生如此刻画内心最渴望的工作状态,抛去玩笑成分,应该说,这样的诉求背离了社会分配原则,凸显了大学生畸形的求职心态。

在正常社会秩序下,如果大学生在进入职场之初,便希望寻找捷径“躺着把钱挣了”,只能是痴人说梦。

常识告诉我们,如果一份待遇不错的工作没经过多少正规考查程序,很容易让人入职,而且附加各种诱人的收入承诺和发展机会,【丙】那一定要多问几个为什么,多一些警惕和求证:为什么天上会掉馅饼?这个公司是否正规、招聘人员是否靠谱……但现在,许多大学生缺少常识、急功近利,丧失了辨别是非曲直的意识和能力,最终可悲地走上了别人设下的圈套。

(1)文段中加点的词,运用不正确的一项是()A.滋生B.考查C.而且D.急功近利(2)文段中画线的甲、乙、丙句,标点有误的一项是()A.甲B.乙C.丙(3)下列各句中,没有语病的一项是()A.耐克公司高级副总裁肖恩•欧哈伦表示,打贸易战不会有赢家,美国单方面行动必将产生负面后果,不仅有损美国消费者和进口商利益,也会损害中方利益。

2018年浙江省杭州市师范学院附属中学高三英语模拟试题含解析

2018年浙江省杭州市师范学院附属中学高三英语模拟试题含解析

2018年浙江省杭州市师范学院附属中学高三英语模拟试题含解析一、选择题1. With inspiration from other food cultures, American food culture can take a __ for the better.A. shareB. chanceC. turnD. lead参考答案:C2. Jay Zhou’s concert _ for 3 hours, but his fans were not willing to leave when it came to an end.A. lastedB. keptC. coveredD. continued 参考答案:A3. —How are you getting along with the English party?—Quite well.Not so smoothly as we expected, _______.A.though B.instead C.either D.too参考答案:D4. ____________ to go out alone, the retired minister had to go for a walk with several policemen following him.A.Warning notB. Warned notC. Not warningD. Not warned参考答案:B5. Participants in the program were 32 students identified ________ individual intelligence tests, group achievement test scores in math and science, and student interviews.A. on the basis ofB. in the course ofC. in the shape ofD. in the name of参考答案:A略6. – Did the film ________ your expectation?–I’ve never seen a better one before.A. catch up withB. keep up withC. live up toD. fit in with参考答案:C7. No driving after drinking is a rule that every driver _______ obey in our country.A. willB. shallC. mayD. can参考答案:B8. It was on the last day ______ a press conference was held by some committee members.A. whereB. thatC. whenD. how参考答案:B9. We shouldn’t drink _______ we drive and we mustn’t drive if we’ve drunk.A. unlessB. beforeC. untilD. while参考答案:B10. His parents were angry when they learned he had borrowed the car ______ their wishes.A. againstB. toC. fromD. by参考答案:A11. There is no in trying to persuade him to change his mind, for he never follows the advice of others.A. doubtB. pointC. difficultyD. wonder参考答案:B12. Now that their parents are dead, the poor boy doesn’t know ________ the money they left.A. how to do with what to do withC. to do what withD. how he will do with参考答案:B13. Most children at school hope that they can activities that appeal to them after class instead of just doing their homework.A. apply forB. participate inC. stickto D. focus on参考答案:选B在学校的大多数学生都希望参加自己喜爱的活动, 故选B。

2018年杭州高级中学高考仿真测试英语试卷

2018年杭州高级中学高考仿真测试英语试卷

杭州高级中学2018年高考仿真测试英语试题卷本试卷分第I卷(选择题)和第II卷(非选择题)两个部分。

第I卷1至6页,第II卷7至8页。

满分150分,考试120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.在答选择题时,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在本试题卷上,否则无效。

第I卷第一部分:听力(共两节,满分30分)第一节(共5 小题;每小题 1.5 分,满分7.5 分)听下面5 段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. When will the man meet with Nick?A. On May 12th.B. On May 14th.C. On May 15th.2. What does the woman want the man to do?A. Get her a disk.B. Repair a computer.C. Help to deal with a document.3. How long has the man been working?A. For seven hours.B. For half an hour.C. For seven and a half hours.4. What are the speakers mainly talking about?A. A supermarket.B. A new store.C. A piece of furniture.5. What weather does the woman dislike?A. Foggy.B. Cloudy.C. Sunny.第二节(共15 小题;每小题 1.5 分,满分22.5 分)听下面5段对话或独白。

2018年5月高考仿真模拟考试数学试卷

2018年5月高考仿真模拟考试数学试卷

杭师大附中2018年高考仿真模拟测试数学试卷命题、审核:高三数学备课组 命题时间:2018年5月 一、选择题(本大题共10题,每小题4分,共40分,每小题列出的四个备选项中只有一个是符合题目要求的)1.已知集合=A }4|{2<x x ,=B }11|{<xx ,则=B A ( )A. }21|{<<x xB. }212|{<<-<x x x ,或C. }2|{->x xD. R2.设复数iz -=12,则下列命题中错误的是 ( ) A .2z = B .z 的虚部为i C .z 在复平面上对应的点在第一象限 D . i z -=1 3.已知平面α与两条不重合的直线a ,b ,则“α⊥a ,且α⊥b ”是“b a //”的 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件 4.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)1()1()(-+-=x g x f x h ,则下列结论中正确的是 ( )A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称5.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线y =与C 相交于,A B 两点,且AF BF ⊥,则C 的离心率为()A .12B . 1CD .1浙江新高考资料群提供7002920706.已知O 为ABC ∆的外心,A 为锐角且322sin =A ,若,βα+= 则βα+的最大值为 ( ) A .31 B .21 C .32 D .437.若函数()sin y k kx ϕ=+(0,2k πϕ><)与函数26y kx k =-+的部分图像如图所示,则函数()()()sin cos f x kx kx ϕϕ=-+-图像的一条对称轴的方程可以为 ( )A .24x π=-B . 1324x π=C .724x π=D .1324x π=-8.正项等比数列{}n a 满足: 43218a a a a +=++,则65a a +的最小值是 ( ) A .8 B .16 C .24 D .329.若函数有极值点,,且,则关于的方程的不同实根的个数是 ( )A . 6B .4C .5D .310.如图,已知等腰直角ABC ∆中,90ACB ∠=,斜边2AB =,点D 是斜边AB 上一点(不同于点,A B ),A C D∆沿线段CD 折起形成一个三棱锥'A CDB -,则三棱锥'A CDB -体积的最大值是 ( )()32f x x ax bx c =+++1x 2x ()11f x x =x ()()()2320f x af x b ++=A .1B .12 C .13 D .16二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.已知(12)n x +展开式中只有第4项的二项式系数最大,则=n ,n x x)21)(11(2++展开式中常数项为_______. 12.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 3cm ,表面积是 2cm .13.的双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为 ,点P 在双曲线C 上,12,F F 为双曲线的两个焦点,且120PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为14.在三棱锥ABC D -中,1====AB DC DB DA ,3,2==CA BC ,分别记对棱DA 和BC ,DB 和CA ,DC 和AB 所成角为γβα,,,则γβα,,的大小关系为_______;=++γβα222cos cos cos _______.15.3个男生和3个女生排成一列,若男生甲与另外两个男同学都不相邻,则不同的排法共有__________种(用数字作答).16.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“半缩函数”,若函数为“半缩函数”,则实数t 的取值范围是_______________17.在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若)6sin(422π+=+A bc c b ,则C B A tan tan tan ++的最小值为_______.三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18. (本题满分14分)已知)(cos sin sin 3)(2R x x x x x f ∈-=.(1)求函数()f x 的单调递增区间; (2)求函数()f x 在[,]36ππ-上的值域.19.(本题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=o ,120ADP ∠=o ,点E 为PA 的中点.()f x D ()f x [,]a b D ⊆()f x [,]a b [,]22a b ()f x 2()log (2)xf x t =+PE(Ⅰ)求证://BE 平面PCD ; (Ⅱ)若平面PAD ⊥平面ABCD , 求直线BE 与平面PAC 所成角的正弦值.20.(本题满分15分)已知函数.(1)若函数在其定义域内不是单调函数函数,求实数的取值范围;(2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.21(本题满分15分)已知椭圆221:143x y C +=,抛物线2:C 24y x =,过抛物线2C 上一点P (异于原点O )作切线l 交椭圆1C 于A ,B 两点. (1)求切线l 在x 轴上的截距的取值范围; (2)求AOB ∆面积的最大值.22.(本小题满分15分)己知数列{}n a 满足:111,)n a a n N *+==∈.证明: 对任意()n N *∈, (I)0n a >;(Ⅱ)144n n n n a a a a +<<+;(Ⅲ)13144n n n a -<≤ ()13ln f x a x x x ⎛⎫=-- ⎪⎝⎭()f x a ()3eg x x=[]1,e 0x ()()00f x g x >a杭师大附中2018年高考仿真模拟测试数学试卷答题卷一、选择题(本大题共10题,每小题4分,共40分。

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。

浙江省杭州重点中学2018年高考模拟试卷物理卷(解析版)

浙江省杭州重点中学2018年高考模拟试卷物理卷(解析版)

浙江省杭州重点中学2018年高考模拟试卷物理卷(解析版)章\ 陆选择题部分一、单项选择题(本题共13小题,每小题3分,共39分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列单位均为基本单位的是( B )A.库仑安培B.千克摩尔C.欧姆伏特D.特斯拉高斯【课本源头】电磁学中单位制2.A.牛顿运动定律和万有引力定律在宏观、低速、弱引力等领域中经受了实践的检验,取得了巨大成功B.安培发现了电流的磁效应,并提出了分子电流假说C.四种基本相互作用指的是:重力、电磁相互作用、强相互作用、弱相互作用D.元电荷e的数值为1.6×10-16C ,最早由法国物理学家密立根通过实验测量得出答案 A解析A项:牛顿运动定律和万有引力定律在宏观、低速等领域中经受了实践的检验,取得了巨大成功,故A正确;B项:奥斯特发现了电流的磁效应,安培提出了分子电流假说,故B错误;、C项:自然界有四种基本的相互作用力:万有引力相互作用、电磁相互作用、强相互作用和弱相互作用,故C错误;D项:元电荷e的数值为1.6×10-19C,最早由密立根通过实验测量得出,故D错误【课本源头】电学中相关物理史实整理1、美国科学家富兰克林把自然界中的两种电荷命名为正电荷和负电荷。

2、美国物理学家密立根通过油滴实验最早测定了元电荷e的数值。

3、法国物理学家库仑总结出了库仑定律。

4、法拉第第一次提出了场和电场线(磁感线)的观点。

5、焦耳定律最初是由焦耳用实验直接得到的。

6、安培提出了分子电流假说,用以解释电流的磁场和磁铁的磁场在本质上是相同的。

7、美国物理学家霍尔首先观察到“霍尔效应”。

8、1820年,丹麦物理学家奥斯特发现了电流周围存在磁场,即:电流的磁效应------电生磁。

9、1831年,英国物理学家法拉第发现了电磁感应现象,即:磁生电。

10、1834年,物理学家楞次总结出了判断感应电流方向的定律-------楞次定律。

杭师大附中2018年高考仿真模拟测试数学试卷

杭师大附中2018年高考仿真模拟测试数学试卷命题、审核:高三数学备课组 命题时间:2018年5月一、选择题(本大题共10题,每小题4分,共40分,每小题列出的四个备选项中只有一个是符合题目要求的)1.已知集合=A }4|{2<x x ,=B }11|{<xx ,则=B A ( )A. }21|{<<x xB. }212|{<<-<x x x ,或C. }2|{->x xD. R 2.设复数iz -=12,则下列命题中错误的是 ( ) A .2z = B .z 的虚部为i C .z 在复平面上对应的点在第一象限 D . i z -=1 3.已知平面α与两条不重合的直线a ,b ,则“α⊥a ,且α⊥b ”是“b a //”的 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件 4.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)1()1()(-+-=x g x f x h ,则下列结论中正确的是 ( )A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称5. 已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线y =与C 相交于,A B 两点,且AF BF ⊥,则C 的离心率为 ( )A .12B . 1CD . 16.已知O 为ABC ∆的外心,A 为锐角且322sin =A ,若,βα+= 则βα+的最大值为 ( ) A .31 B .21 C .32 D .437.若函数()sin y k kx ϕ=+(0,2k πϕ><)与函数26y kx k =-+的部分图像如图所示,则函数()()()sin cos f x kx kx ϕϕ=-+-图像的一条对称轴的方程可以为 ( )A .24x π=-B . 1324x π= C .724x π=D .1324x π=-8.正项等比数列{}n a 满足: 43218a a a a +=++,则65a a +的最小值是 ( ) A .8 B .16 C .24 D .329.若函数有极值点,,且,则关于的方程的不同实根的个数是 ( )A . 6B .4C .5D .310.如图,已知等腰直角ABC ∆中,90ACB ∠=,斜边2AB =,点D 是斜边AB 上一点(不同于点,A B ),A C D∆沿线段CD 折起形成一个三棱锥'A CDB -,则三棱锥'A CDB -体积的最大值是 ( )A .1B .12 C .13 D .16二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.已知(12)n x +展开式中只有第4项的二项式系数最大,则=n ,nx x)21)(11(2++展开式中常数项为_______. 12.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 3cm ,表()32f x x ax bx c =+++1x 2x ()11f x x =x ()()()2320f x af x b ++=面积是 2cm .13.2222:1(0,0)x y C a b a b-=>>的渐近线方程为 ,点P 在双曲线C 上,12,F F 为双曲线的两个焦点,且120PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为14.在三棱锥ABC D -中,1====AB DC DB DA ,3,2==CA BC ,分别记对棱DA 和BC ,DB 和CA ,DC 和AB 所成角为γβα,,,则γβα,,的大小关系为_______; =++γβα222cos cos cos _______.15.3个男生和3个女生排成一列,若男生甲与另外两个男同学都不相邻,则不同的排法共有__________种(用数字作答).16.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“半缩函数”,若函数为“半缩函数”,则实数t 的取值范围是_______________17.在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若)6sin(422π+=+A bc c b ,则C B A tan tan tan ++的最小值为_______.三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18. (本题满分14分)已知)(cos sin sin 3)(2R x x x x x f ∈-=.(1)求函数()f x 的单调递增区间; (2)求函数()f x 在[,]36ππ-上的值域.()f x D ()f x [,]a b D ⊆()f x [,]a b [,]22a b ()f x 2()log (2)xf x t =+第21题图19.(本题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=o ,120ADP ∠=o ,点E 为PA 的中点. (Ⅰ)求证://BE 平面PCD ; (Ⅱ)若平面PAD ⊥平面ABCD , 求直线BE 与平面PAC 所成角的正弦值.20.(本题满分15分)已知函数.(1)若函数在其定义域内不是单调函数函数,求实数的取值范围;(2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.21(本题满分15分)已知椭圆221:143x y C +=,抛物线2:C 24y x =,过抛物线2C 上一点P (异于原点O )作切线l 交椭圆1C 于A ,B 两点. (1)求切线l 在x 轴上的截距的取值范围;(2)求AOB ∆面积的最大值.22.(本小题满分15分)己知数列{}n a 满足:11 1,)n a a n N *+==∈.证明: 对任意()n N *∈, (I)0n a >;(Ⅱ)144n n n n a a a a +<<+;(Ⅲ)13144n n n a -<≤()13ln f x a x x x ⎛⎫=-- ⎪⎝⎭()f x a ()3eg x x=[]1,e 0x ()()00f x g x >a PECDA11.______________ ______________ 12. ______________ _______________ 13.______________ _______________ 14.______________ _____________ 15.______________ 16. _______________17.___________________三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18. (本小题满分14分)P EC DA20. (本小题满分15分)第21题图22. (本小题满分15分)11.______6________ ___61_______ 12. ____ 3 511+13. y x =±,12- 14. αγβ>>,6515.______ 288________ 16. __________ 17.三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)18.答案:(1)()sin(2);32(2)[1f x x π=-++-+19解法一:(Ⅰ)取PD 中点F ,连结,CF EF . 因为点E 为PA 的中点,所以//EF AD 且1=2EF AD , 又因为//BC AD 且1=2BC AD ,所以//EF BC 且=EF BC , 所以四边形BCFE 为平行四边形, 所以//BE CF ,又BE ⊄平面PCD ,CF ⊂平面PCD ,所以//BE 平面PCD .(Ⅱ)在平面ABCD 中,过D 作DG AD ⊥,在平面PAD 中,过D 作DH AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,所以1(0,)4DG ⊥平面PAD ,所以DG DH ⊥,所以,,DA DG DH 两两互相垂直.以D 为原点,向量DA ,DG ,DH 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz - (如图),则()4,0,0A,B,0)C,(P -,(E ,所以(AC =-,(AP =-,(EB =, 设(),,x y z =n 是平面ACP 的一个法向量,则0,0,AC AP ⎧⋅=⎪⎨⋅=⎪⎩n n即30,60,x x ⎧-=⎪⎨-+=⎪⎩ 取1x =,得=n . 设直线BE 与平面PAC 所成角为θ.则sin cos ,35EB θ===n ,所以直线BE 与平面PAC 所成角的正弦值为.20(1))23,0((2)令],1[,ln 33)1()()()(e x x xex x a x g x f x h ∈---=-= 则原问题转化为在上至少存在一点,使得,即. ①时, , ∵,∴, , ,则,不符合条件; ②时, , 由,可知,则在单调递增, ,整理得. 综上所述, .21分析:(1)设),4(2t t P ,则切线方程为22tx t y +=,与椭圆联立得0128)163(222=-+++t x x t, 0)12646414412(6422>⨯-+--=∆tt ,1602<<t , ∴切线l 在x 轴上的截距)0,4(42-∈-t .(2)O 到直线AB的距离为||t d =[]1,e 0x ()00h x >()max 0h x >0a ≤()133ln eh x a x x x x⎛⎫=--- ⎪⎝⎭[]1,x e ∈10x x-≥30e x >ln 0x >()0h x <0a >()()()()222221333333'a x e x ax x a e a e h x a x x x x ++--+++=+-==[]1,x e ∈()()()22133'0a x e x h x x++-=>()h x []1,e ()()max 60a h x h e ae e==-->261ea e >-26,1e a e ⎛⎫∈+∞ ⎪-⎝⎭||AB ==,AOB S ∆∴=== 令22163t m t=+,则AOB S ∆==≤, 当222163t m t==+时,此时取到最大值. 22.解:(I)(反证法) 假设存在*m N ∈,使得0m a ≤,因为11a =,故2m ≥.由m a =,10≤,即 10m a -≤. 依此类推,可得10a ≤,这与11a =矛盾,故假设错误, 所以对任意*m N ∈,都有0n a > (II)一方面,由(I)0n a >,要证114n n a a +<,只需证4n a =<12n a <+,即证21112124n n n n a a a a ⎛⎫ ⎪⎝⎭+<+=++ 即证20n a >,显然成立; 另一方面111414n n n n na a a a a ++>⇔<++因为)1211n na a+==,41n na<+,即证)214na+<+,只需证2na<+.即证()()224,12n na a+<+,即证20na>,显然成立.(Ⅲ)一方面,∵114n na a+<,∴当2n≥时,2121111111...4444n n n n na a a a---<-<<<=又11a=,所以11()4n na n N*-≤∈;另一方面,由(Ⅱ) 得14nnnaaa+>+,故1141n na a+<+,于是11111433n na a+⎛⎫+<+⎪⎝⎭, 因此当2n≥时,111111111144 (4)3333nnn n na a a a--⎛⎫⎛⎫<+<+<<+=⎪ ⎪⎝⎭⎝⎭得:()32,4na n n Nn*>≥∈,又11a=,所以1()4nna n N*>∈综上,13144nn na-<≤。

2018届浙江大学附属中学高考科目语文全真模拟及答案

2018 届浙江大学隶属中学高考科目全真模拟语文试卷一、语言文字运用(共20 分)1. 以下各句中,没有错别字且加点字的注音全都正确的一项为哪一项(3分)( )A.《红海行动》视听成效精深,军事元素丰富,拍照、剪缉、节奏、配乐恰到利处,震惊心灵。

没有故意煽情,没有矫.( ji ǎo)揉做作的爱情,没有以一敌百的开挂,有的不过“我们要救援那个一定救援的中国人”的信念,足以说明这是一部优异的战争片。

B.诗,可拿来比喻不食人间烟火的纯情玉女;而应用文,则完整着眼于适用,可称为“佣ōng)人”型。

散文呢,是诗和应用文的折中,兼有红尘的琐碎和形而上的寄望。

( y .C.张爷爷原名张世新,15 岁子承父业开始做挂面。

每一根挂面从和(huò)面、揉醒、压延、拉延、挂抻、晾晒等要经过18 道工序,制作全过程需要20 个小时左右,并且对温度和湿度的要求特别严格,一点都不可以粗心。

D.2018 年 2 月 22 日,平昌冬奥会短道速滑最后一个竞赛日拉开大幕!中国选手武大靖在4500 米短道速滑竞赛中博得冠军,并打破世界记录,斩( zhǎn)获中国代表团在平昌冬奥会上的.首枚金牌!武大靖夺冠的一刻,让中国人泪崩。

阅读下边的文字,达成2—3 题。

今年是《狂人日志》发布一百周年。

【甲】 1918 年 5 月 15 日,《狂人日志》在《新青年》第四卷第五号刊发,签字鲁迅。

这是中国文学史上第一篇现代白话文小说,也是周树人第一次使用“鲁迅”这一笔名。

而就在此以前,公事员周树人尚处在“十年缄默”之中。

直到《狂人日志》发布,他才真实成为我们熟习的那个鲁迅。

这一转折的发生,和1917 年中蔡元培出任北京大学校长以及《新青年》编写部成员在北大的汇聚..有直接的关系。

在钱玄同的鼓舞下,抱着希望与无望并存的心情,鲁迅终于答应“也做文章了”,这便是最初的一篇《狂人日志》。

就这样,《狂人日志》成为中国历史上第一篇短篇白话小说,为中国文学开启了一个崭新的纪元,现代小说由此出生。

浙江省杭州市2018年高考数学命题比赛试题18(word版含答案)

2018年高考模拟试卷数学卷命题双向细目表考试设计说明本试卷设计是在认真研读《2018年考试说明》的基础上精心编制而成,以下从三方面加以说明。

一、在选题上:(1)遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。

(2)试卷保持相对稳定,适度创新,逐步形成“立意鲜明,背景新颖,设问灵活,层次清晰”的特色。

二、命题原则:(1)强化主干知识,从学科整体意义上设计试题.(2)注重通性通法,强调考查数学思想方法.(3)注重基础的同时强调以能力立意,突出对能力的全面考查.(4)考查数学应用意识,坚持“贴近生活,背景公平,控制难度”的原则.(5)结合运动、开放、探究类试题考查探究精神和创新意识.(6)体现多角度,多层次的考查,合理控制试卷难度。

2018年高考模拟试卷 数学卷(时间 120 分钟 满分150 分)参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+. 如果事件A ,B 相互独立,那么()()()P A B P A P B ⋅=⋅.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次 的概率()(1)(0,1,2,...,)k k n kn n P k C p p k n -=-= .球的表面积公式24S Rπ=,其中R 表示球的半径.球的体积公式343VRπ=,其中R 表示球的半径.柱体的体积公式V S h =,其中S 表示柱体的底面积,h 表示柱体的高. 锥体的体积公式13V S h=,其中S 表示锥体的底面积,h 表示锥体的高.台体的体积公式121()3Vh S S =+,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高.选择题部分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 是虚数单位,复数z 满足(1-i)z =1,则|2z -3|=( ) A . 3 B . 5 C . 6 D .7 2.已知条件p :x ≤1,条件q :<1,则q 是¬p 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件3.已知,函数y=f (x+φ)的图象关于(0,0)对称,则φ的值可以是( ) A . B .C .D .4.若直线xcos θ+ysin θ﹣1=0与圆(x ﹣cos θ)2+(y ﹣1)2=相切,且θ为锐角,则这条直线的斜率是( ) A .B .C .D .5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若m ⊥α,则n ⊥β; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.设0,0),0,(),1,(),2,1(>>-=-=-=b a b OC a OB OA ,O 为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是( )A .2B .4C .6D .87.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为( ) A .50 B .80 C .120 D .1408.已知F 1、F 2分别是双曲线的左右焦点,A 为双曲线的右顶点,线段AF 2的垂直平分线交双曲线与P ,且|PF 1|=3|PF 2|,则该双曲线的离心率是( ) A . B . C . D .9.已知f (x )=x 2+3x ,若|x -a |≤1,则下列不等式一定成立的是( ) A .|f (x )-f (a )|≤3|a |+3 B .|f (x )-f (a )|≤2|a |+4 C .|f (x )-f (a )|≤|a |+5 D .|f (x )-f (a )|≤2(|a |+1)210.如图,棱长为4的正方体ABCD ­A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°, 则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)非选择题部分二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 11.设全集集U=R ,集合M={x|﹣2≤x ≤2},N={x|y=},那么M ∩N= ,C U N= .12.一空间几何体的三视图如图所示,则该几何体的体积为 , 表面积为 .13.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则前9项的和S 9= , cos (a 3+a 7)的值为 .14.袋中有大小相同的3个红球,2个白球,1个黑球.若不放回摸球,每次1球,摸取3次,则恰有2 次红球的概率为________;若有放回摸球,每次1球,摸取3次,则摸到红球次数X 的期望为________.15. 已知变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,x +y -4≤0,x ≥1,x 2+y 2xy的取值范围为________.16.设max{a ,b }=⎩⎪⎨⎪⎧aa ≥b b a <b已知x ,y ∈R ,m +n =6,则F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值为________.17.已知函数f (x )=x 2-x -4x x -1(x <0),g (x )=x 2+bx -2(x >0),b ∈R .若f (x )图象上存在A ,B 两个不同 的点与g (x )图象上A ′,B ′两点关于y 轴对称,则b 的取值范围为________.三、解答题(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 18.(本题满分14分)在∆A B C 中,a b c ,,分别是∠∠∠A B C ,,的对边长,已知a b c ,,成等比数列, 且a c a cb c 22-=-,求∠A 的大小及b B csin 的值.俯视图19.(本题满分15分)如图,已知四棱锥P-ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC=60°,E ,F 分别是BC ,PC 的 中点。

浙江省杭州市师范学院附属中学2018-2019学年高一英语模拟试题含解析

浙江省杭州市师范学院附属中学2018-2019学年高一英语模拟试题含解析一、选择题1. I walked into our garden, ________ Tom and Jim were tying a big sign onto one of the trees.A. whichB. whenC. whereD. that 参考答案:C2. ______ the school, the village has a clinic, which was also built with government support.A. In reply toB. In addition toC. In charge ofD. In place of参考答案:B试题分析:句意:除了这个学校外,这个村子有一个诊所,这个诊所也是有政府支持建造的。

In reply to作为回答;In addition to另外;In charge of 负责;In place of取代。

【名师点睛】本题与2015年湖北卷This meeting room is a non-smoking area. I would like to warn youin advancethat if you smoked here you would be fined.类似,都是in结构,In addition to=" apart" from,考生应注意积累“in+n.(+of)”这一常考搭配。

3. __________ has already been pointed out, grammar is not a set of dead rules.A. ItB. WhichC. AsD. What参考答案:C考查特殊定语从句。

句意:有人指出,语法并不是一套死规则。

As has already been pointed out相当于as is known to all.选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭师大附中2018年高考仿真模拟测试
数学试卷
命题、审核:高三数学备课组 命题时间:2018年5月 一、选择题(本大题共10题,每小题4分,共40分,每小题列出的四个备选项中只有一个是符合题目要求的)
1.已知集合=A }4|{2
<x x ,=B }11
|
{<x
x ,则=B A ( ) A. }21|{<<x x B. }212|{<<-<x x x ,或 C. }2|{->x x D. R
2.设复数i
z -=
12
,则下列命题中错误的是 ( ) A .2z = B .z 的虚部为i C .z 在复平面上对应的点在第一象限 D . i z -=1 3.已知平面α与两条不重合的直线a ,b ,则“α⊥a ,且α⊥b ”是“b a //”的 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件 4.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设
)1()1()(-+-=x g x f x h ,则下列结论中正确的是 ( )
A .)(x h 关于)0,1(对称
B .)(x h 关于)0,1-(对称
C .)(x h 关于1=x 对称
D .)(x h 关于1-=x 对称
5.
已知椭圆()22
22:10x y C a b a b
+=>>的左焦点为F ,直线y =与C 相交于,A B 两
点,且AF BF ⊥,则C 的离心率为


A .
1
2
B . 1
C
D .
1
6.已知O 为ABC ∆的外心,A 为锐角且3
2
2sin =
A ,若,AC A
B AO βα+= 则βα+的最大值为 ( ) A .
31 B .21 C .32 D .4
3
7.若函数()sin y k kx ϕ=+(0,2
k π
ϕ><
)与函数2
6y kx k =-+的部分图像如图所示,
则函数()()()sin cos f x kx kx ϕϕ=-+-图像的一条对称轴的方程可以为 ( )
A .24
x π
=-
B . 1324x π
=
C .724
x π=
D .1324
x π
=-
8.正项等比数列{}n a 满足: 43218a a a a +=++,则65a a +的最小值是 ( ) A .8 B .16 C .24 D .32
9.若函数有极值点,,且,则关于的方程
的不同实根的个数是 ( )
A . 6
B .4
C .5
D .3
10.如图,已知等腰直角ABC ∆中,90ACB ∠=,斜边2AB =,点D 是斜边AB 上一点(不同于点,A B ),A C D
∆沿线段CD 折起形成一个三棱锥'
A CD
B -,则三棱锥
'A CDB -体积的最大值是 ( )
()3
2
f x x ax bx c =+++1x 2x ()11f x x =x ()()()2
320f x af x b ++=
A .1
B .
12 C .13 D .16
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
11.已知(12
)n
x +展开式中只有第4项的二项式系数最大,则=n ,n x x
)21)(1
1(2++
展开式中常数项为_______. 12.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 3
cm ,表面积是 2
cm .
13.
22
22:1(0,0)x y C a b a b
-=>>的渐近线方程为 ,点P 在双曲
线C 上,12,F F 为双曲线的两个焦点,且120PF PF ⋅=,则12PF F ∆的内切圆半径r 与外接圆半径R 之比为
14.在三棱锥ABC D -中,1====AB DC DB DA ,3,2==
CA BC ,分别记对
棱DA 和BC ,DB 和CA ,
DC 和AB 所成角为γβα,,,则γβα,,的大小关系为_______; =++γβα222cos cos cos _______.
15.3个男生和3个女生排成一列,若男生甲与另外两个男同学都不相邻,则不同的排法共有__________种(用数字作答).
16.设函数的定义域为,若函数满足条件:存在,使在
上的值域是,则称为“半缩函数”
,若函数为“半缩函数”,则实数t 的取值范围是_______________
17.在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若)6
sin(422π
+
=+A bc c b ,则
C B A tan tan tan ++的最小值为_______.
三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)
18. (本题满分14分)已知)(cos sin sin 3)(2R x x x x x f ∈-=

(1)求函数()f x 的单调递增区间; (2)求函数()f x 在[,]36ππ
-上的值域.
19.(本题满分15分)如图,在四棱锥P ABCD -中,
//AD BC ,2AB BC ==,4AD PD ==,
60BAD ∠=o ,120ADP ∠=o ,点E 为PA 的中点.
()f x D ()f x [,]a b D ⊆()f x [,]a b [,]22
a b ()f x 2()log (2)x
f x t =+P
E
C
D
A
(Ⅰ)求证://BE 平面PCD ; (Ⅱ)若平面PAD ⊥平面ABCD , 求直线BE 与平面PAC 所成角的正弦值.
20.(本题满分15分)已知函数.
(1)若函数在其定义域内不是单调函数函数,求实数的取值范围;(2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
21(本题满分15分)已知椭圆22
1:143
x y C +=,抛物线2:C 24y x =,过抛物线2C 上一点P (异于原点O )作切线l 交椭圆1C 于A ,B 两点. (1)求切线l 在x 轴上的截距的取值范围; (2)求AOB ∆面积的最大值.
22.(本小题满分15分)己知数列{}n a 满足
:11
1,)n a a n N *+==∈.证明: 对任意()n N *
∈, (I)0n a >;(Ⅱ)
144n n n n a a a a +<<+;(Ⅲ)131
44
n n n a -<≤ ()13ln f x a x x x ⎛

=-
- ⎪⎝⎭
()f x a ()3e
g x x
=[]1,e 0x ()()00f x g x >a
杭师大附中2018年高考仿真模拟测试
数学试卷答题卷
一、选择题(本大题共10题,每小题4分,共40分。

每小题列出的四个备选项中只有一个是符合题目要求的)
11.______________ ______________ 12. ______________ _______________
13.______________ _______________ 14.______________ _____________
15.______________ 16. _______________
17.___________________
三、解答题.(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)
18. (本小题满分14分)
19. (本小题满分15分)P
E
C D
A
20. (本小题满分15分)
21. (本小题满分15分)
22. (本小题满分15分)。

相关文档
最新文档