八年级下数学压轴题和答案解析.docx
人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练1.如图,已知长方形的边AD =8,AB =4,动点M 从点A 出发,以每秒2个单位长度的速度沿A →D →A 的路径匀速运动,同时,动点N 从点C 出发,沿C →B 方向以每秒1个单位长度的速度匀速运动,当其中一个动点到达终点时,另一点也随之停止运动,设运动时间为t 秒.(1)如(图一),当运动时间为1秒时,求MN 的长度;(2)当0≤t ≤4时,直接写出AMN 为直角三角形时的运动时间t 的值; (3)如(图二),当4<t <8时,判断AMN 的形状,并说明理由.2.(1)感知:如图①,在正方形ABCD 中,E 为边AB 上一点(点E 不与点AB 重合),连接DE ,过点A 作AF DE ⊥,交BC 于点F ,证明:DE AF =.(2)探究:如图②,在正方形ABCD 中,E ,F 分别为边AB ,CD 上的点(点E ,F 不与正方形的顶点重合),连接EF ,作EF 的垂线分别交边AD ,BC 于点G ,H ,垂足为O .若E 为AB 中点,1DF =,4AB =,求GH 的长.(3)应用:如图③,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,BF ,AE 相交于点G .若3AB =,图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则ABG 的面积为______,ABG 的周长为______.3.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.4.图1、图2分别是65的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB为一边的菱形(非正方形),所画菱形各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为52.5.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.⊥,垂6.如图,在ABCD中,E,F分别为AD,BC的中点,AG BD⊥,CH BD足分别为G,H,连接EG,EH,FG,FH.(1)求证:四边形GEHF是平行四边形;BC=,当BD=______时,GEHF是矩形.(2)若2AB=,37.如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.8.下面是小东设计的“作平行四边形ABCD,使∠B=45°,AB=2cm,BC=3cm”的作图过程.作法:如图,①画∠B=45°;②在∠B的两边上分别截取BA=2cm,BC=3cm.③以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧相交于点D;则四边形ABCD为所求的平行四边形.根据小东设计的作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴四边形ABCD为所求的平行四边形()(填推理的依据).9.如图,已知菱形ABCD中,分别以C、D为圆心,大于1CD的长为半径作弧,两弧2分别相交于M、N两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.10.如图,四边形ABCD是一个正方形,E、F分别在AD、DC边上,且DE=CF,AF、BE交于O点,请说出线段AF和BE的关系,并证明你的结论.11.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)在网格中画出平行四边形ABCD;(2)线段AC的长为,CD的长为,AD的长为,△ACD为三角形,平行四边形ABCD的面积为.12.两个不全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(D 点在线段AB 内移动),连接DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积;(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.13.如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.14.在正方形ABCD 中,点E 是CD 边上任意一点.连接AE ,过点B 作BF ⊥AE 于F .交AD 于H .(1)如图1,过点D 作DG ⊥AE 于G ,求证:△AFB ≌△DGA ;(2)如图2,点E 为CD 的中点,连接DF ,求证:FH +FE ;(3)如图3,AB =1,连接EH ,点P 为EH 的中点,在点E 从点D 运动到点C 的过程中,点P 随之运动,请直接写出点P 运动的路径长.15.已知如图,四边形ABCD 是平行四边形.(1)尺规作图:作∠ABC 的角平分线交CD 的延长线于E ,交AD 于F (不写作法和证明,但要保留作图痕迹).(2)请在(1)的情况下,求证:DE =DF .16.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,1AC CD ==,求直角边BC 的长.17.如图:正方形ABCD 中,点E 、F 分别在边BC 、CD 上,BE =CF ,连接AE ,BF 交于点O ,点M 为AB 中点,连接OM ,求证:12OM AB =.18.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长; (2)求证:EF BC ⊥.19.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.(1)求证:BG =CE ; (2)求证:CE ⊥BG ; (3)求:∠AME 的度数.20.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE//AB交DF 的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC ,求AB的长.21.如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.22.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,四边形ABCD 是平行四边形.(1)尺规作图(不写作法,保留作图痕迹);作出ABC ∠的角平分线BE ,交AD 于点E ;在线段BC 上截取BF BA =,连接EF ;(2)在(1)所作图中,请判断四边形ABFE 的形状,并说明理由.24.如图,矩形ABCD 中,E 、F 分别为边AD 和BC 上的点,BE =DF ,求证:DE =BF .25.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时, ①求证:ABD △≌ACF ; ②ACF ∠的大小=______°;③若8BC =,2CD =,则CF 的长=______;(2)如图②,当点D 在线段BC 的延长线上时,其它条件不变,则CF 、BC 、CD 三条线段之间的关系是:CF =______;其它条件不变:①CF、BC、CD三条线段之间的关系是:CF ______;△的形状,并说明②若连接正方形的对角线AE、DF,交点为O,连接OC,探究AOC理由.26.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.参考答案:1.解:过点N作NR⊥AD于R.∵四边形ABCD是矩形,∴∠C=∠D=∠DRN=90°,∴四边形CDRN是矩形,∴RN=CD=4,CN=DR=1,∵AM=2,AD=8,∴RM=AD-AM-DR=8-2-1=5,∵∠MRN=90°,∴MN=(2)解:当0≤t≤4时,如果AM=BN,则△AMN是直角三角形,∴2t=8-t,∴t=83,当t=4时,点M与D重合,点N位于BC的中点,此时△AMN是等腰直角三角形,综上所述,当△AMN是直角三角形时,t的值为83或4.(3)解:∵当t=4时,△AMN是等腰直角三角形,∵点M的运动速度大于点N的运动速度,且M,N同时到达终点,即点M在点N的右侧,∴当4<t<8时,△AMN是锐角三角形.2.证明:∵四边形ABCD是正方形,∴AD AB =,90DAE ABF ∠=∠=︒,∵AF DE ⊥,∴90DAF BAF ∠+∠=︒,90DAF ADE ∠+∠=︒, ∴ADE BAF ∠=∠,在DAE △和ABF 中,ADE BAF AD AB DAE ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DAE △≌ABF (ASA ),∴DE AF =.探究:解:分别过点A 、D 作AN GH ∥,DM EF ∥,分别交BC 、AB 于点N 、M ,如图②所示:∵四边形ABCD 是正方形,∴AB CD ∥,AB CD =,90DAB B ∠=∠=︒,∴四边形DMEF 是平行四边形,∴1ME DF ==,DM EF =, ∵AN GH ∥,GH EF ⊥,∴DM GH ⊥,同理,四边形AGHN 是平行四边形,∴GH AN =,∵DM EF ∥,GH EF ⊥,∴AN DM ⊥,∴90DAN ADM ∠+∠=︒,∵90DAN BAN ∠+∠=︒,∴ADM BAN ∠=∠,在ADM △和BAN 中,90ADM BAN AD AB DAM ABN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADM △≌BAN (ASA ),∴DM AN =,∴EF GH DM AN ===,∵E 为AB 中点,∴122AE AB ==, ∴211AM AE ME =-=-=,∴DM ==∴GH =应用:解:∵AB =3,∴S 正方形ABCD =3×3=9,∵阴影部分的面积与正方形ABCD 的面积之比为2:3,∴阴影部分的面积为:23×9=6, ∴空白部分的面积为:9﹣6=3,在△ABE 和△BCF 中,90BECF ABE BCF AB BC ,∴△ABE ≌△BCF (SAS ),∴∠BEA =∠BFC ,S △ABG =S 四边形CEGF ,∴S △ABG =12×3=32,∠FBC +∠BEA =90°, ∴∠BGE =90°,∴∠AGB =90°,设AG =a ,BG =b , 则12ab =32, ∴2ab =6,∵a 2+b 2=AB 2=32,∴a 2+2ab +b 2=32+6=15,即(a +b )2=15,而0,a b +>∴a +bBG +AG∴△ABG, 故答案为:323. 3.解:所作图形如图所示:结论:CE =OF .理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC ,AD ∥BC ,∵AE ⊥BC ,OF ⊥AD ,∴AE ⊥AD ,∴∠AEC =∠DAE =∠AOD =∠DFO =90°,∴∠EAC +∠DAO =90°,∠FDO +∠DAO =90°,∴∠CAE =∠ODF ,∵OD =2AO ,AC =2AO ,∴AC =OD ,在△AEC 和△DFO 中,AEC DFO CAE ODF AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△DFO (AAS ),∴CE =OF .4.解:所画菱形如图所示;(答案不唯一)(2)解根据勾股定理,AB = 所画等腰三角形的面积为52, ∴作以线段AB 为直角边的等腰直角三角形即可,所画三角形如图所示.5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB CD ∥,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴12BE OB =,12DF OD =, ∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF(SAS).(2)解:当AC =2AB 时,可使四边形EGCF 为矩形;理由如下:∵△ABE ≌△CDF ,∴∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE CF ∥,∵EA =EG ,OA =OC ,∴EO 是△AGC 的中位线,∴EO GC ∥,∴四边形EGCF 是平行四边形,∵AC =2AB ,AC =2AO ,∴AB =AO ,∵E 是OB 的中点,∴AE ⊥OB ,∴∠OEG =90°,∴平行四边形EGCF 是矩形.6.解:∵AG BD ⊥于G ,∴90AGD ∠=︒.∵在Rt AGD 中,E 为AD 的中点, ∴12EG ED AD ==,同理12HF BF BC ==. ∵在ABCD 中,AD BC =,∴EG FH =.∵在EGD 中,EG ED =,∴EDG EGD ∠=∠,同理在BFH △中,HBF FHB ∠=∠.∵在ABCD 中,AD BC ∥,∴EDG HBF ∠=∠.∴EGD FHB ∠=∠.∴EG FH ∥.又∵EG FH =,∴四边形GEHF 是平行四边形.(2)连接EF ,则EF =AB =CD =2,若四边形GEHF 是矩形,则EF =GH =2,在RtAGD 和Rt ΔCHB 中,41AGD CHB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ΔAGD ≅ΔCHB (AAS ),∴DG =BH ;∴DG -GH =BH -GH ,即BG =DH ,设BG =DH =x ,在Rt △ABG 中,AG 2=AB 2-BG 2=4-x 2,在Rt △AGD 中,AG 2=AD 2-DG 2=9-DG 2=9-(2+x )2,∴4-x 2=9-(2+x )2,解得x =14, ∴BD =BG +GH +HD =14+2+1452= . 7.解:如图1,∵在Rt △ABC 中,∠ACB =90°,∠A =30°,∴∠ABC =60°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =12∠ABC =30°,∴∠ABD =∠A ,∠CDB =90°-∠CBD =60°,∴AD =BD ,又DE ⊥AB ,∴AE =BE =12AB ,又∠ACB =90°,∴CE =12AB =BE ,又∠ABC =60°,∴△BCE 是等边三角形,故答案为:等边三角形,60;(2)解:AD =DQ +DP ,理由为:在线段BD 上截取点H ,使DH =DP ,如图2,∵∠CDB =60°,∴△DPH 为等边三角形,∴DP =PH ,∠DPH =∠DHP =60°,又∠BPQ =60°,∴∠DPQ +∠QPH =∠HPB +∠QPH =60°,∠BHP =120°,∴∠DPQ =∠HPB ,∵∠A =30°,DE ⊥AB ,∴∠QDP =∠A +∠AED =30°+90°=120°,∴∠QDP =∠BHP ,在△PDQ ≌△PHB 中, DPQ HPB PD PHQDP BHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PDQ ≌△PHB (ASA ),∴DQ =BH ,PQ =PB ,∵AD =BD ,∠BPQ =60°,∴△BPQ 为等边三角形,AD =BD =BH +DH =DQ +DP ,即AD =DQ +DP ;(3)解:①△BPQ 为等边三角形,理由为:延长BD 至F ,使DF =DP ,连接PF ,设DQ 和BP 相交于O ,如图3, ∵∠PDF =∠CDB =60°,∴△PDF 为等边三角形,∴PF =DP ,∠F =∠PDF =∠DPF =60°,∵∠A =30°,DE ⊥AB ,∴∠PDQ =90°-∠A =60°,∴∠F =∠PDQ =60°,∵∠DPF +∠DPB =∠BPQ +∠DPB ,又∠BPQ =60°,∴∠BPF =∠QPD ,在△PBF 和△PQD 中,F PDQ PF DPBPF QPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PBF ≌△PQD (ASA ),∴PB =PQ ,BF =DQ ,又∠BPQ =60°,∴△BPQ 为等边三角形;②∵ DF =DP ,BF =DQ ,AD =BD ,∴DQ =BF =BD +DF =AD +DP ,∵AD =2, AP =x ,DQ =y ,∴y =2+2-x ,即y =-x +4.8.(1)补全图形如下,.(2)∵AB =CD ,CB =AD∴四边形ABCD 为所求的平行四边形(两组对边分别相等的四边形是平行四边形). 故答案为:CD ,AD ,两组对边分别相等的四边形是平行四边形.9.证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.10.解:AF⊥BE,AF=BE,证明如下:证明:∵正方形ABCD∴AB=AD=DC,∠D=∠BAD=90°∵CF=DE∴AE=AD-DE,DF=DC-CF∴AE=DF在△AEB和△AFD中AB=AD, ∠D=∠BAD, AE=DF∴△ABE≌△DAF(SAS)∴∠ABE=∠F AD,AF=BE∵∠BAD=90°∴∠ABE+∠AEB=90°∴∠F AD +∠AEB=90°∴∠AOE=90°,AF⊥BE.∴AF=BE,AF⊥BE.11.解:如图所示:平行四边形ABCD即为所求;(2)解:AC,CD =,5=AD ,∴222AC CD AD += ,∴△ACD 是直角三角形,∴平行四边形ABCD 的面积为122102ACD S=⨯ . 12.解:过点C 作CG AE ⊥,垂足是点G .由题可知,//CF AE ,CF AD BE ==,则四边形CDBF 是梯形.在直角ABC ∆中,90ACB ∠=︒,60A ∠=︒,1AC =,22AB AC ∴==, 在直角ACG ∆中,90CGA ∠=︒,60A ∠=︒,1AC =,30ACG ∴∠=︒,1111222AG AC ==⨯=,CG ∴=.()()111122222CDBF S CE DB CG AD DB CG AB CG ∴=+⋅=+⋅=⋅=⨯=梯形; (2)证明:四边形CDBF 是菱形. 理由如下:在直角ABC ∆中,D 是AB 的中点,AD DB CD ∴==,由(1)CF AD =,CF DB CD ∴==,又//CF AE ,∴四边形CDBF 是平行四边形.CD BD =,∴四边形CDBF 是菱形.13.证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC =.∴AD BC ==(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n==. 14.证明:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°∵DG ⊥AE ,BF ⊥AE∴∠AFB =∠DGA =90°∵∠F AB +∠DAG =90°,∠DAG +∠ADG =90°∴∠BAF =∠ADG在△AFB 和△DGA 中∵AFB DGABAF ADG AB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFB≌△DGA(AAS).(2)证明:如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J由题意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵BAH ADE AB ADABH DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABH≌△DAE(ASA)∴AH=DE∵点E为CD的中点∴DE=EC=12CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四边形DKFJ是矩形∴∠JDK =∠ADC =90°∴∠JDH =∠KDE在△DJH 和△DKE 中∵J DKE JDH KDE DH DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DJH ≌△DKE (AAS )∴DJ =DK ,JH =EK∴四边形DKFJ 是正方形∴FK =FJ =DK =DJ∴DFFJ2FJ =∴FH +FE =FJ ﹣HJ +FK +KE =2FJDF .(3)解:如图3,取AD 的中点Q ,连接PQ ,延长QP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K ,设PT =b由(2)得△ABH ≌△DAE (ASA )∴AH =DE∵∠EDH =90°,点P 为EH 的中点∴PD =12EH =PH =PE∵PK ⊥DH ,PT ⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四边形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE ∴PT是△DEH的中位线∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=12DE=12﹣b,QK=DQ﹣DK=12﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴点P在线段QR上运动,△DQR是等腰直角三角形∴QR DQ∴点P.15.解:(1)尺规作图如下:(2)四边形ABCD是平行四边形,,AB CE AD BC∴,,ABE E CBE DFE∴∠=∠∠=∠,BE平分ABC∠,ABE CBE∴∠=∠,E DFE ∴∠=∠,DE DF ∴=.16.解:在Rt △ABC 中,CD 是斜边AB 上的中线, ∴AB =2CD =2,由勾股定理得,BC . 17.证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,又BE =CF ,∴△ABE ≌△BCF (SAS ).∴∠BAE =∠CBF .∵∠ABO +∠CBF =90°,∴∠ABO +∠BAO =90°,即∠AOB =90°. 在Rt △ABO 中,M 点是斜边AB 中点, ∴12OM AB =. 18.(1) 解: 90ABD ∠=︒, F 为AD 的中点,10,AD = 1 5.2BFAD (2) 证明:如图,连接,CF90ABD ACD ∠=∠=︒, F 是AD 的中点,11,,22CF AD BF AD ,CF BF ∴=E 是BC 的中点,.EF BC19.解:证明:在正方形ABDE 和ACFG 中,AB AE =,AC AG =,90BAE CAG ∠=∠=︒, BAE BAC CAG BAC ∴∠+∠=∠+∠,即CAE BAG ∠=∠,在ABG ∆和AEC ∆中,{AB AECAE BAG AC AG=∠=∠=,()ABG AEC SAS ∴∆≅∆,BG CE ∴=;(2)解:证明:设BG 、CE 相交于点N ,ABG AEC ∆≅∆,ACE AGB ∴∠=∠,9090180NCF NGF ACF AGF ∠+∠=∠+∠=︒+︒=︒,360()360(18090)90CNG NCF NGF F ∴∠=︒-∠+∠+∠=︒-︒+︒=︒, BG CE ∴⊥;(3)解:过A 作BG,CE 的垂线段交于点P ,Q ,ABG AEC ∆≅∆,,ABP AEQ AB AE ∴∠=∠=,90APB AQE ∠=∠=︒,()ΔΔABP AEQ AAS ∴≅,∴=AP AQ ,AM ∴是角平分线,45AMC ∴∠=︒,135AME .20.证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G ,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵AC=∴CG=AG=1,∵∠B=30°,∴12CG BC=,∴2BC=,在Rt△BCG中,BG==,∴1AB AG BG=+=.21.解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=12 AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.22.证明:E是AD的中点,AE DE∴=,//AF BC∴,FAE BDE∴∠=∠,AFE DBE∠=∠.在AFE∆和DBE∆中,FAE BDEAFE DBE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆,AF BD ∴=.AF DC =,BD DC ∴=.即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:AF DC =,//AF DC ,∴四边形ADCF 是平行四边形,AB AC =,BD DC =,AD BC ∴⊥即90ADC ∠=︒,∴平行四边形ADCF 是矩形.23.(1)如图所示,BE 就是所求的ABC ∠的角平分线.BF BA =,(2)四边形ABFE 为菱形.理由如下:∵BE 是ABC ∠的平分线,∴∠ABE =∠FBE∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠EBF ,∴∠ABE =∠AEB∴AB =AE∵BF BA =∴AE =BF∴四边形ABFE 为平行四边形,∵BF BA =,∴四边形ABFE 为菱形.24.证明:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,在Rt △ABE 和Rt △CDF 中,BE CF AB CD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴DE =BF .25.(1)①证明:∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∵90BAC ∠=︒,∴BAD CAF ∠=∠,在ABD △和ACF 中,{AB ACBAD CAF AD AF=∠=∠=,∴ABD △≌ACF (SAS ).②∵ABD △≌ACF ,∴ABD ACF ∠=∠,∵90BAC ∠=︒,AB AC =,∴45ABD ACB ∠=∠=︒,∴45ACF ∠=︒.故答案为:45.③∵ABD △≌ACF ,∴=CF BD ,∵826BD BC CD =-=-=.∴CF =6,故答案为:6.(2)(2)CF BC CD =+,由(1)同理可证ABD △≌ACF 得:CF BD BC CD ==+. 故答案为:BC CD +.(3)(3)①由(1)同理可证ABD △≌ACF 得:CF BD CD BC ==-. 故答案为:CD BC -.②AOC △为等腰三角形,理由如下:∵90BAC ∠=︒,AB AC =,∴18045135ABD ∠=︒-︒=︒,∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∴BAD CAF ∠=∠,同理可证BAD ≌CAF ,∴135ACF ABD ∠=∠=︒,∴90FCD ACF ACB ∠=∠-∠=︒,∴FCD 为直角三角形,∵正方形ADEF 中,O 为DF 的中点, ∴12OC DF =,12OA AE =,AE DF =, ∴OC OA =,∴AOC △是等腰三角形.26.证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD//BC,∴∠DAE=∠E,∵CE=BC,∴CE=AD,又∵∠AOD=∠COE,∴△AOD≌△EOC(AAS),∴CO=DO;(2)解:当CO=EO,∠COE=90°时,四边形AOCF是正方形;理由如下:∵CO=DO,∴CO=1CD,2又∵F是AB的中点,∴AF=1AB,2∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴AF=CO,AF//CO,∴四边形AFCO是平行四边形,∵△AOD≌△EOC,∴AO=EO,∵CO=EO,∴AO=CO,∴平行四边形AFCO是菱形,∵∠COE=90°,∴菱形AFCO是正方形.。
填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。
八年级下册---平行四边形压轴题解析

八年级下册---平行四边形压轴题一.选择题(共15小题)1.(2012•玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=()C D2.(2015•泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有()3.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()4.(2014•市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()5.(2014•江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()6.(2014•武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC 交DE于N,下列结论:①GM⊥CM;②CD=CM;③四边形MFCG为等腰梯形;④∠CMD=∠AGM.其中正确的有()7.(2013•绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.8.(2013•惠山区校级一模)如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB﹔②点B到直线AE的距离为﹔③EB⊥ED﹔④S△APD+S△APB=0.5+.其中正确结论的序号是()9.(2013•江苏模拟)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()10.(2013•武汉模拟)如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO 于E点,CF⊥BE于F点,交BO于G点,连结EG、OF.则∠OFG的度数是()11.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点11+﹣11+11+或12.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,则S△CEF:S△DGF等于()13.(2012•杭州模拟)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,则①②③④四个平行四边形周长的总和为()于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()15.(2012•碑林区校级模拟)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()八年级下册---平行四边形压轴题参考答案与试题解析一.选择题(共15小题)1.(2012•玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=()C D,AE=AH+HE=1+.2.(2015•泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有(),,,3.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()EF=ACEF=AC4.(2014•市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()=,==,5.(2014•江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()6.(2014•武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC 交DE于N,下列结论:①GM⊥CM;②CD=CM;③四边形MFCG为等腰梯形;④∠CMD=∠AGM.其中正确的有()7.(2013•绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.8.(2013•惠山区校级一模)如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB﹔②点B到直线AE的距离为﹔③EB⊥ED﹔④S△APD+S△APB=0.5+.其中正确结论的序号是(),判断出PE=AE=BE==×1+×=0.5+的距离为9.(2013•江苏模拟)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()PD BE=,所以=2+,PB=,由勾股定理得:BE=,PD=BE=,PD BE=,=2+.故选项10.(2013•武汉模拟)如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO 于E点,CF⊥BE于F点,交BO于G点,连结EG、OF.则∠OFG的度数是()11.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点11+﹣11+11+或AE=代入求出BE=DF=3﹣,,在BE=DF=3CF=5+3CE+CF=11+12.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,则S△CEF:S△DGF等于(),13.(2012•杭州模拟)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,则①②③④四个平行四边形周长的总和为()×EM=xx14.(2012•淄博模拟)则在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()15.(2012•碑林区校级模拟)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()。
八年级下压轴 50题(含答案及解析)

三.解答题(共46小题)
5.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE= ,求AB的长;
(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.
18.如图,在平面直角坐标系xoy中,直线y=﹣2x+4交y轴于点A,交x轴于点B.点C在y轴的负半轴上,且△ABC的面积为8,直线y=x和直线BC相交于点D.
(1)求直线BC的解析式;
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
(1)当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于Kห้องสมุดไป่ตู้求CK的长;
(2)当点P运动到某一时刻,若P,A',B'三点恰好在同一直线上,且A'B'=4,试求此时AP的长.
21.小华思考解决如下问题:
原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.
16.如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B坐标为(4,﹣3).把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E.
中学数学八年级下册 期末压轴题(含答案)

八年级下册期末压轴题一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是;②在图1中利用“等积变形”可得S正方形ADEC=;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=,则有S正方形ADEC=;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△≌△,则有=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证明.3.(2020春•海淀区校级期末)∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP=,依题意补全图形;(2)若OP=,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围.(要写过程)4.(2019•都江堰市模拟)定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M 向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.5.(2020春•海淀区校级期末)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD 的数量关系.6.(2019春•朝阳区期末)对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M 的和谐点.已知点A(﹣4,3),B(﹣4,﹣3),C(4,﹣3),D(4,3).(1)在点P₁(﹣2,1),P2(﹣1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线y=上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线y=上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且EF,直接写出b的取值范围.7.(2017春•昌平区期末)(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.①如果AD=4,BD=9,那么CD=;②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1S2(填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为.8.(2018春•浉河区期末)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.(1)在点P(1,2),Q(2,﹣2),N(,﹣1)中,是“垂点”的点为;(2)点M(﹣4,m)是第三象限的“垂点”,直接写出m的值;(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标;(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG 的边上存在“垂点”时,GE的最小值为.9.(2018春•丰台区期末)如图,菱形ABCD中,∠BAD=60°,过点D作DE⊥AD交对角线AC于点E,连接BE,取BE的中点F,连接DF.(1)请你根据题意补全图形;(2)请用等式表示线段DF、AE、BC之间的数量关系,并证明.10.(2018春•丰台区期末)在平面直角坐标系xOy中,M为直线l:x=a上一点,N是直线l外一点,且直线MN与x轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l的“伴随矩形”.如图为直线l的“伴随矩形”的示意图.(1)已知点A在直线l:x=2上,点B的坐标为(3,﹣2)①若点A的纵坐标为0,则以AB为对角线的直线l的“伴随矩形”的面积是;②若以AB为对角线的直线l的“伴随矩形”是正方形,求直线AB的表达;(2)点P在直线l:x=m上,且点P的纵坐标为4,若在以点(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l的“伴随矩形”为正方形,直接写出m的取值范围.11.(2019春•海淀区期末)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.12.(2019春•海淀区期末)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.13.(2017春•西城区期末)如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN 为矩形,从而证明结论.…请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为,(2)①补全图形,②直线BF与直线l的位置关系是,③证明:14.(2017春•西城区期末)如图,在由边长都为1个单位长度的小正方形组成的6×6正方形网格中,点A,B,P都在格点上请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:条件1:点P到四边形的两个顶点的距离相等;条件2:点P在四边形的内部或其边上;条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个▱ABCD,使点P在所画四边形的内部;(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.15.(2017春•西城区期末)如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m,n)在第一象限内(m<2≤a),在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点,作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由≌△,及B(m,n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.16.(2019春•西城区期末)四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC,过点C作FC⊥CE,且CF=CE.连接AE、AF,M是AF的中点,作射线DM 交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求∠EAC与∠ADN 的和的度数.17.(2019春•西城区期末)如图1,在菱形ABCD中,对角线AC,BD相交于点O,AC=4cm,BD=2cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设AP =xcm,PE=y1cm,PF=y2cm.小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:(1)画函数y1的图象①按表中自变量的值进行取点、画图、测量,得到了y1与x的几组对应值:x/cm00.51 1.52 2.53 3.54y1/cm 1.120.50.71 1.12 1.58 2.06 2.55 3.04②在图2所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数y1的图象;(2)画函数y2的图象,在同一坐标系中,画出函数y2的图象;(3)根据画出的函数y1的图象、函数y2的图象,解决问题①函数y1的最小值是;②函数y1的图象与函数y2的图象的交点表示的含义是;③若PE=PC,AP的长约为cm18.(2019春•西城区期末)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K (﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.19.(2019春•大兴区期末)有这样一个问题:探究函数y=+1的图象与性质.小东根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣112345…y…393m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.20.(2019春•大兴区期末)如图1,四边形ABCD是平行四边形,A,B是直线l上的两点,点B关于AD的对称点为M,连接CM交AD于F点.(1)若∠ABC=90°,如图1,①依题意补全图形;②判断MF与FC的数量关系是;(2)如图2,当∠ABC=135°时,AM,CD的延长线相交于点E,取ME的中点H,连结HF.用等式表示线段CE与AF的数量关系,并证明.21.(2019春•大兴区期末)在平面直角坐标系xOy中,记y与x的函数y=a(x﹣m)2+n (m≠0,n≠0)的图象为图形G,已知图形G与y轴交于点A,当x=m时,函数y=a (x﹣m)2+n有最小(或最大)值n,点B的坐标为(m,n),点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,且对角线AC,BD的交点与原点O重合,则称四边形ABCD为图形G的伴随四边形,直线AB为图形G的伴随直线.(1)如图1,若函数y=(x﹣2)2+1的图象记为图形G,求图形G的伴随直线的表达式;(2)如图2,若图形G的伴随直线的表达式是y=x﹣3,且伴随四边形的面积为12,求y与x的函数y=a(x﹣m)2+n(m>0,n<0)的表达式;(3)如图3,若图形G的伴随直线是y=﹣2x+4,且伴随四边形ABCD是矩形,求点B 的坐标.22.(2019春•石景山区期末)正方形ABCD中,点P是直线AC上的一个动点,连接BP,将线段BP绕点B顺时针旋转90°得到线段BE,连接CE.(1)如图1,若点P在线段AC上,①直接写出∠ACE的度数为°;②求证:P A2+PC2=2PB2;(2)如图2,若点P在CA的延长线上,P A=1,PB=,①依题意补全图2;②直接写出线段AC的长度为.23.(2020春•浦东新区期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.24.(2016春•无锡期末)已知:如图1,在平面直角坐标中,A(12,0),B(6,6),点C 为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在图1中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在图1中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A 时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.25.(2019春•东城区期末)有这样一个问题:探究函数y=﹣3的图象与性质.小亮根据学习函数的经验,对y=﹣3的图象与性质进行了探究下面是小亮的探究过程,请补充完整:(1)函数y=3中自变量x的取值范围是(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣4﹣5﹣7m﹣1﹣2﹣﹣…求m的值;(1)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.26.(2019春•东城区期末)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD 外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)27.(2019春•东城区期末)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形.当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(﹣1,1),P3(3,2)中,原点正方形的友好点是;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)一次函数y=﹣x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.28.(2019春•昌平区期末)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.0 1.0 2.0 3.0 4.0 4.5 4.14 4.5 5.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为时,BP=CP.29.(2019春•昌平区期末)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为.30.(2019春•昌平区期末)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(﹣4,﹣4),E(5,﹣),其中是平面直角坐标系中的巧点的是;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.31.(2019春•延庆区期末)已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是.(2)当H点运动到图2所示位置时①依据题意补全图形.②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.(3)若正方形边长为,∠PHD=30°,直接写出PC长.32.(2019春•延庆区期末)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+2的4分函数为:当x≤4时,y[4]=3x+2;当x>4时,y[4]=﹣3x﹣2.(1)如果y=x+1的﹣1分函数为y[﹣1],①当x=4时,y[﹣1];当y[﹣1]=﹣3时,x=.②求双曲线y=与y[﹣1]的图象的交点坐标;(2)如果y=﹣x+2的0分函数为y[0],正比例函数y=kx(k≠0)与y=﹣x+2的0分函数y[0]的图象无交点时,直接写出k的取值范围.33.(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.34.(2017春•西城区校级期末)某学习小组有a个男生,b个女生,其中a和b同时满足以下三个条件:①男生人数不少于女生人数;②a,b是一元二次方程mx2﹣(3m+8)x+24=0的两个实数根;③男生和女生的总人数不超过10人.请根据以上信息,回答下面两个问题:(1)求整数m的值?(2)若T=ma+b,求T的所有可能的值?35.(2017春•西城区校级期末)设p,q都是实数,且p<q.我们规定:如果变量x的取值范围为p≤x≤q,则把实数L=q﹣p叫做变量x的取值宽度.如果反比例函数y=在p ≤x≤q的函数值y的取值宽度与自变量x的取值宽度相等,则称此函数在p≤x≤q上具有“等宽性”.例如:函数y=的函数值y的取值范围为≤y≤2,故而函数y=具有“等宽性”.(1)下列函数哪些函数具有“等宽性”:(填序号)①y=(1≤x≤2);②y=﹣(﹣2≤x≤﹣1);③y=﹣(1≤x≤6);④y=﹣(﹣4≤x≤﹣1);(2)已知函数y=﹣在a≤x≤﹣1上具有“等宽性”,求a的值;(3)已知直线y=kx+b与函数y=﹣交于A(x1,y1)、B(x2,y2)两点,且函数y=﹣在x1≤x≤x2上具有“等宽性”,则k=.36.(2018春•海淀区期末)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1﹣1所示,∠APE=°,用等式表示线段DE与CP之间的数量关系:;②当BP=BC时,如图1﹣2所示,①中的结论是否发生变化?直接写出你的结论:;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2﹣1,2﹣2,通过观察、测量,发现:(1)中①的结论在一般情况下(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2﹣1和图2﹣2中任选一个进行证明;若不成立,请说明理由.37.(2018春•海淀区期末)在平面直角坐标系xOy中,A(O,2),B(4,2),C(4,0).P 为矩形ABCO内(不包括边界)一点,过点P分别作x轴和y轴的平行线,这两条平行线分矩形ABCO为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA,则称P 为矩形ABCO的矩宽点.例如:下图中的为矩形ABCO的一个矩宽点.(1)在点D(,),E(2,1),F(,)中,矩形ABCO的矩宽点是;(2)若G(m,)为矩形ABCO的矩宽点,求m的值;(3)若一次函数y=k(x﹣2)﹣1(k≠0)的图象上存在矩形ABCO的矩宽点,则k的取值范围是.38.(2019春•曲阜市期末)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.(1)依题意补全图1;(2)猜想AG和DH的数量关系并证明;(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.39.(2018春•朝阳区期末)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(﹣,0),B(0,2),C(﹣2,2).(1)当直线l的表达式为y=x时,①在点A,B,C中,直线l的近距点是;②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.40.(2018春•昌平区期末)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)OP=,OQ=;(用含t的代数式表示)(2)当t=1时,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处.①求点D的坐标;②如果直线y=kx+b与直线AD平行,那么当直线y=kx+b与四边形P ABD有交点时,求b的取值范围.41.(2018春•昌平区期末)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.42.(2018春•西城区期末)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.43.(2018春•西城区期末)在△ABC中,M是BC边的中点.(1)如图1,BD,CE分别是△ABC的两条高,连接MD,ME,则MD与ME的数量关系是;若∠A=70°,则∠DME=°;(2)如图2,点D,E在∠BAC的外部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=30°,连接MD,ME.①判断(1)中MD与ME的数量关系是否仍然成立,并证明你的结论;②求∠DME的度数;(3)如图3,点D,E在∠BAC的内部,△ABD和△ACE分别是以AB,AC为斜边的直角三角形,且∠BAD=∠CAE=α,连接MD,ME.直接写出∠DME的度数(用含α的式子表示).八年级下册期末压轴题参考答案与试题解析一.填空题(共1小题)1.(2018春•西城区期末)在查阅勾股定理证明方法的过程中,小红看到一种利用“等积变形﹣﹣同底等高的两个平行四边形的面积相等”证明勾股定理的方法,并尝试按自己的理解将这种方法介绍给同学.(1)根据信息将以下小红的证明思路补充完整:①如图1,在△ABC中,∠ACB=90°,四边形ADEC,四边形BCFG,四边形ABPQ都是正方形.延长QA交DE于点M,过点C作CN∥AM交DE的延长线于点N,可得四边形AMNC的形状是平行四边形;②在图1中利用“等积变形”可得S正方形ADEC=S四边形AMNC;③如图2,将图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′;④设CC′交AB于点T,延长CC′交QP于点H,在图2中再次利用“等积变形”可得S四边形QACC'=S四边形QATH,则有S正方形ADEC=S四边形QATH;⑤同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ,进而证明了勾股定理.(2)小芳阅读完小红的证明思路后,对其中的第③步提出了疑问,请将以下小红对小芳的说明补充完整:图1中△ADM≌△ABC,则有AM=AB=AQ,由于平行四边形的对边相等,从而四边形AMNC沿直线MQ向下平移MA的长度,得到四边形QACC′.【分析】根据平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型即可解决问题;【解答】解:(1)∵四边形ACED是正方形,∴AC∥MN,∵AM∥CN,∴四边形AMNC是平行四边形,∴S正方形ADEC=S平行四边形AMNC,∵AD=AC,∠D=∠ACB,∠DAC=∠MAB,∴∠DAM=∠CAB,∴△ADM≌△ACB,∴AM=AB=AQ,∴图1中的四边形AMNC沿直线MQ向下平移MA的长度,得到四边形A′M′N′C′,即四边形QACC′,∴S四边形QACC′=S四边形QATH,则有S正方形ADEC=S四边形QATH,∴同理可证S正方形BCFG=S四边形HTBP,因此得到S正方形ADEC+S正方形BCFG=S正方形ABPQ;故答案为平行四边形,S四边形AMNC,S四边形QATH,S四边形QATH;(2)由(1)可知:△ADM≌△ACB,∴AM=AB=AQ,故答案为ADM,ACB,AM;【点评】本题考查平行四边形的性质、正方形的性质、全等三角形的判定和性质、等高模型等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考创新题目.二.解答题(共42小题)2.(2020春•海淀区校级期末)已知△ABC中,∠BAC=90°,AB=AC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN 逆时针旋转90°得到△DPE,且点B的对应点为D,点N的对应点为E.(1)当点N与点M重合,且点P不是AB的中点时.①依据题意补全图1;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,写出一个BN的值,使得EM=EA成立,并证。
上海(沪)八年级第二学期期末数学压轴题及答案(可转为word)

0 8k b, ∴ „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) 4 5k b,
4 k , 3 „„„„„„„„„„„„„„„„„„„„„„„„„(1 分) ∴ 32 b . 3
4 32 .„„„„„„„„„„„„(1 分) x 3 3 26.解: (1)BF +AG= AE.„„„„„„„„„„„„„„„„„„„„„„(1 分) 证明如下:过点 F 作 FH⊥DA,垂足为 H, ∵在正方形 ABCD 中,∠DAE=∠B=90°,∴四边形 ABFH 是矩形.„(1 分) ∴FH=AB=DA.∵BD⊥FG,∴∠G=90°–∠ADE=∠DEA. 又∴∠DAE=∠FHG=90°,∴△FHG≌△DAE. „„„„„„„„„„(1 分) ∴GH=AE,即 HA+AG=AE.∵BF=HA,∴BF+AG=AE.„„„„„„(1 分)
本题满分12分其中第1小题5分第2小题3分第3小题4bcaebcdfdfaeefad四边形aefd是平行四边形efad5aedf?????????????????????????1abcd5rtabertdcfbecfefbccfbecf3在rtabeabaeaebqapaepdcqqcdpabqp当四边形abqp与四边形qcdp的面积相等时3当四边形abqp是平行四边形时pqab当四边形qcdp是平行四边形时可得pqcdcdabpqab此时cqpd11时pqab
FB 3 ,且 AC 10 ,求 FC 的值. BD 5
A
D
F
E
B
C
26. 在梯形 ABCD 中, ∠ABC= 90 , AD∥BC, BC>AD, AB=8cm, BC=18cm, CD=10 cm,点 P 从点 B 开始沿 BC 边向终点 C 以每秒 3cm 的速度移动,点 Q 从点 D 开始沿 DA 边向终点 A 以每秒 2cm 的速度移动,设运动时间为 t 秒. (1)求四边形 ABPQ 为矩形时 t 的值; (2)若题设中的“BC=18cm”改变为“BC= k cm” ,其它条件都不变,要 使四边形 PCDQ 是等腰梯形,求 t 与 k 的函数关系式,并写出 k 的取值范围; (3)在移动的过程中,是否存在 t 使 P、Q 两点 的距离为 10cm ,若存在求 t 的值. 若不存在请说明 理由?
八年级下册数学期末压轴题汇总(含解析)

(近三年)长春市八年级下数学期末压轴题(23.24题)长春市绿园区2020.7八下数学期末试题:24.(10分)如图,在矩形ABCD 中,AB=4,BC=10,E 、F 分别为BC 、AD 的中点,点P 从点A 出发,以每秒2个单位长度的速度沿AD 向终点D 速运动,作PQ ⊥BC 于Q ,当点P 不与点F 重合时,设四边形PQEF 的面积为S ,点P 的运动时间为t(秒)(1)当点P 与点D 重合时,求t 的值(2)用含t 的代数式表示线段PF (3)求S 与t 之间的函数关系式(4)当四边形PQEF 的对角线互相垂直时,直接写出的值24.(12分)如图,在平面直角坐标系中,A(-2,1),B(1,1).直线y =kx +3与y 轴相交于点C(1)在平面直角坐标系中标记出点C 的位置(2)当直线y =kx +3与直线y =2x 平行时,k 的值为;(3)当直线y =kx +3恰好经过点A 时,求直线y =kx +3的函数关系式;(4)当直线y =kx +3与线段AB 有公共点时,直接写出k 的取值范围。
B A PFDQE C01234-1-2-3-4xyAB -2-3-41234-1答案:23.(1)由题意,得2t =10(1分)t =5(2分)(2)当0≤t <25时,PF =5-2t 当25<t ≤5时,PF =2t -5(5分)(3)当0≤t <25时,S =20-8t当25<t ≤5时,S =8t -20(8分)(4)t =21或t =29(10分)评分说明:第(2)问写成PF =∣5-2t ∣或PF=∣2t -5∣扣1分第(2)间写成当0≤t ≤25一时,PF =5-2t 当25<t ≤5时,PF =2t -5不扣分第(2)、(3)问两个关系式各1分,取值范围共1分24.(1)点C 标记在(0,3)的位置(2分)(2)2(4分)(3)把(-2,1)代入y =kx +3得1=-2k +3(6分)解,得k =1(8分)∴y =x +3(10分)(4)k ≤-2或k ≥1(12分)评分说明:第(1)问只要位置标记正确即可给分长春市朝阳区2020.7数学八下期末试题23.(10分)如图在Rt ∆ABC 中∠C =90º,过点A 作线段AD 平行射线BC ,AB=10,BC=6,AD=15。
人教版八年级下册压轴题训练(含答案)

人教版八年级下册压轴题训练(含答案)压轴题训练01一.解答题(共3小题)1.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2﹣4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.【解答】解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,∵△AOE的面积是定值,所以当△OEP面积最大时,四边形AOPE面积最大,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)分四种情况:①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y 轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,同理得m2﹣4m+3=m﹣2,解得:m=或(舍)P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).【点评】本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.压轴题训练04一.解答题(共1小题)1.如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2 经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形P AFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.压轴题训练02参考答案与试题解析一.解答题(共1小题)1.如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形P AFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.【分析】(1)根据待定系数法可求抛物线的解析式,再根据A (m,0)在抛物线上,得到0=﹣m2﹣m+2,解方程即可得到m的值,从而得到A点的坐标;(2)根据四边形P AFB的面积S=AB?PF,可得S=﹣(x+2)2+12,根据函数的最值可得S的最大值是12,进一步得到点P的坐标为;(3)根据待定系数法得到PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y =x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y =﹣x+1显然成立,依此即可求解.【解答】解:(1)∵抛物线y=ax2+bx+2经过点B(2,0),D(1,),∴,解得a=﹣,b=﹣,∴抛物线的解析式为y=﹣x2﹣x+2,∵A(m,0)在抛物线上,∴0=﹣m2﹣m+2,解得:m1=﹣4,m2=2(舍去),∴A点的坐标为(﹣4,0).如图所示:(2)∵直线l的解析式为y=x﹣1,∴S=AB?PF=×6?PF=3(﹣x2﹣x+2+1﹣x)=﹣x2﹣3x+9=﹣(x+2)2+12,其中﹣4<x<0,∴S的最大值是12,此时点P的坐标为(﹣2,2);(3)∵直线PB经过点P(﹣2,2),B(2,0),∴PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y=x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y=﹣x+1显然成立,∴直线l上的任意一点关于x轴的对称点一定在PB所在直线上.【点评】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,以及关于x 轴的对称点的坐标特征.压轴题训练03姓名:班级;学号:一.解答题(共3小题)1.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y =x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.2.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.3.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD 的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共3小题)1.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y =x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.【解答】解:(1)∵直线y=x+2都经过点A(2,m),∴m=2+2=4,则A(2,4),∵双曲线y=(k≠0)经过点A,∴k=2×4=8;(2)∵双曲线经过点B(n,2),∴2n=8,解得n=4,∴B(4,2),由题意可设直线BC解析式为y=x+b,把B点坐标代入可得2=4+b,解得b=﹣2,∴直线BC解析式为y=x﹣2,∴C(0,﹣2),∴AC===2,BC===4,AB===2,∴BC2+AB2=AC2,∴△ABC是以AC为斜边的直角三角形,∴S△ABC=AB?BC=×2×4=8;(3)∵直线y=x+2与y轴交于点D,∴D(0,2),∴AD==2,且AC=2如图所示,∵AD∥CE,∴∠DAC=∠ACE,若∠ACD=∠EAC,则AE∥CD,四边形AECD为平行四边形,此时△ADC≌△CEA,不满足条件,∴∠ACD=∠AEC,∴△ACD∽△CAE,∴=,即=,解得CE=10,∵E点在直线BC上,∴可设E(x,x﹣2)(x>0),又∵C(0,﹣2),∴CE==x,∴x=10,解得x=10,∴E点坐标为(10,8).2.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.【解答】解:(1)连接OE,如,图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴,又∵∠B=∠B,∴△BDE∽△BCA,∴∠BED=∠BAC,∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD =x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).3.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD 的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,若S梯形ABCD=2S△ADE,即×2×(2+6)=2××2×AE,解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G (x,x+6),∴=,两边平方得:2x2+24x+72=2x2+8,移项合并得:24x=﹣64,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学压轴题1.已知,正方形 ABCD中,∠MAN=45°,∠ MAN绕点 A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、 N, AH⊥ MN于点 H.( 1)如图①,当∠MAN 绕点 A 旋转到BM=DN时,请你直接写出AH 与 AB 的数量关系:;(2)如图②,当∠ MAN绕点 A 旋转到 BM≠ DN时,( 1)中发现的 AH与 AB的数量关系还成立吗如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN于点 H,且 MH=2,NH=3,求 AH的长.(可利用(2)得到的结论)2.如图,△ ABC是等边三角形,点 D 是边 BC上的一点,以AD为边作等边△ ADE,过点C 作 CF∥ DE交 AB 于点 F.( 1)若点 D 是 BC边的中点(如图①),求证: EF=CD;( 2)在( 1)的条件下直接写出△AEF和△ ABC的面积比;(3)若点 D 是 BC边上的任意一点(除 B、C 外如图②),那么( 1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由.3.( 1)如图 1,在正方形 ABCD中, E 是 AB上一点, F 是 AD延长线上一点,且DF=BE.求证: CE=CF;(2)如图 2,在正方形 ABCD中,E 是 AB上一点, G是 AD上一点,如果∠ GCE=45°,请你利用( 1)的结论证明: GE=BE+GD.(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC> AD),∠ B=90°, AB=BC, E 是 AB 上一点,且∠ DCE=45°, BE=4,DE=10,求直角梯形ABCD的面积.4.如图,正方形 ABCD中,E 为 AB边上一点,过点 D 作 DF⊥ DE,与 BC延长线交于点F.连接EF,与 CD边交于点 G,与对角线 BD交于点 H.(1)若 BF=BD= ,求 BE 的长;(2)若∠ ADE=2∠ BFE,求证: FH=HE+HD.5.如图,将一三角板放在边长为 1 AC上滑动,直角的一边始终经过点的正方形ABCD上,并使它的直角顶点B,另一边与射线DC相交于 Q.P 在对角线探究:设A、P 两点间的距离为x.(1)当点 Q在边 CD上时,线段 PQ与 PB 之间有怎样的数量关系试证明你的猜想;(2)当点 Q在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并写出函数自变量 x 的取值范围;(3)当点 P 在线段 AC上滑动时,△ PCQ是否可能成为等腰三角形如果可能,指出所有能使△ PCQ成为等腰三角形的点Q的位置.并求出相应的x 值,如果不可能,试说明理由.6. Rt △ ABC与 Rt △ FED是两块全等的含30°、 60°角的三角板,按如图(一)所示拼在一起, CB与 DE重合.(1)求证:四边形 ABFC为平行四边形;(2)取 BC中点 O,将△ ABC绕点 O顺时钟方向旋转到如图(二)中△ A′B′C′位置,直线 B'C' 与 AB、 CF 分别相交于P、 Q两点,猜想OQ、 OP长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明)7.如图,在正方形ABCD中,点 F 在 CD边上,射线AF 交 BD于点 E,交 BC的延长线于点 G.(1)求证:△ ADE≌△ CDE;(2)过点 C 作 CH⊥ CE,交 FG于点 H,求证: FH=GH;(3)设 AD=1,DF=x,试问是否存在 x 的值,使△ ECG为等腰三角形若存在,请求出x 的值;若不存在,请说明理由.8.在平行四边形ABCD中,∠ BAD的平分线交直线BC于点 E,交直线DC于点 F.(1)在图 1 中证明 CE=CF;(2)若∠ ABC=90°, G是 EF 的中点(如图 2),直接写出∠ BDG的度数;(3)若∠ ABC=120°, FG∥ CE,FG=CE,分别连接 DB、 DG(如图 3),求∠ BDG的度数.9.如图,已知? ABCD中, DE⊥ BC于点 E, DH⊥ AB于点 H, AF 平分∠ BAD,分别交DC、DE、 DH于点 F、G、 M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB与 DG+CE之间有何数量关系,并证明你的猜想.10.如图,在正方形ABCD中, E、 F 分别为 BC、AB 上两点,且B E=BF,过点 B 作 AE的垂线交 AC于点 G,过点 G作 CF的垂线交BC于点 H延长线段AE、 GH交于点 M.(1)求证:∠ BFC=∠ BEA;(2)求证: AM=BG+GM.11.如图所示,把矩形纸片OABC放入直角坐标系xOy 中,使 OA、 OC分别落在x、y 轴的正半轴上,连接AC,且 AC=4,(1)求 AC所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C 重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF 所在的直线的函数解析式.12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE平分∠ BAO,交 x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“ AE 平分∠ BAO,交 x 轴于点E”改变为“点 E 是线段OB 上的一个动点(点 E 不与点 O、 B 重合)”,过点 B 作 BF⊥ AE,垂足为F.设 OE=x,BF=y,试求y 与 x 之间的函数关系式,并写出函数的定义域.13.如图,直线 l 1的解析表达式为:y=﹣ 3x+3 ,且 l 1与 x 轴交于点D,直线 l 2经过点 A,B,直线 l 1, l 2交于点 C.(1)求点 D 的坐标;(2)求直线 l 2的解析表达式;(3)求△ ADC的面积;(4)在直线 l 2上存在异于点 C 的另一点 P,使得△ ADP与△ ADC的面积相等,请直接写出点 P 的坐标.14.如图 1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点 A、 B 分别在 x 轴与y 轴上,已知OA=6,OB=10.点 D 为y 轴上一点,其坐标为(0, 2),点P 从P 与点 B 重合时点 A 出发以每秒 2 个单位的速度沿线段AC﹣ CB的方向运动,当点停止运动,运动时间为t 秒.(1)当点 P 经过点 C 时,求直线 DP的函数解析式;(2)①求△ OPD的面积 S 关于 t 的函数解析式;②如图②,把长方形沿着OP折叠,点 B 的对应点B′恰好落在AC边上,求点P的坐标.( 3)点 P 在运动过程中是否存在使△BDP为等腰三角形若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形, A、B、C 的坐标分别是A(﹣ 5,1), B(﹣ 2, 4),C( 5, 4),点 D在第一象限.(1)写出 D 点的坐标;(2)求经过 B、 D 两点的直线的解析式,并求线段BD的长;( 3)将平行四边形ABCD先向右平移1 个单位长度,再向下平移 1 个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少并求出平行四边形ABCD与四边A1B1C1D1重叠部分的面积.16.如图,一次函数的图象与x 轴、 y 轴交于点A、B,以线段 AB为边在第一象限内作等边△ABC,( 1)求△ ABC的面积;( 2)如果在第二象限内有一点P(a,);试用含有a 的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ ABC的面积相等时 a 的值;( 3)在 x 轴上,是否存在点M,使△ MAB为等腰三角形若存在,请直接写出点M的坐标;若不存在,请说明理由.2018 年 06 月 17 日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16 小题)1.已知,正方形 ABCD中,∠MAN=45°,∠ MAN绕点 A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、 N, AH⊥ MN于点 H.( 1)如图①,当∠MAN绕点 A 旋转到 BM=DN时,请你直接写出AH 与 AB 的数量关系:AH=AB ;(2)如图②,当∠ MAN绕点 A 旋转到 BM≠ DN时,( 1)中发现的 AH与 AB的数量关系还成立吗如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN于点 H,且 MH=2,NH=3,求 AH的长.(可利用(2)得到的结论)【解答】解:( 1)如图① AH=AB.( 2)数量关系成立.如图②,延长CB至 E,使 BE=DN.∵ ABCD是正方形,∴AB=AD,∠ D=∠ABE=90°,在 Rt △ AEB和 Rt △AND中,,∴Rt △ AEB≌ Rt △ AND,∴AE=AN,∠ EAB=∠NAD,∵∠DAN+∠BAN=45°,∴∠EAB+∠BAN=45°,∴∠ EAN=45°,∴∠ EAM=∠NAM=45°,在△ AEM和△ ANM中,,∴△ AEM≌△ ANM.∴S△AEM=S△ANM, EM=MN,∵AB、 AH是△ AEM和△ ANM对应边上的高,∴ AB=AH.( 3)如图③分别沿 AM、 AN翻折△ AMH和△ ANH,得到△ ABM和△ AND,∴BM=2,DN=3,∠ B=∠ D=∠BAD=90°.分别延长 BM和 DN交于点 C,得正方形 ABCD,由( 2)可知, AH=AB=BC=CD=AD.设 AH=x,则 MC=x﹣ 2, NC=x﹣ 3,在 Rt △MCN中,由勾股定理,得222 MN=MC+NC∴52=( x﹣ 2)2+( x﹣ 3)2( 6 分)解得 x1=6,x2=﹣ 1.(不符合题意,舍去)∴AH=6.2.如图,△ ABC是等边三角形,点 D 是边 BC上的一点,以AD为边作等边△ ADE,过点C 作 CF∥DE交 AB于点 F.( 1)若点 D 是 BC边的中点(如图①),求证: EF=CD;( 2)在( 1)的条件下直接写出△AEF和△ ABC的面积比;(3)若点 D 是 BC边上的任意一点(除 B、 C 外如图②),那么( 1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由.【解答】(1)证明:∵△ ABC是等边三角形, D 是 BC的中点,∴ AD⊥ BC,且∠ BAD= ∠BAC=30°,∵△ AED是等边三角形,∴AD=AE,∠ ADE=60°,∴∠ EDB=90°﹣∠ ADE=90°﹣ 60°=30°,∵ED∥ CF,∴∠ FCB=∠EDB=30°,∵∠ ACB=60°,∴∠ ACF=∠ ACB﹣∠ FCB=30°,∴∠ ACF=∠BAD=30°,在△ ABD和△ CAF中,,∴△ ABD≌△ CAF(ASA),∴AD=CF,∵ AD=ED,∴ED=CF,又∵ ED∥CF,∴四边形 EDCF是平行四边形,∴EF=CD.( 2)解:△ AEF和△ ABC的面积比为: 1: 4;(易知AF=BF ,延长EF交AD于H,△AEF的面积=? EF? AH= ? CB ? AD= ? ? BC? AD,由此即可证明)(3)解:成立.理由如下:∵ ED∥FC,∴∠ EDB=∠ FCB,∵∠ AFC=∠ B+∠BCF=60° +∠ BCF,∠ BDA=∠ ADE+∠EDB=60° +∠ EDB∴∠ AFC=∠ BDA,在△ ABD和△ CAF中,∴△ ABD≌△ CAF(AAS),∴AD=FC,∵ AD=ED,∴ED=CF,又∵ ED∥CF,∴四边形 EDCF是平行四边形,∴EF=DC.3.( 1)如图 1,在正方形ABCD中,E 是 AB上一点, F 是 AD延长线上一点,且 DF=BE.求证: CE=CF;( 2)如图 2,在正方形ABCD中, E 是 AB上一点, G是 AD上一点,如果∠ GCE=45°,请你利用( 1)的结论证明:GE=BE+GD.( 3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC> AD),∠ B=90°, AB=BC,E 是 AB上一点,且∠ DCE=45°, BE=4, DE=10,求直角梯形ABCD的面积.【解答】( 1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ B=∠ CDF=90°,∵∠ ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵ BE=DF,∴△ CBE≌△ CDF(SAS).∴CE=CF.(2)证明:如图 2,延长 AD至 F,使 DF=BE,连接 CF.由( 1)知△ CBE≌△ CDF,∴∠ BCE=∠ DCF.∴∠ BCE+∠ ECD=∠DCF+∠ ECD,即∠ ECF=∠BCD=90°,又∠ GCE=45°,∴∠ GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ ECG≌△ FCG.∴ GE=GF,∴GE=GF=DF+GD=BE+GD.( 3)解:如图3,过 C作 CG⊥ AD,交 AD延长线于G.在直角梯形ABCD中,∵AD∥ BC,∴∠ A=∠B=90°,又∵∠ CGA=90°, AB=BC,∴四形ABCG正方形.∴AG=BC.⋯( 7 分)∵∠ DCE=45°,根据( 1)( 2)可知, ED=BE+DG.⋯( 8 分)∴10=4+DG,即DG=6.AB=x, AE=x 4, AD=x 6,在Rt △AED中,222222∵ DE=AD+AE,即 10 =( x 6) +( x 4).解个方程,得:x=12 或 x= 2(舍去).⋯( 9 分)∴ AB=12.∴ S 梯形ABCD=( AD+BC) ? AB= ×( 6+12)× 12=108.即梯形 ABCD的面108.⋯( 10 分)4.如,正方形 ABCD中,E AB上一点,点 D 作 DF⊥ DE,与 BC延交于点F.接EF,与 CD交于点 G,与角 BD交于点 H.( 1)若 BF=BD= ,求 BE的;( 2)若∠ ADE=2∠BFE,求: FH=HE+HD.【解答】( 1)解:∵四边形ABCD正方形,∴∠ BCD=90°, BC=CD,222∴ Rt △ BCD中, BC+CD=BD,222即 BC=()﹣(BC),∴ BC=AB=1,∵ DF⊥ DE,∴∠ ADE+∠EDC=90°=∠ EDC+∠ CDF,∴∠ ADE=∠ CDF,在△ ADE和△ CDF中,∵,∴△ ADE≌△ CDF(ASA),∴ AE=CF=BF﹣ BC=﹣1,∴ BE=AB﹣ AE=1﹣(﹣1)=2﹣;(2)证明:在 FE 上截取一段 FI ,使得 FI=EH,∵△ ADE≌△ CDF,∴ DE=DF,∴△ DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠ DBC,∵∠ DHE=∠ BHF,∴∠ EDH=∠ BFH(三角形的内角和定理),在△ DEH和△ DFI 中,∵,∴△ DEH≌△ DFI (SAS),∴DH=DI,又∵∠ HDE=∠ BFE,∠ ADE=2∠ BFE,∴∠ HDE=∠ BFE= ∠ ADE,∵∠ HDE+∠ADE=45°,∴∠ HDE=15°,∴∠ DHI=∠ DEH+∠HDE=60°,即△ DHI 为等边三角形,∴DH=HI,∴FH=FI+HI=HE+HD.5.如图,将一三角板放在边长为 1 的正方形ABCD上,并使它的直角顶点P 在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于 Q.探究:设A、 P 两点间的距离为x.(1)当点 Q在边 CD上时,线段 PQ与 PB 之间有怎样的数量关系试证明你的猜想;(2)当点 Q在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并写出函数自变量 x 的取值范围;(3)当点 P 在线段 AC上滑动时,△ PCQ是否可能成为等腰三角形如果可能,指出所有能使△ PCQ成为等腰三角形的点 Q的位置.并求出相应的 x 值,如果不可能,试说明理由.【解答】解:( 1)PQ=PB,(1 分)过P 点作 MN∥ BC分别交 AB、 DC于点 M、 N,在正方形ABCD中,AC为对角线,∴ AM=PM,又∵ AB=MN,∴ MB=PN,∵∠ BPQ=90°,∴∠ BPM+∠NPQ=90°;又∵∠ MBP+∠BPM=90°,∴∠ MBP=∠ NPQ,在 Rt △ MBP≌ Rt △NPQ中,∵∴Rt △ MBP≌ Rt △ NPQ,( 2 分)∴PB=PQ.(2)∵ S 四边形PBCQ=S△PBC+S△PCQ,∵AP=x,∴ AM= x,∴CQ=CD﹣ 2NQ=1﹣ x,又∵ S△PBC= BC? BM= ? 1? ( 1﹣x) =﹣x,S△PCQ= CQ? PN= ( 1﹣x) ? ( 1﹣x),=﹣+,∴ S 四边形PBCQ=﹣x+1.( 0≤x≤).(4分)( 3)△ PCQ可能成为等腰三角形.①当点 P 与点 A 重合时,点Q与点 D重合,PQ=QC,此时, x=0.( 5 分)②当点 Q在 DC的延长线上,且CP=CQ时,( 6 分)有: QN=AM=PM= x, CP=﹣x,CN=CP=1﹣x, CQ=QN﹣CN=x﹣( 1﹣x)=x﹣1,∴当﹣ x=x﹣ 1 时, x=1.(7 分).6. Rt △ABC与 Rt △ FED是两块全等的含30°、 60°角的三角板,按如图(一)所示拼在一起, CB与 DE重合.(1)求证:四边形 ABFC为平行四边形;(2)取 BC中点 O,将△ ABC绕点 O顺时钟方向旋转到如图(二)中△ A′B′C′位置,直线 B'C' 与 AB、CF分别相交于 P、Q两点,猜想 OQ、 OP长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明)【解答】( 1)证明:∵△ABC≌△ FCB,∴AB=CF, AC=BF.∴四边形 ABFC为平行四边形.(2)解: OP=OQ,理由如下:∵OC=OB,∠ COQ=∠ BOP,∠ OCQ=∠ PBO,∴△ COQ≌△ BOP.∴OQ=OP.(3)解: 90°.理由:∵ OP=OQ, OC=OB,∴四边形 PCQB为平行四边形,∵ BC⊥ PQ,∴四边形 PCQB为菱形.7.如图,在正方形ABCD中,点 F 在 CD边上,射线 AF 交 BD于点 E,交 BC的延长线于点G.(1)求证:△ ADE≌△ CDE;(2)过点 C 作 CH⊥ CE,交 FG于点 H,求证: FH=GH;( 3)设 AD=1, DF=x,试问是否存在x 的值,使△ ECG为等腰三角形若存在,请求出x 的值;若不存在,请说明理由.【解答】( 1)证明:∵四边形ABCD是正方形,∴DA=DC,∠ 1=∠2=45°, DE=DE,∴△ ADE≌△ CDE.(2)证明:∵△ ADE≌△ CDE,∴∠ 3=∠4,∵ CH⊥ CE,∴∠ 4+∠5=90°,又∵∠ 6+∠5=90°,∴∠ 4=∠6=∠ 3,∵AD∥ BG,∴∠ G=∠3,∴∠ G=∠6,∴ CH=GH,又∵∠4+∠5=∠G+∠7=90°,∴∠ 5=∠7,∴ CH=FH,∴ FH=GH.( 3)解:存在符合条件的x 值此时,CE=CG,∵∠ ECG>90°,要使△ECG为等腰三角形,必须∴∠ G=∠8,又∵∠ G=∠ 4,∴∠ 8=∠4,∴∠ 9=2∠ 4=2∠ 3,∴∠ 9+∠3=2∠ 3+∠3=90°,∴∠ 3=30°,∴x=DF=1×tan30 °= .8.在 ? ABCD中,∠ BAD的平分线交直线BC于点 E,交直线DC于点 F.(1)在图 1 中证明 CE=CF;(2)若∠ ABC=90°, G是 EF 的中点(如图 2),直接写出∠ BDG的度数;(3)若∠ ABC=120°, FG∥CE, FG=CE,分别连接 DB、DG(如图 3),求∠ BDG的度数.【解答】( 1)证明:如图1,∵AF 平分∠ BAD,∴∠ BAF=∠ DAF,∵四边形 ABCD是平行四边形,∴AD∥ BC, AB∥ CD,∴∠ DAF=∠ CEF,∠ BAF=∠F,∴∠ CEF=∠ F.∴CE=CF.( 2)解:连接GC、 BG,∵四边形 ABCD为平行四边形,∠ ABC=90°,∴四边形 ABCD为矩形,∵AF 平分∠ BAD,∴∠ DAF=∠BAF=45°,∵∠ DCB=90°, DF∥ AB,∴∠ DFA=45°,∠ ECF=90°∴△ ECF为等腰直角三角形,∵G为 EF中点,∴EG=CG=FG, CG⊥EF,∵△ ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠ CEF=∠GCF=45°,∴∠ BEG=∠DCG=135°在△ BEG与△ DCG中,∵,∴△ BEG≌△ DCG,∴BG=DG,∵ CG⊥ EF,∴∠ DGC+∠DGA=90°,又∵∠ DGC=∠ BGA,∴∠ BGA+∠DGA=90°,∴△ DGB为等腰直角三角形,∴∠ BDG=45°.(3)解:延长 AB、 FG交于 H,连接 HD.∵ AD∥ GF, AB∥ DF,∴四边形 AHFD为平行四边形∵∠ ABC=120°, AF 平分∠BAD∴∠ DAF=30°,∠ ADC=120°,∠ DFA=30°∴△ DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ ADH,△ DHF为全等的等边三角形∴DH=DF,∠ BHD=∠GFD=60°∵ FG=CE, CE=CF,CF=BH,∴BH=GF在△ BHD与△ GFD中,∵,∴△ BHD≌△ GFD,∴∠ BDH=∠ GDF∴∠ BDG=∠ BDH+∠HDG=∠ GDF+∠HDG=60°9.如图,已知? ABCD中, DE⊥ BC于点 E, DH⊥AB 于点 H, AF 平分∠ BAD,分别交DC、DE、 DH于点 F、 G、M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB 与 DG+CE之间有何数量关系,并证明你的猜想.【解答】证明:( 1)∵四边形ABCD是平行四边形,∴AB∥ CD, AD∥ BC,∴∠ BAF=∠ DFA,∵ AF 平分∠ BAD,∴∠ DAF=∠ DFA,∴AD=FD,∵DE⊥ BC, DH⊥ AB,∴∠ ADG=∠FDM=90°,在△ ADG和△ FDM中,,∴△ ADG≌△ FDM(ASA).(2) AB=DG+EC.证明:延长GD至点 N,使 DN=CE,连接 AN,∵DE⊥ BC, AD∥ BC,∴∠ADN=∠DEC=90°,在△ ADN和△ DEC中,,∴△ ADN≌△ DEC(SAS),∴∠ NAD=∠ CDE,AN=DC,∵∠ NAG=∠ NAD+∠DAG,∠ NGA=∠ CDE+∠ DFA,∴∠ NAG=∠ NGA,∴AN=GN=DG+CE=DC,∵四边形 ABCD是平行四边形,∴AB=CD,∴AB=DG+EC.10.如图,在正方形ABCD中, E、 F 分别为 BC、AB 上两点,且B E=BF,过点 B 作 AE的垂线交 AC于点 G,过点 G作 CF 的垂线交BC于点 H 延长线段AE、GH交于点 M.(1)求证:∠ BFC=∠ BEA;(2)求证: AM=BG+GM.【解答】证明:( 1)在正方形ABCD中, AB=BC,∠ ABC=90°,在△ ABE和△ CBF中,,∴△ ABE≌△ CBF(SAS),∴∠ BFC=∠ BEA;(2)连接 DG,在△ ABG和△ ADG中,,∴△ ABG≌△ ADG(SAS),∴BG=DG,∠ 2=∠ 3,∵ BG⊥ AE,∴∠ BAE+∠2=90°,∵∠ BAD=∠ BAE+∠4=90°,∴∠ 2=∠3=∠ 4,∵ GM⊥ CF,∴∠ BCF+∠1=90°,又∠ BCF+∠BFC=90°,∴∠ 1=∠BFC=∠ 2,∴∠ 1=∠3,在△ ADG中,∠ DGC=∠ 3+45°,∴∠ DGC也是△ CGH的外角,∴D、 G、M三点共线,∵∠ 3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴ AM=BG+GM.11.如图所示,把矩形纸片OABC放入直角坐标系xOy 中,使 OA、 OC分别落在 x、y 轴的正半轴上,连接AC,且 AC=4,(1)求 AC所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C 重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF 所在的直线的函数解析式.【解答】解:( 1)∵=,∴可设 OC=x,则 OA=2x,在 Rt △AOC中,由勾股定理可得222 OC+OA=AC,∴x2+( 2x)2=( 4 )2,解得 x=4( x= ﹣4 舍去),∴OC=4,OA=8,∴A( 8,0), C( 0, 4),设直线 AC解析式为 y=kx+b ,∴,解得,∴直线 AC解析式为y=﹣x+4;(2)由折叠的性质可知 AE=CE,设 AE=CE=y,则 OE=8﹣ y,在 Rt △ OCE中,由勾股定理可得222 OE+OC=CE,∴( 8﹣ y)2+42=y2,解得 y=5,∴ AE=CE=5,∵∠ AEF=∠ CEF,∠ CFE=∠AEF,∴∠ CFE=∠ CEF,∴ CE=CF=5,∴ S△CEF=CF? OC= × 5× 4=10,即重叠部分的面积为10;(3)由( 2)可知 OE=3,CF=5,∴ E( 3,0), F( 5, 4),设直线 EF 的解析式为 y=k′x+b′,∴,解得,∴直线 EF 的解析式为y=2x﹣ 6.12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE平分∠ BAO,交 x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“ AE 平分∠ BAO,交 x 轴于点 E”改变为“点 E 是线段 OB上的一个动点(点 E 不与点 O、 B 重合)”,过点 B 作 BF⊥AE,垂足为F.设 OE=x,BF=y,试求y 与 x 之间的函数关系式,并写出函数的定义域.【解答】解:( 1)对于 y=﹣x+6,当x=0 时, y=6;当 y=0 时, x=8,∴OA=6,OB=8,在Rt △AOB中,根据勾股定理得: AB=10,则 A( 0, 6), B(8, 0);( 2)过点 E 作 EG⊥ AB,垂足为 G(如图 1 所示),∵ AE 平分∠ BAO,EO⊥ AO, EG⊥ AG,∴ EG=OE,在Rt △AOE和 Rt△ AGE中,,∴Rt △ AOE≌ Rt △ AGE( HL),∴AG=AO,设OE=EG=x,则有 BE=8﹣ x, BG=AB﹣AG=10﹣ 6=4,在Rt △ BEG中, EG=x, BG=4, BE=8﹣x,根据勾股定理得:222x+4 =( 8﹣ x),解得: x=3,∴ E( 3,0),设直线 AE的表达式为y=kx+b ( k≠ 0),将A( 0,6), E(3, 0)代入 y=kx+b 得:,解得:则直线,AE的表达式为y=﹣2x+6;(3)延长 BF 交 y 轴于点 K(如图 2 所示),∵ AE平分∠ BAO,∴∠ KAF=∠ BAF,又BF⊥ AE,∴∠ AFK=∠AFB=90°,在△ AFK和△ AFB中,∵,∴△ AFK≌△ AFB,∴FK=FB,即F 为KB 的中点,又∵△ BOK为直角三角形,∴OF= BK=BF,∴△ OFB为等腰三角形,过点 F 作 FH⊥ OB,垂足为 H(如图 2 所示),∵OF=BF, FH⊥ OB,∴OH=BH=4,∴F 点的横坐标为 4,设F( 4, y),将 F( 4, y)代入 y= ﹣2x+6,得: y= ﹣ 2,∴ FH=| ﹣2|=2 ,则 S△OBF= OB? FH= ×8× 2=8;(4)在 Rt △ AOE中, OE=x, OA=6,根据勾股定理得:AE==,又BE=OB﹣ OE=8﹣x, S△ABE= AE? BF= BE? AO(等积法),∴ BF==(0<x<8),又BF=y,则 y=(0<x<8).13.如图,直线 l 1的解析表达式为:y=﹣ 3x+3 ,且 l 1与 x 轴交于点D,直线 l 2经过点 A,B,直线 l 1, l 2交于点 C.(1)求点 D的坐标;(2)求直线 l 2的解析表达式;(3)求△ ADC的面积;(4)在直线 l 2上存在异于点 C 的另一点 P,使得△ ADP与△ ADC的面积相等,请直接写出点 P 的坐标.【解答】解:( 1)由 y=﹣3x+3,令 y=0,得﹣ 3x+3=0,∴x=1,∴D( 1,0);( 2)设直线l 2的解析表达式为y=kx+b ,由图象知: x=4, y=0; x=3,,代入表达式y=kx+b ,∴,∴,∴直线 l 2的解析表达式为;( 3)由,解得,∴ C( 2,﹣ 3),∵ AD=3,∴ S△ADC=× 3×|﹣3|=;( 4)△ ADP与△ ADC底边都是A D,面积相等所以高相等,△ADC高就是点 C 到直线 AD 的距离,即 C 纵坐标的绝对值=| ﹣ 3|=3 ,则 P 到 AD距离 =3,∴ P 纵坐标的绝对值=3,点 P 不是点 C,∴点 P 纵坐标是3,∵ y=﹣ 6, y=3,∴﹣ 6=3x=6,所以 P(6, 3).14.如图 1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点 A、 B 分别在 x 轴与 y 轴上,已知OA=6, OB=10.点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A 出发以每秒 2 个单位的速度沿线段AC﹣ CB的方向运动,当点 P 与点 B 重合时停止运动,运动时间为t 秒.( 1)当点 P 经过点 C 时,求直线DP的函数解析式;( 2)①求△ OPD的面积 S关于 t 的函数解析式;②如图②,把长方形沿着OP折叠,点 B 的对应点 B′恰好落在AC边上,求点 P 的坐标.( 3)点 P 在运动过程中是否存在使△BDP为等腰三角形若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:( 1)∵ OA=6,OB=10,四边形OACB为长方形,∴C( 6,10).设此时直线DP解析式为 y=kx+b ,把( 0,2), C( 6, 10)分别代入,得,解得则此时直线DP解析式为 y= x+2;( 2)①当点P 在线段 AC上时, OD=2,高为 6, S=6;× 2×( 16﹣ 2t )=﹣ 2t+16 ;当点 P 在线段 BC上时, OD=2,高为 6+10﹣ 2t=16 ﹣ 2t ,S=②设 P(m, 10),则 PB=PB′=m,如图2,∵OB′=OB=10, OA=6,∴AB′==8,∴B′C=10﹣ 8=2,∵ PC=6﹣m,∴m2=22+( 6﹣ m)2,解得 m=则此时点 P 的坐标是(, 10);( 3)存在,理由为:若△ BDP为等腰三角形,分三种情况考虑:如图3,①当 BD=BP1=OB﹣ OD=10﹣ 2=8,在Rt △ BCP1中, BP1=8, BC=6,根据勾股定理得: CP1==2,∴ AP1=10﹣2,即 P1( 6, 10﹣ 2);②当 BP2=DP2时,此时 P2( 6, 6);3③当 DB=DP=8时,在Rt △ DEP3中, DE=6,根据勾股定理得:P E==2,3∴ AP3=AE+EP3=2+2,即 P3(6, 2+2),综上,满足题意的P 坐标为( 6, 6)或( 6, 2+2)或( 6, 10﹣ 2).15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、 B、C 的坐标分别是A(﹣ 5, 1), B(﹣ 2,4), C( 5, 4),点 D 在第一象限.( 1)写出 D 点的坐标;(2)求经过 B、D 两点的直线的解析式,并求线段BD的长;(3)将平行四边形 ABCD先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1B1C1D1四个顶点的坐标是多少并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【解答】解:( 1)∵ B(﹣ 2, 4), C( 5, 4),∴BC=5﹣(﹣ 2)=5+2=7,∵ A(﹣ 5, 1),∴点 D 的横坐标为﹣ 5+7=2,∴点 D 的坐标为( 2, 1);( 2)设直线 BD的解析式为 y=kx+b ,将 B(﹣ 2, 4)、D( 2, 1)代入得:,解得,∴经过 B、 D两点的直线的解析式为y=﹣x+,过 B 点作 AD的垂线,垂足为E,则 BE=4﹣ 1=3,DE=2﹣(﹣ 2) =2+2=4,在 Rt △BDE中, BD===5;( 3)∵ ? ABCD向右平移1 个单位长度,再向下平移 1 个单位长度,∴A1(﹣ 4, 0), B1(﹣ 1, 3),C1( 6, 3)D1( 3,0),∴重叠部分的底边长 7﹣ 1=6,高为 3﹣1=2,∴重叠部分的面积S=6× 2=12.16.如图,一次函数的图象与 x 轴、 y 轴交于点 A、B,以线段 AB为边在第一象限内作等边△ ABC,( 1)求△ ABC的面积;( 2)如果在第二象限内有一点P( a,);试用含有 a 的代数式表示四边形 ABPO的面积,并求出当△ABP的面积与△ ABC的面积相等时 a 的值;(3)在 x 轴上,是否存在点 M,使△ MAB为等腰三角形若存在,请直接写出点 M的坐标;若不存在,请说明理由.【解答】解:( 1)分别令 y=0 和 x=0,得一次函数y=x+1 的图象与x 轴.y 轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴ AB==2∵△ ABC为等边三角形,△ ABC∴ S =;( 2)如图 1, S =, S =, S = |a| ? OB=﹣.△ AOB△ AOP△BOP∴ S 四边形ABPO=S△AOB+S△BOP=,而S△ABP=S 四边形ABPO﹣ S△APO,∴当 S△ABP=S△ABC时,=,解得 a=﹣;。