专题三 第3讲 牛顿运动定律的应用

合集下载

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用
牛顿运动定律是结合牛顿三大定律探讨物体运动的一种运动学定律,
它认为物体受到外力时,物体的加速度与施力大小以及方向成正比,并且
施力的方向是对物体运动的影响。

牛顿运动定律的应用非常广泛,在工程
的应用中几乎涵盖了所有的机制。

在宇宙和航天领域,如卫星和行星运动,重力加速器,太空飞行器,人造卫星,也都是依靠牛顿运动定律来分析运
动物体的情况。

机械制造和机械设计领域,所有的机械中直接或间接利用
到牛顿运动定律,比如工程机械,现代机械,计算机机械,汽车机械,工
业机械等等,都是依靠牛顿运动定律来分析速度、加速度、位移和位移变
化的。

在日常生活中,牛顿运动定律也十分重要,比如:抛射、跳跃、下
坡跑步等,这些都会对我们的运动具有一定的影响,也就是牛顿运动定律
在我们日常生活中的应用。

牛顿运动定律及其应用

牛顿运动定律及其应用

牛顿运动定律及其应用牛顿运动定律是经典物理学的重要组成部分。

该定律是形成整个物理学的基础,它解释了物体运动的力学规律。

牛顿运动定律不仅有纯理论方面的应用,还有实际物理问题的具体解决方案。

一、牛顿运动定律的概念牛顿运动定律简称牛顿定律,是经典力学中的三个基本定律之一,主要阐述了物体在受力作用下的运动规律。

一般认为牛顿运动定律包含以下三个方面的内容:1. 物体运动状态的惯性,即没有外部力作用时,物体将保持静止或匀速直线运动的状态;2. 物体的加速度大小与作用力成正比,方向与作用力方向相同;3. 物体作用力与反作用力大小相等,方向相反。

二、牛顿运动定律的应用1. 牛顿第一定律的应用牛顿第一定律是运动学与动力学的基础,具有重要的应用价值。

在许多科学技术领域,长时间的恒定作用力是很难实现的。

而且,为了保证精度及可靠性,必须满足设备的高精度、长时间性能稳定等需求。

常常采用惯性运动的概念,即由物体的惯性保持其原来的状态,以达到稳定的效果。

比如说,汽车减速时要离开刹车,将离合器松开,让发动机阻力和车轮的弹性力平衡,这就是利用牛顿第一定律所实现的。

2. 牛顿第二定律的应用牛顿第二定律说明了力与加速度的关系。

任何物体都可以视为质点,即对质量集中在一个点而导致的物体。

它通常被描述为一个物体所受力的大小与速度的变化率成正比。

因此,牛顿第二定律可以被看作是加速度计算的基本公式。

举个例子,当我们想要去提高跳绳的速度时,必须增加绳索的旋转速度,以增加绳上的拉力,使脚踩弹跳更顺畅。

根据牛顿第二定律,物体受力与加速度成正比。

因此,在提高跳绳速度的过程中,我们可以通过应用拉力来增加加速度,从而提高跳绳的速度。

3. 牛顿第三定律的应用牛顿第三定律描述了两个物体之间相互作用的情况。

它表示每个物体受到的作用力与另一个物体施加在其上的相同大小的反作用力相等,方向相反。

举个例子,当人们在游泳时,水对游泳池边的力与离水面很近的空气对人体的相等的反向力是一对牛顿第三定律的作用力和反作用力。

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律的应用(精选6篇)牛顿运动定律的应用篇1教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇2教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇3教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇4教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇5教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇6教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.。

2022版高考物理一轮复习第三章牛顿运动定律第3讲牛顿运动定律的综合应用作业含解析新人教版

2022版高考物理一轮复习第三章牛顿运动定律第3讲牛顿运动定律的综合应用作业含解析新人教版

第3讲牛顿运动定律的综合应用[A组基础题组]一、单项选择题1.质量为m=60 kg的同学,双手抓住单杠做引体向上,他的重心的速率随时间变化的图象如图所示。

取g=10 m/s2。

由图象可知( )A.t=0.5 s时,他的加速度为3 m/s2B.t=0.4 s时,他处于超重状态C.t=1.1 s时,他受到单杠的作用力的大小是620 ND.t=1.5 s时,他处于超重状态解析:根据速度图象的斜率表示加速度可知,t=0.5 s时他的加速度为0.3 m/s2,选项A错误。

t=0.4 s时他向上加速运动,加速度方向向上,他处于超重状态,选项B正确。

t=1.1 s 时他的加速度为0,他受到单杠的作用力的大小等于重力600 N,选项C错误。

t=1.5 s时他向上做减速运动,加速度方向向下,他处于失重状态,选项D错误。

答案:B2.(2020·高考江苏卷)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。

某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。

若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为( )A.F B.19F 20C.F19D.F20解析:设列车的加速度为a,每节车厢的质量为m,每节车厢受的阻力为f,对后38节车厢,由牛顿第二定律得F-38f=38ma;设倒数第3节车厢对倒数第2节车厢的牵引力为F1,对后2节车厢,由牛顿第二定律得F1-2f=2ma,联立解得F1=F19,故C正确。

答案:C3.(2021·安徽皖江名校联盟高三联考)质量为m的光滑小球恰好放在质量也为m的圆弧槽内,它与槽左右两端的接触处分别为A点和B点,圆弧槽的半径为R,OA与水平线AB成60°角。

槽放在光滑的水平桌面上,通过细线和滑轮与重物C相连,细线始终处于水平状态。

通过实验知道,当槽的加速度很大时,小球将从槽中滚出,滑轮与绳质量都不计,要使小球不从槽中滚出,则重物C的最大质量为( )A.233m B.2mC.(3-1)m D.(3+1)m解析:小球恰好能滚出圆弧槽时,圆弧槽对小球的支持力的作用点在A点,小球受到重力和A点的支持力,合力为mgtan 60°,对小球运用牛顿第二定律可得mgtan 60°=ma,解得小球的加速度a=gtan 60°,对整体分析可得m C g=(m+m+m C)a,联立解得m C=(3+1)m,故D正确,A、B、C错误。

牛顿运动定律的应用

牛顿运动定律的应用

牛顿运动定律的应用牛顿运动定律是经典力学的基石,被广泛应用于各个领域。

它们为我们解释了物体运动的规律,并且在实际生活和科学研究中有着重要的应用。

在本文中,我们将探讨几个关于牛顿运动定律应用的例子,展示这些定律的实际应用和意义。

一、运动中的惯性第一个应用例子是关于运动中的惯性。

牛顿第一定律告诉我们,一个物体如果没有外力作用,将保持其原有的状态,即静止物体保持静止,运动物体保持匀速直线运动。

这就是物体的惯性。

拿我们日常生活中最常见的例子来说,当我们在汽车上突然刹车时,身体会继续保持前进的动力,直到与座椅或安全带接触,才会停下来。

这说明了牛顿第一定律的应用。

如果没有外力的作用,我们会按照惯性继续移动。

二、加速度与力的关系牛顿第二定律是描述物体加速度与施加在物体上的力之间关系的定律。

它告诉我们,物体的加速度与作用力成正比,与物体的质量成反比。

运用这一定律,我们可以解释为什么需要施加更大的力来加速一个较重的物体,而用相同大小的力加速一个较轻的物体时,后者的加速度更大。

在我们日常生活中,这个定律的应用非常广泛。

比如,开车时,我们需要踩下油门,施加一定的力来加速汽车。

同时,如果我们要减速或停车,需要踩下刹车踏板,通过施加反向的力来减少汽车的速度。

三、作用力与反作用力牛顿第三定律指出,对于每一个作用力都会有一个同大小、反方向的作用力作用在不同的物体上。

这就是我们常说的“作用力与反作用力”。

这个定律可以解释许多我们生活中的现象。

例如,当我们走路时,脚对地面施加力,地面也会对脚产生同样大小、反方向的力。

这种反作用力推动我们向前移动。

在工程领域中,牛顿第三定律的应用也非常重要。

例如,当一架飞机在空气中飞行时,空气对飞机产生的阻力同时也是飞机推进的力。

这个定律有助于我们设计高效的飞机引擎和减少能源消耗。

四、万有引力定律最后一个应用例子是万有引力定律。

这个定律描述了两个物体之间相互作用的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。

第3讲牛顿运动定律及其应用

第3讲牛顿运动定律及其应用

第3讲牛顿运动定律及其应用[高考定位]1.考查内容(1)恒力作用下的匀变速直线运动问题和动力学图象问题。

(2)物体在平板车、传送带上的运动问题。

(3)超重和失重问题。

(4)电场和磁场中的动力学问题。

2.题型、难度以选择题、计算题为主,难度中等。

[体验高考]1.(多选)(2015·全国卷Ⅰ)如图1-3-1甲所示,一物块在t=0时刻滑上一固定斜面,其运动的v-t图象如图乙所示。

若重力加速度及图中的v0、v1、t1均为已知量,则可求出图1-3-1A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度解析设物块的质量为m、斜面的倾角为θ,物块与斜面间的动摩擦因数为μ,物块沿斜面上滑和下滑时的加速度大小分别为a1和a2,根据牛顿第二定律有:mg sin θ+μmg cos θ=ma1,mg sin θ-μmg cos θ=ma2。

再结合v-t图线斜率的物理意义有:a1=v0t1,a2=v1t1。

由上述四式知,无法求出m,可以求出θ、μ,故B错,A、C均正确。

0~t1时间内v-t图线与横轴包围的面积大小等于物块沿斜面上滑的最大距离,θ已求出,故可以求出物块上滑的最大高度,故D正确。

答案ACD2.(多选)(2015·课标卷Ⅱ)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢。

当机车在东边拉着这列车厢以大小为a的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着车厢以大小为23a的加速度向西行驶时,P和Q间的拉力大小仍为F。

不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为A.8B.10C.15D.18解析假设挂钩P、Q东边有x节车厢,西边有y节车厢,每节车厢质量为m。

当向东行驶时,以y节车厢为研究对象,则有F=mya;当向西行驶时,以x节车厢为研究对象,则有F=23mxa,联立两式有y=23x。

可见,列车总节数N=x+y=53x,设x=3n(n=1,2,3…),则N=5n,故可知选项B、C正确。

广东物理一轮第三章第三讲牛顿运动定律综合实际应用

广东物理一轮第三章第三讲牛顿运动定律综合实际应用
力小于其重力
广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
解析:只要火箭或飞船的加速度竖直向上,宇航员就 处于超重状态;加速度竖直向下,宇航员就处于失重 状态. 答案:B
广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
3.(2011·池州模拟)在水平面上
放着两个质量分别为3 kg和
2 kg的小铁块A和B,它们之
D.18 cm
广东物理一轮第三章第三讲牛顿运动定
律综合实际应用
解析:取A、B为一整体,由牛顿第二定律可得:F- μ(mA+mB)g=(mA+mB)a,则a=2 m/s2,再以B为研究 对象:kx-μmBg=mBa,可得:x=0.08 m=8 cm,故 弹簧的长度应为l=l0+x=18 cm,D正确. 答案:D
广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
一、超重和失重
1.视重:当物体挂在弹簧测力计下或放在水平台秤上时,
弹簧测力计或台秤的 示数
称为视重,视重大小等
于测力计所受物体拉的力
或台秤所压受力物体


广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
广东物理一轮第三章第三讲牛顿运动定 律综合实际应用
解析:由于两物体在F作用下由静止开始运动,且始终 相对静止,则有F=(mA+mB)a,对B有Ff=mBa,由F-t 图象可知,F随时间变化,则a随时间变化,A项错,C项 正确;A、B先沿正方向做加速度增大的变加速运动,再 做加速度逐渐减小的变加速运动,然后做加速度增大的 变减速运动,再做加速度逐渐减小的变减速运动至速度 为0,整个过程中运动方向不变,B项错;2 s~3 s的时 间内,F逐渐增大,a增大,Ff增大,D项错. 答案: C

高考物理一轮复习课件专题三:牛顿运动定律的综合应用

高考物理一轮复习课件专题三:牛顿运动定律的综合应用
• 应在什么方向物体才会产生题目给定的 运动状态.
• 方法二:假定某力沿某一方向,用运动 规律进行验算,若算得正值,说明此力与假
• 2.“极限法”分析动力学问题

在物体的运动状态变化过程中,往往
达到某个特定状态时,有关的物理

量将发生突变,此状态叫临界状态.
相应的待求物理量的值叫临界
• 2.
• 解析:在施加外力F前,对AB整体受力 分析可得:2mg=kx1,A、B两物体分离时 ,B物体受力平衡,两者加速度恰好为零, 选项A、B错误;对物体A:mg=kx2,由于 x1-x2=h,所以弹簧的劲度系数为k=mg/h ,选项C正确;在 B与A分离之前,由于弹
• 图3-3-7 •2-1 如图3-3-7所示,光滑水平面上放置 质量分别为m、2m的A、B两个物 •• 体解,析A:、当B间A、的B最之大间静恰摩好擦不力发为生μ相m对g,滑现动用 水时平力拉F最力大F拉,B此,时使,AB对以于同A一物体所受的合外
【例3】如图3-3-8所示,一辆卡车后面用轻绳拖着
• 擦因数相同.当用水平力F作用于图3B-上3-3且两 物块共同向右加速运动时,弹簧的伸
【例1】 如图3-3-4所示,质量为m的球与弹簧Ⅰ和 水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、 Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为 F2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间时,球的加速 度a应是( )
压力
橡皮 绳
较大
一般不 能突变
只有拉 力没有
压力
• 当物不体受处力处突然变化时,物体的加速既度可有
轻弹 计 相等
一般不 拉力也
1.
图3-3-1 如图3-3-1所示,A、B两木块间连一轻质弹簧,A、B质量相等,一起静 止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A、B两木块 的加速度分别是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.物体处于超重或者失重状态时,其惯性比物体处于静
止状态时增加或减小了 D.物体处于超重或者失重状态时,其质量和受到的重力 都没有发生变化 解析:不管是超重还是失重,发生变化的是视重,而物体
的实际重力并没有变化;衡量物体惯性大小的因素为物体的质
量,超重和失重时物体的质量均无变化,所以惯性也未变化.
4.(2011 年广东五校联考)一个人站在医用体重计的测盘 上,在下蹲的全过程中,指针示数变化应是( D ) A.先减小,后还原 B.先增大,后还原
(1)明确研究对象:根据问题的需要和解题的方便,确定某 一物体或几个物体组成的系统研究对象. (2)分析物体的受力情况和运动情况,画好受力示意图,明 确物体的运动性质和运动过程. (3)利用牛顿第二定律(在受力情况已知时)或结合运动学公 式(在运动情况已知时)进行求解.
(4)必要时对结果进行讨论.
【跟踪训练】 1.一物体初速度 v0=5 m/s,沿着倾角 37°的斜面匀加速向 下运动,若物体和斜面间的动摩擦因数为 0.25,则物体 3 s 末的
思路点拨:弹簧的伸长量变大,说明弹簧的弹力变大,从 而判断出小铁球的合外力向上和加速度向上. 解析:电梯静止时,弹簧的拉力和小铁球所受重力相等. 现在,弹簧的伸长量变大,则弹簧的拉力变大,小铁球的合力
方向向上,加速度方向向上,小铁球处于超重状态.但电梯可
以是加速向上运动或减速向下运动. 答案:BD 备考策略:超重和失重现象是生产和生活中常见的现象, 近年高考比较注重对本部分的考查.解决此类问题的实质是牛
第 3 讲 牛顿运动定律的应用
考点 1 动力学的两类基本问题
1.第一类问题:已知物体的受力情况,求物体的运动情况,
如物体运动的速度、时间、位移等.
2.第二类问题:已知物体的运动情况,求物体的受力情况,
如所受某个力的大小和方向.
3.动力学两类基本问题的分析流程
图 3-3-1
4.应用牛顿运动定律解题的一般步骤
【触类旁通】 3.如图 3-3-7 所示,木块 A、B 静止叠放在光滑水平面 上,A 的质量为 m,B 的质量为 2m . 现施加水平力 F 拉 B,A、
B 刚好不发生相对滑动,一起沿水平面运动.若改为水平力 F'
拉 A,使 A、B 也保持相对静止,一起沿水平面运动,则 F'不
得超过( )
图 3-3-7 A.2F
F 解以上两方程组得 fm= 3
C.始终不变
D.先减小,后增大,再还原
解析:下蹲的过程,是由静止开始,然后蹲下到底的时候 还是速度为零.那么要满足这一过程,只有向下先加速后减速, 就类似电梯的运动过程.那么加速阶段,G-N=ma,指针读数
=支持力<重力,先减小;减速阶段,N-G=ma,指针读数=
支持力>重力,后增大;最后当蹲下静止时,N 又等于 G. 所以 先减小后增大最后还原到最初值.
图 3-3-3
体受的合外力 F 一定大于 B 受的合外力,故选择 B、C.
热点 2 超重和失重 【例 2】(双选,广东六校 2011 届高三联考)如图 3-3-4 所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂 一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静 止时的伸长量大了,这一现象表明( A.电梯一定是在下降 B.电梯可能是在上升 C.电梯的加速度方向一定是向下 D.乘客一定处在超重状态 图 3-3-4 )
做加速运动,当 F≤Fmax 时,A、B 仍相对静止都做加速运动,
故选项 A、B 正确. 答案:AB 同类延伸:解决摩擦力发生突变时的临界问题重在形成清 晰的物理图景,分析清楚物理过程,从而找出临界条件或达到 极值的条件.静摩擦力为零的状态,是方向变化的临界状态; 静摩擦力到达最大值,是物体恰好保持相对静止的临界状态.
)
图 3-3-5
A.根据图(b)和图(c)可估测出电梯向上起动时的加速度
B.根据图(a)和图(b)可估测出电梯向上制动时的加速度
C.根据图(a)和图(e)可估测出电梯向下制动时的加速度
D.根据图(d)和图(e)可估测出电梯向下起动时的加速度
答案:C
热点 3 用牛顿运动定律解决摩擦力的突变问题
方法简介:在物体的运动状态发生变化的过程中,往往达
顿第二定律的应用.注意,我们判断物体处于超重或失重状态
是看加速度方向如何,而不是看速度方向.
【触类旁通】 2.(2011 年石家庄模拟)几位同学为了探究电梯起动和制动 时的加速度大小,他们将体重计放在电梯中.一位同学站在体 重计上,然后乘坐电梯从 1 层直接到 10 层,之后又从 10 层直
接回到 1 层.并用照相机进行了相关记录,如图 3-3-5 所示. 他们根据记录,进行了以下推断分析,其中正确的是(
【触类旁通】 1.(双选,2010 年东莞一中模拟)如图 3-3-3 所示,A、
B 两物体质量分别为 mA、mB ,紧靠着放在光滑水平面上,现
用水平力 F 推 A,用 FN 表示 A 对 B 的压力,以下判断正确的 是( BC ) A.若 mA=mB ,则 FN=F B.若 mA=mB ,则 FN < F C.若 mA > mB ,则 FN < F D.若 mA > mB ,则 FN > F 解析:本题无需计算,由于整体与 B 的加速度相同,故整
作用在 B 上时,则
F=(mA+mB)a,fmax=mAa
所以 fmax=1 N
当水平拉力作用在 A 上时,A、B 不发生相对运动,一起
运动的最大加速度和拉力的最大值分别为
fmax 1 amax= m =6 m/s2 B 4 Fmax=(mA+mB)amax=3 N
所以当 Fmax<F≤4 N 时,A、B 将发生相对运动,A、B 都
图 3-3-6
A. A、B 仍相对静止一起加速运动 B. A、B 将发生相对运动 C. A 做匀速运动,B 做加速运动 D. A、B 一起做匀速运动
审题突破:静摩擦力是被动力,其存在及大小、方向取决 于物体间的相对运动的趋势,而且静摩擦力存在最大值.存在 静摩擦的连接系统,相对滑动与相对静止的临界条件是静摩擦 力达到最大值. 解析:设 A 和 B 之间最大静摩擦力为 fmax,当水平拉力 F
解析:人受到的重力不会变化,重力依然为 500 N,故 B 正确.人对地板的压力=地板对人的支持力 N,人和电梯保持 相对静止,所以人向上的加速度也为 2 m/s2,人处于超重,对
人进行受力分析,受到重力和地板的支持力 N,N-mg=ma,
支持力 N=mg+ma=(50×10+50×2) N=600 N,C 正确,故
于失重状态.
3.超重和失重的本质
超重和失重在本质上并不是物体受到的重力(实重)发生了 变化,而是物体在竖直方向有加速度时,物体对支持物的压力 或对悬绳的拉力(视重)发生了变化,即看起来好象物体的重力 变了,但实际上物体的重力并没有发生变化.
【跟踪训练】 3.下列关于超重和失重的说法中,正确的是( D ) A.物体处于超重状态时,其重力增加了 B.物体处于完全失重状态时,其重力为零
5.(双选,2011 年珠海质检)一个质量为 50 kg 的人,站在
电梯中的台秤上,当电梯以 2 m/s2 的加速度上升时,下列说法 正确的是(取 g=10 m/s2)( )
A.人对台秤的压力为 500 N B.人受到的重力为 500 N C.台秤的示数是 600 N D.台秤对人的支持力为 500 N
F B. 2
C.3F
F D. 3
解析:水平力 F 拉 B 时,A、B 刚好不发生相对滑动,这 实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此 时 A、B 间的摩擦力即为最大静摩擦力. 先用整体法考虑,对 A、B 整体:F=(m+2m)a 再将 A 隔离可得 A、B 间最大静摩擦力为 fm=ma
到某一个特定状态时,有关的物理量将发生突变,此状态即为 临界状态,相应的物理量的值为临界值.当物体受力或运动发 生变化时,摩擦力常发生突变.摩擦力的突变,又会导致物体 的受力情况和运动性质的突变,其突变点(时刻或位置)往往具 有很深的隐蔽性,稍不留心就容易出错.解决摩擦力发生突变 时的临界问题的关键在于分析突变情况,找出摩擦力突变的点.
速度为(斜面足够长,取 g=10 m/s2)( C )
A.12 m/s B.15 m/s D.20 m/s
C.17 m/s
2.用一水平恒力将质量为 250 kg 的木箱由静止开始沿水 平地面推行 50 m,历时 10 s,若物体受到的阻力是物重的 0.1 倍,则外加的推力多大?(取 g=10 m/s2)
F-2μmg F = -μg 所以 a= 2m 2m
隔离 B,则有 FAB-μmg=ma
F 所以 FAB=ma+μmg= 2 F 同理当地面光滑时,A、B 间的作用力 FAB= 2 .
答案:BD 备考策略:连接体问题是牛顿第二定律应用中的重点,连 接体内各物体具有相同的加速度时,可以把它们视为一整体, 利用整体法求出加速度,再结合隔离法求解它们之间的作用力. 易出现错误的地方是对物体进行受力分析.
【例 1】(双选)如图 3-3-2 所示,水平地面上两个完全相 同的物体 A 和 B 紧靠在一起,在水平推力 F 的作用下运动,FAB 代表 A、B 间的作用力,则( )
图 3-3-2 A.若地面完全光滑,则 FAB=F
F B.若地面完全光滑,则 FAB= 2
C.若地面的动摩擦因数为μ,则 FAB=F
F D.若地面的动摩擦因数为μ,则 FAB= 2
审题突破:物体 A、B 在力 F 的作用下一起向右加速运动, 具有相同的加速度,故先用整体法求解运动的加速度,再用隔 离法求解它们之间的作用力. 解析:设物体的质量为 m,且与地面间有摩擦.A、B 加速 度相同,以整体为研究对象,由牛顿第二定律得
F-2μmg=2ma
正确答案为 B、C.
相关文档
最新文档