人教版八年级上册数学 画轴对称图形
画轴对称图形课件人教版数学八年级上册

说这两个图形关于这条直线成轴对称. 不同的对称轴对应不同的轴对称图形.
练习 如图所示,把一个正方形纸片三次对折后沿虚线剪下,则展开平纸片所得的图形是( ).
求作: △ABC 关于直线 l 对称的图形.
轴垂直平分. 练习 求作△ABC关于直线
l
对称这的△A条′ B′ C直′. 线叫做对称轴,折叠后重合的点
(图1)动手试一试: 如何剪能剪 出B 选项?
(图2)
A
B
C
D
初中数学
例 将一个正方形纸片依次按图1中 a,b的方式对折,
然后沿图 c 中的虚线裁剪,成图 d 样式,将纸展开铺平, 所得到的图形是图2中的(D ).Fra bibliotek(图1)
(图2) B
A
B
C
D
练习 如图所示,把一个正方形纸片三次对折后沿虚线
剪下,则展开铺平纸片所得的图形是( C ).
由一个平面图形可以得到与它关于一条直线 l 对称的图形,
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
如果它能够与另一个图形重合,那么就 练习 如图,有一个英语单词,三个字母都关于直线 l 对称,请补全字母,补全后的单词是________.
已知:点 A 和直线 l .
上折
右折 右下方折 沿虚线剪开
接这些对称点即可.
初中数学
例 (3)已知: △ABC和直线 l .
求作: △ABC关于直线 l 对称的图形.
B
作法:
A
C
1. 如图,分别作出点 A,B ,
C关于直线 l 的对称点 A′ ,
l B′ ,C′ ;
2. 连接A′ B′ ,B′ C′ ,C′ A′ ;
A′
人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
人教版八年级数学上册1画轴对称图形第1课时

2.当作好一个图形关于一条直线的轴对称图形后,可以通过 什么方法进行验证?
将纸沿直线折叠,看直线两旁的部分能否完全重合;或根据 轴对称图形的定义进行判断.
3.在设计图形时,要充分想象图形的对称性.如题:在4×4的正方 形网格中,已将图中的四个小正方形涂上阴影(如图),请再从其余 小正方形中任选一个也涂上阴影,使得整个 阴影部分组成的图形成轴对称图形.
第十三章 轴对称
13.2 画轴对称图形 第1课时
学习目标
• 1.能画出一个图形关于某条直线对称的图形.
• 2.能利用轴对称变化解决日常生活中的一些简单问
学习重点
题.
画轴时钟如图所示,你认为 实际时间是几点呢?
1.如何快速作某个图形关于某直线对称的图形?
1.作已知点关于某直线对称的点的第一步是( )B
A.过已知点作一条直线与已知直线相交
B.过已知点
作一条直线与已知直线垂直
C.过已知点作一条直线与已知直线平行
D.不确定
2.将一张长方形纸对折,然后用针尖在上面扎出“B”,展开后铺平, 你看到的是( ) C
3.一张正方形纸片经过两次对折,并在如图所示位置上剪去 一个小正方形,打开后的图案是( B)
4.如右图所示,画出△ABC关于直线l对称的图形. 如图,△A'B'C'是所求作的三角形
5.下面的第二个时间是由第一个时间经过怎样的变化而得到的? 平移或轴对称.
许多几何图形是优美的.对称,就是一种美.请你用“两个圆、两个 三角形、两条线段”设计一幅轴对称图形,并用简练的文字说明 这幅图形的名称(或创意).
1.作对称点时,要与线段垂直平分线相联系,抓住垂直与延长等长线 段这一关键. 2.作一图形的轴对称图形时,要抓住已知图形的特殊点,然后作出这 些特殊点关于对称轴对称的点,首尾顺次连接得到的图形,即为所要 作的轴对称图形.
人教八年级数学上册《画轴对称图形》课件(17张)

第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
八年级数学上册 画轴对称图形 人教版4

对称点是 P 1 ,点 P 1 关于直线l的对称点是 P 2 ,求 P 1 P 2
的长(用含a的代数式表示).
图13-2-13
解:(1)由题意可知,A 1 (8,0),B 1 (7,0),C 1 (7,2).
如图13-2-14,A1B1C1 即为所求作的图形.
例2 如图13-2-3,在方格纸上建立的平面直角坐标
系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是__(2_,_1_)_.
图13-2-3 解析:由题图知点A的坐标是(-2,1),所以点A关于y 轴对称的对应点D的坐标是(2,1).
例3 如图13-2-4,利用关于坐标轴对称的点的坐标 特征,作出△ABC关于x轴对称的图形△A′B′C.
图13-2-4
解:∵△ABC关于x轴对称的图形为△A′B′C′,且 △ABC三个顶点的坐标分别是A(-1,4),B(-3,-3), C(2,1), ∴△A′B′C′三个顶点的坐标分别是A′(-1,-4), B′(-3,3),C′(2,-1). 如图13-2-5,△A′B′C′即为所求.
图13-2-5
图13-2-12
题型五 关于坐标轴对称的点的坐标特征的综合运用 例9 如图13-2-13,在平面直角坐标系中,直线l过点
M(3,0)且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0), C(-1,2),△ABC关于直线l的对称图形是 A1B1C1 ,作
出 A1B1C1,并写出点 A1, B1,C1 的坐标;
图13-2-14
(1) 图13-2-15 (2)
当a=3时,P(-3,0).∵点P与点P 1 关于y轴对称,∴ P 1 (3,0).
人教版八年级数学上册《画轴对称图形》课件(共39张PPT)

1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
课堂小结
(1)本节课学习了哪些内容? (2)在平面直角坐标系中,已知点关于x 轴或y 轴的
对称点的坐标有什么变化规律,如何判断两个 点是否关于x 轴或y 轴对称?
(3)说一说画一个图形关于x 轴或y 轴对称的图形的 方法和步骤.
N分别是点P关于直线OA、OB的
对称点,线段MN交OA、OB于点
E、F,若△PEF的周长是20cm,
则线段MN的长是
cm.
如图,1班的同学跟3班的同学分别在 M、N两处参加植树活动,现在要在道 路AB与道路AC的交叉区域设茶水供应 点P,使它到两边的距离相等且 PM=PN. (1)画出点P(保留作图痕迹) (2)说明理由.
﹒
l
﹒
﹒﹒
l
﹒﹒
下面的第二个时间可由第一个怎样变换而得到
数学人教版八年级-上册 13.2画轴对称图形

13.2画轴对称图形例1. 传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦。
一天,一位将军专程去拜访他,想他请叫一个百思不得其解的问题。
将军每天都从军营A出发(如图),先到河边C处饮马,然后再去河岸的同侧B开会,他应该怎样走才能使路程最短?据说当时海轮略加思索就解决了它。
C现在同学们已经学习了轴对称,可曾想过,被广为流传的“将军饮马”的问题就是用这一知识解决的。
例2. 在旷野上,一个人骑马从A处出发,他先到河边N饮水,再到草场M出放马,然后返回A地,如图,请问他应该怎样走才能使总路程最短?M例3. (1)在图3所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为;(2)在图中,画出与△ABC关于x轴对称的△A1B1C1例.4. ..(1)...如图..1.-.1.,要在燃气管道.......l .上修建一个泵站,分别向...........A .,.B .两城镇供气泵站修在什..........么地方,可使所用的输气管线最短...............?.(2)如图1-2,公园内两条小河汇合,两河形成的半岛上有一处古迹P ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修三条小路,连通两座小桥与古迹,这两座小桥应建在何处,使修路的费用最少?(3)如图1-3,公园中有两处古迹P 和Q ,现计划在两条小河上各修建一座小桥(垂直于河岸),并在半岛上修四条小路,连通两座小桥与古迹,这两座小桥应建在何处,才能使修路的费用最少?(4)如图1-4,现有一条地铁线路l ,小区A 和小区B 在l 的同侧,已知地铁站两入口C 、D 间的长度为a 米,现设计两条路AC 、BD 连接入口和两小区地铁站入口C 、D 设计在何处,能使得修建公路AC 与BD 的费用和最少?A 档(巩固专练)1.试分别作出已知图形关于给定直线l 的对称图形.2. 如图,已知△ABC与△111A B C是轴对称图形,画出它们的对称轴.CA AC3. 如图,画出△ABC关于直线l对称的△DEF.4. 如图,在直线AB上找一点P,使PC=PD.A ADC ADC5. 如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间建一个购物超市,使超市到这三个小区的距离相等,画出表示超市的点P.,使得货运站到三条公路的路程一样长,请问如何确定货运站P 的位置?7. 如图,要在公路MN 旁修建一个货物中转站,分别向A,B 两个开发区运货. (1)若要求货物中转站到A,B 两个开发区的距离相等,那么货物中转站应建在哪里? (2)若要求货物中转站到A ,B 两个开发区的距离和最小,那么货物中转站应建在哪里?M NABM NAB8. 如图,E ,F 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求一点M ,使△MEF 周长最短.9. 在旷野上,一个人骑马从A 处出发,他先到河边N 饮水,再到草场M 出放马,然后返回A 地,如图,请问他应该怎样走才能使总路程最短?AN M10. 如图,∠AOB=30°,角内有一点P ,PO=10cm,两边上各有一点Q 、R (均不同于点O )则△PQR 的周长的最小值是__。
人教版八年级数学上册教学设计13.2 画轴对称图形

人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。
二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。
但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。
因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。
三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。
2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。
3.培养学生的观察能力、操作能力以及抽象思维能力。
四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。
2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。
同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。
引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。
2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。
通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
问题2:如何画一条线段的对称图形? 已知线段AB,画出AB关于直线l的对称线段.
A
B
A
l
B′
A′
A (B ′) Bl
A′
B′ Bl
A′ (图1)
(图2)
(图3)
想一想:如果有一个图形和一条直线,如何画出与这个图形关于
这条直线对称的图形呢? 例3 如图,已知△ABC和直线l,作出与△ABC关于直线l对称 的图形.
方法归纳:折叠是一种轴对称变换,折叠前后的图形形
状和大小不变,对应边和对应角相等.
二 作轴对称图形
互动探究 问题1:如何画一个点的轴对称图形?
画出点A关于直线l的对称点A′. 作法: (1)过点A作l的垂线,垂足为点O. (2)在垂线上截取OA′=OA. 点A′就是点A关于直线l的对称点.
﹒A
O
﹒A′
一 轴对称变换
在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描 图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印 成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应 点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做, 看看能否得到同样的结论.
(1)认真观察,左脚印和右脚印有什
2.如图,把一张长方形的纸按图那样折叠后,B、D 两点落在B′、D′点处,若得∠AOB′=70°,则 ∠B′OG的度数为___5_5_°___.
3.如图,把下列图形补成关于直线l的对称图形.
l l
l
l
4. 如图给出了一个图案的一半,虚线 l 是这个图案的对称轴.整个图
案是个什么形状?请准确地画出它的另一半. l
第十三章 轴对称
13.2 画轴对称图形
第1课时 画轴对称图形
学习目标
1.能够按要求画简单平面图形经过一次对称后的图形. (难点) 2.掌握作轴对称图形的方法.(重点) 3.通过画轴对称图形,增强学生学习几何的趣味感.
情境引入
我们前面学习了轴对称图形以及轴对称图形的一 些相关的性质.如果有一个图形和一条直线,如何画出 这个图形关于这条直线对称的图形呢?这节课我们一 起来学习作轴对称图形的方法.
B′
(3)连接A′B′,B′C′,C′A′,得到△ A′B′C′
即为所求.
方法归纳 作轴对称图形的方法
几何图形都可以看作由点组成.对于某些图形,只要作出图形 中一些特殊点(如线段端点)的对称点,连接这些对称点,就可 以得到原图形的轴对称图形.
例4 在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和 △DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.
例1 将一张正方形纸片按如图①,图②所示的方向对折,
然后沿图③中的虚线剪裁得到图④,将图④的纸片展开
铺平,再得到的图案是( B )
动手剪一剪
图①
图② 图③
图④
A
B
C
D
例2 如图,将长方形ABCD沿DE折叠,使A点落在BC上的F
处,若∠EFB=50°,则∠CFD的度数为( C ) A.20° B.30° C.40° D.50°
P
P'
么关系?
成轴对称
(2)对称轴是折痕所在的直线,即直
线l,它与图中的线段PP ′是什么关系?
l
直线l垂直平分线段PP′
知识要点
由一个平面图形可以得到与它关于一条直线l对称的图形,这个图 形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上 的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂 直平分.
E C (F)
D
CF
D C (F)
E
C
F
A (D)
BA
B (E) A
B A (D)
B (E)
方法归纳:作一个图形关于一条已知直线的对称图形,关键是作出图形上 一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.
1.作已知点关于某直线的对称点的第一步是( B ) A.过已知点作一条直线与已知直线相交 B.过已知点作一条直线与已知直线垂直 C.过已知点作一条直线与已知直线平行 D.不确定
B C
lA
分析:△ABC可以由三个顶点的位置确定,只要能分别画出这三个 顶点关于直线l的对称点,连接这些对称点,就能得到要画的图形.
B
作法:(1)过点A画直线l的垂线,垂足
C
l 为点O,在垂线上截取OA′=OA,A′就是 A
点A关于直线l的对称点.
O
(2)同理,分别画出点B,C关于
A′
C′
直线l的对称点B′,C′ .
A
C
A
C
A
C
B
B
B
A
C
A
C
A
C
B
B
B
作图原 理
画轴对 称图形
作图方 法
对称轴是对称点连线段的垂直平分线.
(1)找特征点; (2)作垂线; (3)截取等长; (4)依次连线.
BA C
D
FE
G
H
5.如图,画△ABC关于直线m的对称图形.
m (A ′) A
C′
C
B
B′
6.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出 格纸中所有与△ABC成轴对称且以格点为顶点的三角形,这样的三角形共 有___5__个.请在下面所给的格纸中一一画出(所给的六个格纸未必全用).