2017年数学花园探秘六年级组初试试卷ABC
2017年“数学花园探秘”决赛小高A卷(答案作者版)

2017年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2017年1月1日8:00—9:30)一.填空题Ⅰ(每小题8分,共40分)1. 算式⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-631163163的计算结果是________. 〖答案〗64 〖作者〗武汉 明心书院 夏端2. 一个边长为100厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是________厘米(π取3.14).〖答案〗2384 〖作者〗广州 沃伦教育 李冰莹3. 在2016年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计4局比赛中中国队的得分,发现前2局的得分之和比后2局的得分之和少12%,前3局的得分之和比后3局的得分之和少8%.已知中国队在第2局和第3局中各得了25分,那么中国队在这4局中的得分总和为________分.〖答案〗94 〖作者〗北京 高思教育 赵家鹏4. 右面两个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“李白杜甫”=________.〖答案〗9285 〖作者〗北京 摩比思维 张诗梦5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于40,则n的最大值为________.〖答案〗5 〖作者〗长沙 拓维·天问数学 叶军 徐斌二.填空题Ⅱ(每小题10分,共50分)6. 算式2222220172017201720172017214161201412016120162016201620162016201620161248163264+++++-----------的计算结果是________. 〖答案〗32〖作者〗北京 智康一对一 尹彪7. 有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数;那么这个四位数是________.〖答案〗7776 〖作者〗北京 学而思培优 胡浩8.在空格里填入数字1~6,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f.那么第四行的前五个数字从左到右依次组成的五位数是________.〖答案〗31462 〖作者〗北京智益加陈岑9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数.”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.〖答案〗16 〖作者〗北京厚朴教育李陆欧10.如图,P为四边形ABCD内部的点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数.如果三角形P AD和三角形PBC的面积分别为20和17,那么四边形ABCD的面积最大是________.〖答案〗147 〖作者〗北京资优教育科技中心成俊锋三.填空题Ⅲ(每小题12分,共60分)11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数.那么这列数的前100个数中共有________个不同的值.〖答案〗36 〖作者〗成都科雅数学彭泽12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3歩,途中从未相遇的跳法共有________种.〖答案〗343 〖作者〗北京资优教育科技中心成俊锋ABACDPB 201713.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时,甲恰好到B地.那么AB两地间的路程为________米.〖答案〗1620 〖作者〗北京资优教育科技中心陈平14.在一个8×8的方格棋盘中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子.规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作.那么最后在棋盘上最少剩下________枚棋子.〖答案〗2 〖作者〗武汉明心书院付谦。
2017年迎春杯6年级初赛A卷

2017年“数学花园探秘”科普活动六年级组初试试卷A(测评时间:2016年12月3日8:30—9:30)一.填空题I (每小题8分,共32分)1.算式11112016123365472108⎛⎫-+-⨯-+ ⎪⎝⎭的计算结果是____________.2.相邻两个自然数,如果它们的数字和都是8的倍数,我们就称它们为“8和数组”,那么最小的一组“8和数组”中两数之和是___________.3.侠客岛的人,原来有13是卧底,后来卧底中有30%的人被驱离出岛,而不是卧底的人有13转变成了卧底.如果侠客岛上现在还有810人,那么现在侠客岛上有__________人是卧底.(没有其他人入岛)4.如图,一道除法竖式中已经填出了“2017”,那么被除数是____________.二.填空题II (每小题10分,共40分)5.今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关,如果某一天的温度是n 摄氏度,那么该植物在当天增重2n 克.5天过去,这株植物共增重88克.已知这5天太空舱里的温度的数值都是互不相同的非0自然数,且前3天的总增重量和后3天的总增重量都不是3的倍数,则第3天的温度是____________摄氏度.6.如图,在一直角三角形中,剪掉一个最大的半圆,使得半圆的直径在斜边AB 上;已知AC 长210厘米,BC 长280厘米,那么图中阴影部分的面积是_____________平方厘米.(π取3.14)177.甲、乙、丙三人同时从A 出发匀速向B 行走;甲到B 后立即调头,与乙相遇在距离B 地100米的地方;甲再行120米与丙相遇时,乙恰好到B ,那么此时甲共行了_____________米.8.如图,由54根直线型管道搭成的大正方体框架,一只蚂蚁要从A 点处在管道内部爬过6根管道首次达到B 点处,已知这只蚂蚁在爬行过程中没有走过回头路,且相连的管道都是想通的.那么这只蚂蚁共有_________种可能的爬行路线.(翻转或旋转后相同的路线视为不同的路线)三.填空题III (每小题12分,共48分)9.如图,正方形ABCD 的面积为64平方厘米.图中AE =AF =BG =BH .如果三角形AEF 和三角形BGH 的面积都是27.5平方厘米.那么,梯形GF AB 的面积是__________平方厘米.10.从1至9这9个数字中选出4个不同的数字,组成一个四位数,使得这个四位数能被未选出的5个数字整除,而不能被选出的4个数字整除.那么,这个四位数是____________.11.在空格里填入数字1至6中的某个数字,使得每行、每列和每个23的宫内数字不重复.图中两格之AB C A D CB H G F E间的分数表示两个数中较小数除以较大数得到的商.那么,最后一行从左到右前五个数组成的五位数是__________.。
2017数学花园探秘初赛六年级讲义第3讲几何学生版

【3】(2012 年迎春杯初赛六年级第 2 题)
将棱长为 5 的大正方体切割成 125 个棱长为 1 的小正方体.这些小正方体的表面积总和是原大正方
体表面积的
倍.
王乃聪 15010104597 QQ:310343359
7
2017 数学花园探秘六年级初赛讲义
【18】(2016 年迎春杯初赛六年级第 11 题)
在每个空格内填入数字 1~4,使得每行每列数字都不重复.表格外的数字表示该方向所在行或列的
第一个奇数或第一个偶数.那么,第三行的四个格从左到右组成的四位数是
.
练习
【1】(2009 年迎春杯初赛六年级第 2 题) 有 10 个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中,那么最 里面的小圆得 10 环,命中最外面的圆环得 1 环.得 1 环圆环的面积是 10 环圆面积的_____倍.
A
D
B
C
【8】(2016 年迎春杯初赛六年级第 7 题)
右图是由 9 块相同的长方体摆放而成的大长方体,已知大长方体的表面积是 360 平方厘米,那么一
个小长方体的表面积是
平方厘米.
【9】(2015 五年级网赛) 左图 6×6 的方格中,每行每列 2、0、1、5 四个数字各出现一次,空格把每行每列的数字隔成四位数、 三位数、两位数或者一位数。右边和下面的数表示该行或列里的几个数之和。0 不能作为多位数的 首位。(右图是一个 1、2、3、0 各出现一次的例子)那么,大正方形两条对角线上所有数字之和是 __________.
【2】(2016 年迎春杯初赛六年级第 4 题) 下图六角星的 6 个顶点恰好是一个正六边形的 6 个顶点.那么阴影部分面积是空白面积的
2017年“数学花园探秘”决赛小高A卷(答案作者版)

2017年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2017年1月1日8:00—9:30)一.填空题Ⅰ(每小题8分,共40分)1. 算式⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-631163163的计算结果是________. 〖答案〗64 〖作者〗武汉 明心书院 夏端2. 一个边长为100厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是________厘米(π取3.14).〖答案〗2384 〖作者〗广州 沃伦教育 李冰莹3. 在2016年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计4局比赛中中国队的得分,发现前2局的得分之和比后2局的得分之和少12%,前3局的得分之和比后3局的得分之和少8%.已知中国队在第2局和第3局中各得了25分,那么中国队在这4局中的得分总和为________分.〖答案〗94 〖作者〗北京 高思教育 赵家鹏4. 右面两个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“李白杜甫”=________.〖答案〗9285 〖作者〗北京 摩比思维 张诗梦5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于40,则n的最大值为________.〖答案〗5 〖作者〗长沙 拓维·天问数学 叶军 徐斌二.填空题Ⅱ(每小题10分,共50分)6. 算式2222220172017201720172017214161201412016120162016201620162016201620161248163264+++++-----------的计算结果是________. 〖答案〗32〖作者〗北京 智康一对一 尹彪7. 有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数;那么这个四位数是________.〖答案〗7776 〖作者〗北京 学而思培优 胡浩8.在空格里填入数字1~6,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f.那么第四行的前五个数字从左到右依次组成的五位数是________.〖答案〗31462 〖作者〗北京智益加陈岑9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数.”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.〖答案〗16 〖作者〗北京厚朴教育李陆欧10.如图,P为四边形ABCD内部的点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数.如果三角形PAD和三角形PBC的面积分别为20和17,那么四边形ABCD的面积最大是________.〖答案〗147 〖作者〗北京资优教育科技中心成俊锋三.填空题Ⅲ(每小题12分,共60分)11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数.那么这列数的前100个数中共有________个不同的值.〖答案〗36 〖作者〗成都科雅数学彭泽12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3歩,途中从未相遇的跳法共有________种.〖答案〗343 〖作者〗北京资优教育科技中心成俊锋ABACDPB 201713.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时,甲恰好到B地.那么AB两地间的路程为________米.〖答案〗1620 〖作者〗北京资优教育科技中心陈平14.在一个8×8的方格棋盘中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子.规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作.那么最后在棋盘上最少剩下________枚棋子.〖答案〗2 〖作者〗武汉明心书院付谦。
数学花园探秘(迎春杯)六年级初赛试题及详解

一、 填空题 I(每题 8 分,共 32 分) 1 1 1 1 1、算式( + )×2016+12+3 的计算结果是________. 36 54 72 108 2、相邻两个自然数,如果他们的数字和都是 8 的倍数,我们就称他为“8 和数组”,那么最 小的一组“8 和数组”中两数之和是________. 1 3、侠客岛的人,原来有 是卧底,后来卧底中有 30%的人被驱离出岛,而不是卧底的人有 13 3 转变成了卧底。如果侠客岛上现在还有 810 人,那么现在侠客岛上有_____人是卧底。 4、如图,一道除法竖式中已经填出了“2017”,那么被除数是_______.
二、填空题 II(每小题 10 分,共 40 分) 5、今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验,如果一种奇怪的 植物,它的生长之和温度有关,如果某一天的温度是 n 摄氏度,那么该株植物在当天增重 n2 克。5 天过去,这株植物共增重 88 克,已知这 5 天太空舱里的温度的数值都是互不相同的飞 0 自然数,且前 3 天的总增重量都不是 3 的倍数,则第 3 天的气温是_______摄氏度。 6、如图,在一直角三角形中,剪掉一个最大的半圆,使得半圆的直径在斜边 AB 上,已知 AC 长 210 厘米,BC 长 280 厘米,那么图中阴影部分的面积是_________平方厘米。(π 取 3.14)
98
比例法解行程,此题比以往考查的行程问题要稍微容易一些,只要找到速度之比就可 以迎刃而解。 8、答案:124 解析:通过俯视图可以知道,从 A 到 B 需要经过 4 根管道,但是题 目要求经过 6 根管道,故而分成两种情况,第一种是指在中间这个平面移动,第二种 是经过上平面或者下平面。第一种情况可以轻易数出只有 4 种。 第二种情况,需要上下爬行一次,那么水平爬行还是 4 根管道,通过俯视图标数可以 知道水平移动要经过 5 个点,而且标出爬到 B 的爬行情况。最后加上需要在五个点内 选两个点上下,一定是靠近 A 的点向下、靠近 B 的点向上或者靠近 A 的点向上、靠近 2 B 的点向下两种情况,所以是 6×C5 ×2=120,两种情况相加 120+4=124 种。
2017“数学花园探秘”科普活动(迎春杯)小学三年级组 初试模拟考试试卷

2017“数学花园探秘”科普活动(迎春杯)小学三年级组初试模拟考试试卷一.填空题I(每小题8分,共32分)1、算式31×39+24×98-193×8的计算结果是()。
2、甲、乙、丙三人分别是里约奥运会男子10米气步枪的奖牌得主,他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次排在甲的后面”;丙:“我的成绩是三人当中最差的”;现在知道,甲、乙、丙分别获得第A、B、C名,并且其中只有一个人口误了,那么三位数BAC=()。
3、如图,大正方形的对角线上放着4个正方形,正方形4、B、C、D的边长是依次增大的整数且成等差数列,如果大正方形的边长为24,那么正方形C的边长为()。
4、下图中的数字谜,在空格中填入不同的数字,最后的计算结果是()。
□□□+□□□□□□ 7二、填空题Ⅱ(每小题10分,共40分)5、在一堂趣味数学课上,许老师准备采用“小组讨论”的形式让大家学习莫比乌斯环.当天班里共16人,4人一组,每组有一个小黑板进行最后的小组展示.现在许老师设计的环节如下:各组先自行讨论5分钟,然后轮流上台进行3分钟展示,再用2分钟回答其他组同学或老师的提问,所有小组发言完毕后,老师再用3分钟总结.已知:此班11:30下课,老师坚决不拖堂.那么许老师最晚()就要开始小组讨论环节。
(请将答案写为四位数,例如,10点10分,就写为1010;9点3分,就写为0903.)6、甲乙丙三名同学各自在卡片上写了一个数。
甲让乙看了自己卡片上的数,乙说:“我写的数比你的2倍少3.”乙让丙看了自己卡片上的数,丙说:“我写的数比你的6倍多10.”丙让甲看了自己卡片上的数,甲说:“你写的数比我的11倍多1.”那么三人所写的数的总和是()。
7、右图中,等腰直角三角形有个()。
8、甲乙丙各想了一个两位数,并且他们都知道甲写的是7的倍数,乙写的是11的倍数,丙写的是16的倍数.下面是三个人的聊天内容:乙:“我与丙的个位数字不同。
“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是3.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多个月.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加天.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有张积分卡.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达B.11.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是.2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是2418 .【解答】解:(+++)×2015=()×2015==2418故答案为:2418.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是20685【解答】解:依题意可知:首先根据图中方框代表的是金三角,只能唯一情况是10﹣9.所以结果1中的百位和十位为10,那么除数的百位和十位就是10,商的首位是1.再根据结果2的首位数字是9,那么商的十位数字是9,根据尾数是5,推理出除数为105.商的前两位是19.最后结果3的数字经尝试不能是600多只能是105的7倍735.被除数为105×197=20685.故答案为:206853.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多10 个月.【解答】解:根据分析,因都是正常耗电,正常工作,故耗电速度一样,甲时钟耗尽电量所需时间是乙时钟的电池耗尽电量所需时间的6倍,所以甲时钟可以正常工作:6×2=12个月,比乙时钟多工作:12﹣2=10个月.故答案是:10.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 3 倍.【解答】解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是 2 .【解答】解:假设原数分解质因数后为2a×3b,乘6后变为2a+1×3b+1,由题意:3(a+1)(b+1)=(a+2)(b+2),由于A要尽可能小,因此令a=1,b=0即可得到答案.所以满足条件的A最小值为2.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加15 天.【解答】解:365×47.9%×20%﹣20≈174.8×20%﹣20≈35.0﹣20=15(天)答:下半年需要使优良天气相比2013年同期至少增加15天.故答案为:15.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?【解答】解:由题意可知,有ab,ac,ad和ab,ac,bc两种不同的订阅类型:ab,ac,ad有×=5×(4×3×2)=5×24=120种;ab,ac,bc有×=10×6=60种.所以共有120+60=120种不同的订阅方式.8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是40 .【解答】解:根据分析,如图1所示,由对称性可知,△ADE与△OBE面积相等,因此可知,△AOD的面积与△AOB的面积相等,都等于△ABC面积的三分之一,由于△AOD与△ABC都是圆的内接正三角形,因此可以得到小圆的面积为大圆面积的三分之一,依此小圆面积为40故答案是:40.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有15 张积分卡.【解答】解:根据分析,假设第一、二句是对的,那么总和应该是20的倍数,根据第一句,希希与珊珊积分卡之比应该为15:5,根据第二句,希希与珊珊卡数之比应该为4:16,每个人差的11倍对应了7张卡,不是整数,舍去.假设第一、三句是对的,总和应该是12的倍数,根据第一句,二人积分卡之比为9:3,根据第二句,二人积分卡之比为10:2,差的1份为多给的2张,成立,因此希希和珊珊积分卡之比为6:24,根据第三句,希望和珊珊积分卡之比为25:5,相差的19份为9张,不是整数,不成立,舍去.综上,第一、三句是对的,希希有15张积分卡.故答案是:15.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过56 秒钟,乙才第一次到达B.【解答】解:甲经过12秒钟到从A到达B,则再过9秒钟后甲到达C点,且BC的长度等于AB长度的,则AC的长度等于AB长度的,即21秒钟的时间内,甲的路程为AB+BC=AB段,乙的路程为AC=AB,丙的路程为BC=AB,则速度比甲:乙:丙=7:1:3,丙从C到达A所用时间=21×=7(秒),此时乙从C点到达D点,所用时间也为7秒,因为CA=BC,则CD=AC,则CB=8CD,丙到达A后乙到达B的所需时间:8×7=56(秒)故答案为:5611.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是21436 .【解答】解:依题意可知:如图所示,D,E,F必然是1,2,4或者4,2,1.因此B,C一定是3和6.故可知A是5.而G,H,I为三个连续自然数,I存在2倍关系,则只能是1,2,3.故右上角为6.左上角为4.并可以判定B是6,C是3.因此C的右边临格为6.以此为突破口,可以填表如图所示:故答案为:21436声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
数学花园探秘 迎春杯 六年级初赛试题及详解

6、8 至少取一个,要么取 8、要么取 6; 3、如果取 8,那么 4 必须取,否则
XYZ8 (Z 为奇)一定不是 4 的倍数,进而发现无数可取,否则必然不是 3 的倍数或
者能被本身的数整除; 4、那么必须取 6,进而必须取 3、9,这样我们取的数就
是 3、6、9、5;
5、为了是 8 的倍数则末尾必须为 6,剩下的 3 个数,共可组
5. 答案:3 解析:该题的本质是找到 5 个互不相同的平方数,使得他们的和为 88,
由于平方数除以 3 的余数只能是 0 或 1,要使得最终的和为除以 3 余 1 的数(88),
那么有两种情况,要么除以 3 余 1,1,0,1,1;要么除以 3 余 0,0,1,0,0.显然
后一种情况可以排除,因为最小的 4 个除以 3 余 0 的平方数的和已经超过 88
角形 BGH 的面积都是 27.5 平方厘米,那么,梯形 GFAB 的面积是_______平方厘米。
10、从 1 至 9 这 9 个数字中选出 4 个不同数字,组成一个四位数,使得这个四位数能被 未选出的 5 个数字整除,而不能被选出的 4 个数字整除,那么,这个四位数是_______.
11、在空格里填入数字 1 至 6 中的某个数字,使得每行、每列和每个 2×3 的宫内的数字 不重复,图中两格之间的分数表示两个数中较小数除以较大数得到的商,那么,最后一行从 左到右前五个数组成的五位数是________.
97
2017 年“数学花园探秘”解析
1. 答案:43 解析:原式=118 (12 -13 +14 -16 )×2016+15=118 ×14 ×2016+15=43
提取公因数是重要考点,该题设计到分数的提取公因数,较为创新,如果直接通分会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年“数学花园探秘”科普活动六年级组初试试卷C
(测评时间:2016年12月3日8:30—9:30)一.填空题Ⅰ(每小题8分,共32分)
1 、算式3231120173141的计算结果是_______.
2、太极图意义深远,其内涵包含了古代哲学,体现出阴阳概念,具有对称之美。
已知图中的太极大圆半径是10厘米,那么阴影部分的面积是_______平方厘米(π取3.14).
3、已知质数a、b、c满足:38cba。
那么a×b×c的最大值为_______.
4、某款手机充电5分钟,能够通话2小时,或者玩游戏1.5小时。
某人将一部完全没电的手机充电4分钟,之后打了20分钟电话,请问这部手机还能玩_______分钟游戏
二.填空题Ⅱ(每小题10分,共40分)
5、某个实心长方体是由若干个棱长为1厘米的正方体堆叠而成,将其按如图方式放置墙角(图只示意堆放方式,并不代表实际情况),刚好又40个小正方体看不见,那么原长方体的表面积最小是_______平方厘米
6、如图所示,有一个五边形ABCDE,其中M、N、P分别是边AE、BC、DE的中点,每块图形中的数表示该块图形的面积(单位:平方厘米),则图中阴影部分的面积是_______平方厘米.
7、今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关,如果某一天的温度是n摄氏度,那么该株植物在当天增重2 n 克.5天过去,这株植物共增重88克.已知这5天太空舱里的温度的数值都是互不相同的非0自然数,已知这5天里,每天太空舱里的温度数值都是大于0的自然数且依次递增,则第4天的气温是_______摄氏度
8、将右图中的乘法竖式补充完整后,两个乘数的差(大减小)是_______。
三.填空题Ⅲ(每小题12分,共48分)
9、甲、乙两人同时从A地出发去B地,乙的速度比甲的速度快50%。
在距离B地6千米处有个淘气的小精灵,他会把每次经过的人的速度变为原来的一半。
当甲到精灵处时,刚好与第一次从B地返回的乙相遇,那么当乙第一次回到A地时,甲距离A地_______千米.
10、如图,有一个4×4的方格网络,每个方格都是边长为1分米的正方形,一只蚂蚁在A 点处,试图沿着方格网络爬遍所有的线(可重复)然后回到点A,那么这只蚂蚁至少要爬行_______分米. 11、如图,由54根直线型管道搭成的大
2017年“数学花园探秘”科普活动五年级组初试试卷C 一.填空题Ⅰ(每小题8分,共32分)
1. 算式(20.17×23-0.51+201.6)÷(20.17×5+15+50.4)的计算结果是______.
2. 我爱×数学=花园园探,其中不同的汉字表示不同的数字,如果“我爱”是“数学”的两倍,数=2 ,那么“花园园探”的最小值是______.
3. 用火柴棒可以摆出所有数字,每个数字的摆法如下图所示:
按照这种规则用37根火柴棒摆出了20161203(如下图),之后健健把其中一个数字的火柴棒在原位置摆成了另一个数字(火柴棒全部使用),那么形成的新的八位数有______种.
4. 中国古代数学著作《九章算术》的“衰(读cui)分卷”中有这样一个有趣的问题,我们稍作修改如下:“今有牛、马、羊食人苗,苗主责之粟若干,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”意思是说:现在有牛、马、羊偷吃了人家的秧苗,秧苗的主人要求用粟米进行赔偿,羊的主人说:“我的羊吃的是马的一半.”马的主人说:“我的马吃的是牛的一半.”现在要按相应的次序应该怎样赔偿?如果共要赔偿1001升粟米,那么牛的主人应该赔偿粟米______升.
5. 有一类三位数,它们各个数位上数字和的平方的3倍恰好等于自己;那么,在这类三位数中,各个数位上数字的积的最大值减去最小值的差是______.
6. 如图,正六边形的面积为240平方厘米,A、B、C分别为三条边的中点,M是AB的中点.那么,阴影部分的面积是______平方厘米.
7. 甲乙丙三个聪明且诚实的孩子头上都有一个互不相同的一位数,分别记作A、B、C,每个人都只能看见别人头上的数,但是看不见自己头上的数.他们依次进行了如下对话:甲:B、C都不是我头上数的倍数;乙:A是C的倍数丙:我不知道C是几. 那么,两位数“AB”的值是_______.
8. 如右图所示,大正六边形的边长为2,一只青蛙从A点出发,每次只能沿格线跳到距离为1的点上;那么,第5次恰好跳到B点的方法有______种.
9.在空格里填入数字1~6,使得每行、每列和每个2×3的宫内数字不重复.每个2×1的粗线框里从上到下或从左到右是一个完全平方数.那么,第四行前五个数从左到右组成的五位数是_______.
10.甲、乙、丙三人同时从A出发匀速向B行走;甲到B立即掉头,与乙相遇在距离B地100米的地方;甲再行120米与丙相遇,乙恰好到B,那么此时甲共行了______米.
11.如图,正方形ABCD的边长为30,三角形AEF和三角形BGH都是正三角形,图中阴影部分的面积是_______.。