补充:分类计数原理和分布技术原理
分类计数原理与分步计数原理

分类计数原理与分步计数原理分类计数原理和分步计数原理是组合数学中常用的两种计数方法,它们在解决排列组合问题时起着至关重要的作用。
本文将分别介绍这两种计数原理的概念、应用和相关实例,帮助读者更好地理解和掌握这两种计数方法。
一、分类计数原理。
分类计数原理是指将一个计数问题分解为若干个子问题,然后将各个子问题的计数结果相加,从而得到原问题的计数结果的方法。
通常适用于问题的解决方法可以分为几种不同情况的情况。
例如,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
我们可以分别计算选出1名女生、2名女生和3名女生的情况,然后将它们的计数结果相加,即可得到最终的结果。
二、分步计数原理。
分步计数原理是指将一个计数问题分解为若干个步骤,分别计算每个步骤的计数结果,然后将各个步骤的计数结果相乘,从而得到原问题的计数结果的方法。
通常适用于问题的解决方法可以分为几个步骤的情况。
例如,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
我们可以分别计算选出第一名学生、第二名学生和第三名学生的情况,然后将它们的计数结果相乘,即可得到最终的结果。
三、应用实例。
下面我们通过具体的实例来说明分类计数原理和分步计数原理的应用。
实例1,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
采用分类计数原理,我们可以分别计算选出1名女生、2名女生和3名女生的情况,然后将它们的计数结果相加,即可得到最终的结果。
实例2,某班有5个男生和3个女生,要从中选出3名学生组成一个学习小组,其中至少有一名女生。
采用分步计数原理,我们可以分别计算选出第一名学生、第二名学生和第三名学生的情况,然后将它们的计数结果相乘,即可得到最终的结果。
四、总结。
分类计数原理和分步计数原理是解决排列组合问题的两种常用方法,它们在实际问题中有着广泛的应用。
在使用这两种计数原理时,我们需要根据具体的问题特点选择合适的方法,并且要注意计数过程中的细节,以确保得到正确的计数结果。
分类计数原理和分步计数原理

练习
1. 某中学的一幢5层教学楼共有3处楼梯口,问从 1楼到5楼共有多少种不同的走法?
答: 3×3×3×3=34=81(种)
3. 四名研究生各从A、B、 C三位教授中选一位 作自己的导师,共有__3_4___种选法;三名教授 各从四名研究生中选一位作自己的学生,共有 _4_3___种选法。
2)首先要根据具体问题的特点确定一个分步的标准, 然后对每步方法计数.
分类加法计数原理: 完成一件事,有n类 办法,在第1类办法中有m1 种不同的方法, 在第2类方法中有 m2 种不同的方法,…, 在成第 这n件类事办共法有中N有=mmn1 种+不m2同+的方…法,+那m么n 完 种不同的法
分步乘法计数原理:完成一件事,需要分成n个步
N 3 2 6.
答:有6种不同的选法。
不同排法如下图所示
日班 晚班
乙
甲
丙
乙
甲 丙
丙
甲 乙
练习
P86 练习 2、3、4、5
相应的排法
日班 晚班
甲
乙
甲
丙
乙
甲
乙
丙
丙
甲
丙
乙
例4 有数字 1,2,3,4,5 可以组成多少个三位数 (各位上的数字许重复)?
解:要组成一个三位数可以分成三个步骤完成:
3+2,有n类办法,在第1类办法中 有m1 种不同的方法,在第2类方法中有 m2 种 不同的方法,…,在第n类办法中有mn 种不 同的方法,那么完成这件事共有
N=m1 +m2 + … +mn
种不同的方法
说明 1)各类办法之间相互独立,都能独立的完成这件事,要
计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理
1.1.1分类计数原理与分布计数原理

选修2——3 第一章 计数原理
1.1分类计数原理与分步计数原理
分类计数原理:完成一件事情,有n类方法,在第1类
方法中又有m1种不同的方式可以完成这件事情,在第2类 方法中,又有m2种方式,……第n类方法中有mn种方式 可以完成,那么要完成这件事情的方法共有:
N m1 m2 mn (加法原理)
练习3:用0,1,2,3,4,5这6个数字:可以组成多少个 大于3000,小于5421的数字不重复的四位数.
解法二:(从反面解)
类型二:映射问题
例1.集合A={1,2,3,4},B={5,6,7}, 从A到B的映射 有多少个?
3×3×3×3=81 变式1.集合A={1,2,3,4},B={5,6,7}, 从A到B可构 造多少个满射?
第一类:多面手入选,另一人只需从其他8人中任 选一个,故这类选法共有8种.
第二类:多面手不入选,则会钢琴者只能从6个只 会钢琴的人中选出,会小号的1人也只能从只会小号的 2人中பைடு நூலகம்出,这类选法共有6×2=12种,
(2)分类计数原理是完成一件事情分成几类, 每一种方式都能做完这件事情
(3)分步计数原理是完成一件事情分成了几 步,每一步里的方法都不能做完这件事情
怎样区分“完成一件事”是分类问题还是分步问题?
找出你觉得能表示“分类”或“分步”特征的词或短句
或 或门
和 与门
分类
类类独立
分步
步步进行
再来练一练
1.有不同的中文书9本,不同的英文书7本,不同的日文 书5本.从其中取出不是同一国文字的书2本,问有多少
种不同的取法?9×7+9×5+7×5=143
2.集合A={1,2,-3},B={-1,-2,3,4} .从A,B 中各取1个元素 作为点P(x,y) 的坐标. (1)可以得到多少个不同的点? 3×4+4×3=24 (2)这些点中,位于第一象限的有几个?2×2+2×2=8
分类和分步计数原理

分类计数原理与分步计数原理一、分类加法计数原理:完成一件事情可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++种不同的方法注:在分类计数原理中,n 类办法中相互独立,无论哪一类办法中的哪一种方法都能独立完成这件事. 例1. 一个书包内有7本不同的小说,另一个书包内有5本不同的教科书,从两个书包中任取一本书的取法有多少种?例2. 在所有的两位数中个位数字比十位数字大的两位数有多少个?(合理分类)二、分步乘法计数原理:完成一件事情需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的办法……,做第n 步有m n 种不同的办法,那么完成这件事共有N 种不同的方法.N=n m m m ⨯⨯⨯ 21 注:分步计数原理各步骤相互依存,只有各步骤都完成才能做完这件事.例1. 用0,1,2,3,4排成可以重复的5位数,若中间的三位数字各不相同,首末两位数字相同,这样的5位数共有多少个?例2. (1)8本不同的书,任选3本分给3个同学,每人一本有多少种不同的分法?(2)若将4封信投入3个邮筒,有多少种不同的投法?若3位旅客到4个旅馆住宿,又是多少种住宿方法? 例3. 将红、黄、绿、黑四种颜色涂入图中的五个区域,要求相邻的区域不同色,问有多少种不同的涂色方法?变式训练:1、如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域 不能涂同一种颜色,则不同的涂法共有多少种?2、如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有多少种?三、计数原理综合应用作用:计算做一件事完成它的所有不同的方法种数区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 方法:(1)列举数数法:就是完成一件事方法不是很多,一一列举出来,然后一种一种地数,这种方法适用于:数目较少的问题.(2)字典排序法:把所有的字母或数字或其它,按照顺序依次排出来,所有的字母或数字或其它排完后结束.(3)模型法:根据题意构建相关的图形,利用图形构建两个原理的模型.AB C D典型例题分析(先分类再分步.)【例1】 一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?变式训练2 有不同的中文书7本,不同的英文书5本,不同的法文书3本,若从中选出不属于同一种文字的2本书,共有多少种选法?【例2】 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?变式训练1 火车上有十名乘客,沿途有五个车站,乘客下车的可能方式有多少种?变式训练2 有4种不同溶液倒入5只不同的量杯,如果溶液足够多,每只量杯只能倒入一种溶液,有几种不同倒法?【例3】电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【例4】d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?【例5】 甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?变式训练1 甲、乙、丙、丁4个人各写1张贺卡,放在一起,各取1张,其中甲、乙、丙不能取自己所写的贺卡,共有多少种不同取法?变式训练2 设有编号①,②,③,④,⑤的5个球和编号为1,2,3,4,5的5个盒子,现将这5个球投入这5个盒子内,要求每个盒子内投入一个球,并且恰好有2个球的编号与盒子的编号相同,则这样的投放方法总数为多少【例6】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 654321四、课堂练习1.一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_______________种.若是选取两本书且它们不相同则有_______________种2.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有______种不同的选法.3.一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有__________种.4.从分别写有1,2,3,……,9的九张数字卡片中,抽出两张数字和为奇数的卡片,共有_______种不同的抽法.5.从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有______种。
分类加法计数原理与分布乘法计数原理

1 1 2 , , 2 3 3
3
时,也有4个.
返回导航页
结束放映
考向大突破二:分步乘法计数原理
例2:已知集合M={-3,-2,-1,0,1,2},P(a,b)表示 平面上的点(a,b∈M),问: (1)P可表示平面上多少个不同的点? (2)P可表示平面上多少个第二象限的点? (3)P可表示多少个不在直线y=x上的点?
返回导航页 结束放映
应用两个计数原理的注意点 (1)注意在应用两个原理解决问题时,一般是先 分类再分步.在分步时可能又用到分类加法计数原 理. (2)注意对于较复杂的两个原理综合应用的问题, 可恰当地列出示意图或列出表格,使问题形象化、直 观化.
返回导航页
结束放映
变式训练3:上海某区政府召集5家企业的负责人开年终 总结经验交流会,其中甲企业有2人到会,其余4家企业 各有1人到会,会上推选3人发言,则这3人来自3家不同 企业的可能情况的种数为________.
因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函 数.
(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的 取值均有6种情况, 因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的 二次函数.
返回导航页
结束放映
考向大突破三:两个计数原理的综合应用
解析:若3人中有一人来自甲企业,则共有C21C42种情况, 若3人中没有甲企业的,则共有C43种情况, 由分类加法计数原理可得, 这3人来自3家不同企业的可能情况共有C21C42+C43= 16(种). 答案: 16
分类计数原理与分步计数原理

分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法 ,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++= 21种不同的办法。
分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同方法,那么完成这件事共有n m m m N ⋅⋅⋅= 21种不同的方法。
特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。
不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有n 类办法,这n 类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。
二、题型剖析例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?解:(1)不同涂色方法数是:60345=⨯⨯(种)(2)如右图所示,分别用a,b,c,d 记这四块,a 与c 可同色,也可不同色,先考虑给a,c 两块涂色,分两类(1) 给a,c 涂同种颜色共15C 种涂法,再给b 涂色有4种涂法,最后给d 涂色也有4种涂法,由乘法原理知,此时共有4415⨯⨯C 种涂法(2) 给a,c 涂不同颜色共有25A 种涂法,再给b 涂色有3种方法,最后给d 涂色也有3种,此时共有3325⨯⨯A 种涂法 故由分类计数原理知,共有4415⨯⨯C +3325⨯⨯A =260种涂法。
例2、(1)如图为一电路图,从A 到B 共有-___________条不同的线路可通电。
分类计数原理和分步计数原理

分类计数原理和分步计数原理一、知识梳理1、分类计数原理:完成一件事,有n 类办法,在一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法..........在第n 类办法中有m n 种不同的方法,那么完成这件事共有m m m N n+⋅⋅⋅++=21种不同的方法 对于分类计数原理,我们应该注意以下几点:(1)分类原理又叫加法原理;(2)在分类时,标准要明确:(3)完成这件事的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法都是不同的方法2、分步计数原理完成一件事需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的 方法,做第二步有m 2种不同的方法..........做第n 步有m n 种不同的方法,那么完成这件事共有m m m N n∙∙∙= 21 种不同的方法对于分步计数原理我们还要注意以下几点:(1)分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤完成了,这件事才算完成,所以分步计数原理原理又称乘法原理;(2)分步时,应根据问题的特点,确定一个分步的标准;(3)分步时还要注意,满足完成一件事必须并且只有连续完成n 个步骤后这件事才算完成例题1、国庆节期间,某家庭欲从甲地去乙地旅游,一天中从甲地有火车3班,有汽车2班可以到达乙地,那么一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?2:一班有学生56人,其中男生有38人,从中选取1名男生和1名女生作代表,参加学校组织的社会调查团,选取代表的方法有多少种?3、在3张卡片的正反两面上,分别写着1和2,4和5,7和8,将它们并排组成三位数,一共能组成多少个不同的三位数?4、二次函数cy+=2,其中{}5,4,3,2,1,0+axbxba,则可以得,∈,c到多少个不同的二次函数?5、用4种不同的颜色给如图所示的图形上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?6、将3种农务全部种植在下图的5块实验田中,每块试验田种植一种农作物,且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?7、如图,所示的是某城市中M,N两地间整齐的道路网,若规定只能向东或向北两个方向沿图中矩形的边前进,则某人从M地经过A到N地有多少不同的走法?8、把5本书全部借给3名学生,有多少种不同的借法?9、如图所示,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种10、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种11、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种B.18种C.12种D.6种12、三只口袋内袋有大小不同的小球,一只装有5个白色小球,一只装有6个黑色小球,另一只装有7个红色小球,若从三只口袋中取两个不同颜色的小球,共有多少种不同的取法?13、已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在平面直角坐标系中,第一,第二象限内不同点的个数为()A、18B、16C、14D、1014、4个人各写一张贺年卡,放在一起,然后每个人取一张不是自己写的贺年卡,共有多少种不同的取法?15、在所有的两位数中,个位数字比十位数字大的两位数有多少个?16、由0,1,2,3,4,5,6这七个数字可以组成多少个无重复数字的四位偶数?17 、将红、黄、绿、黑四种不同的颜色涂入下图中的5个区域,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?18、用0,1,2,3,4这5个数字可以组成多少个无重复数字的:(1)四位密码?5X4X3X2=120(2)四位数?4X4X3X2=96(3)四位奇数?19、如图所示的5X3个方格中有多少个矩形?20、某单位职工义务献血,在体验合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少不同的选法?21、三人传球,由甲开始发球,并作为第一次传球,经过5次传球后,仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种22、在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植1垄,为有利作物生长,要求A,B两种作物的间隔不少于6垄,则不同的选择方法有多少种?23、四张卡片的正反面分别有0与1,2与3,4与5,6与7,将其中3张卡片排放在一起,可组成多少个不同的三位数?24、书架上原来并排放着5张不同的书,现要再插入3本不同的书,不同的插法的种数有多少种?25、某通讯公司推出一组手机卡号码,卡号的前7位数字固定,从0000⨯⨯⨯⨯共10000个号码,⨯⨯⨯⨯⨯到9999⨯⨯⨯⨯⨯规定:凡卡号的后四位带有数字“4”和“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数多少个?。
分类计数原理和分步计数原理

典型例题
例 1. 书架放有 3 本不同的数学书, 5 本不同的语文书, 6 本不同 的英语书。 (1)若从这些书中任取1本书,有多少种不同的取法? (2)若从这些书中,取数学书、语文书、英语书各一本, 有多少种不同的取法? (3)若从这些书中,取不同科目的书两本,有多少种不同 的取法? 解:(2)从书架上任取数学书、语文书、英语书各一本, 需分成三个步骤完成:
第1类办法是数学书、语文书各取1本,有3×5种办法; 第2类办法是数学书、英语书各取1本,有3×6种办法; 第3类办法是语文书、英语书各取1本,有5×6种办法; 根据分类计数原理,不同取法的种数是 N= 3×5+3×6+5×6=63 答:若从这些书中,取不同科目的书两本,有63种不同的取法。
典型例题
一、导入 情景:
一学生从外面进入教室有多少种 走法?若进来再出去,有多少走法?
分类计数原理和分步计数原理
二、新课 情景一:
从甲地到乙地,可以乘火车,也 可以乘轮船。一天中,火车有3班,轮 船有2班。那么一天中,乘坐这些交通 工具从甲地到乙地共有多少种不同的 走法?
பைடு நூலகம்
分类计数原理
做一件事情,完成它可以有n类办法,在 第一类办法中有m1种不同的方法,在第二类办 法中有m2种不同的方法……在第n类办法中 有mn种不同的方法。那么完成这件事共有 N=m1+m2+…+mn 种不同的方法。 (此原理又称加法原理 )
例2:由1,2,3,4可组成多少个数字可以重复的
四位数?
变式1:由0,1,2,3可组成多少个数字可以重复
的四位数?
变式2:由1,2,3,4可组成多少个数字不可以
重复的自然数?
思考题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在运用“分类记数原理、分步记数原理”处理具体应用 题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分 类”或“分步”的具体标准。在“分类”或“分步”过程 中,标准必须一致,才能保证不重复、不遗漏。
㈣ 课堂练习
练习1 .如图,要给地图A、B、C、D四个区域分别涂上3种 不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必 须涂不同的颜色,不同的涂色方案有多少种? 解: 按地图A、B、C、D四个区域 依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据分步记数原理, 得到不同×1 = 6 种。
补充讲解: 分类加法计数原理与 分步乘法计数原理
(一)新课引入:
问题1:. 从甲地到乙地,可以乘火车,也可以乘
汽车,还可以乘轮船。一天中,火车有4 班, 汽车 有2班,轮船有3班。那么一天中乘坐这些交通工 具从甲地到乙地共有多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4+2+3=9 种方法。
问题2: 如图,由A村去B村的道路有3条,由B村去C村
的道路有2条。从A村经B村去C村,共有多少种不同的 走法? 北 北 A村 中 南
B村
南
C村
分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有2种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。
(二)新课:
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有 N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。
B
当然,也可以把并联的4个看成一类,这样也可分2类求解。
m1
A
m2
……
B
mn
点评: 我们可以把分类 记数原理看成“并联 电路”;分步记数原理 看成“串联电路”。 如图:
A
m1
m2
…...
mn
B
练习3.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条 路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路 可通。从甲地到丙地共有多少种不同的走法? 解:从总体上看,由甲到丙有 两类不同的走法, 第一类, 由甲经乙去丙, 甲地 又需分两步, 所以 m1 = 2×3 = 6 种不同的走法; 第二类, 由甲经丁去丙, 也需分两步, 所以 m2 = 4×2 = 8 种不同的走法; 所以从甲地到丙地共有 N = 6 + 8 = 14 种不同的 丁地 走法。
例2.在所有的两位数中,个位数字大于十位数字 的两位数共有多少个?
分析1: 按个位数字是2,3,4,5,6,7,8,9分成8类,在每一 类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个. 则根据分类记数原理共有 1 +2 +3 +4 + 5 + 6 + 7 + 8 =36 (个).
(三)例题:
例 1. 书架的第1层放有4本不同的计算机书,第2层放有 3本不同的文艺书,第3层放有2本不同的体育书, (1)从书架上任取1本书,有多少不同的取法? (2)从书架的第1,2,3层各取1本书,有多少不 同的取法?
分析: (1)从书架上任取1本书,有三类办法:第一类办法, 从第1层中任取一本书, 共有 m1 = 4 种不同的方法; 第二类 办法, 从第2层中任取一本书, 共有 m2 = 3 种不同的方法; 第三类办法:从第3层中任取一本书,共有 m3 = 2 种不同的 方法,所以, 根据分类记数原理, 得到不同选法种数共有 N = 4+3+2= 9 种。 点评: 解题的关键是从总体上看做这件事情是“分类完 成”,还是“分步完成”。“分类完成”用“分类记数原 理”;“分步完成”用“分步记数原理”。
答:首位数字不为0的号码数是N =9×10×10 ×10 = 9×103 种, 首位数字是0的号码数是 N = 1×10×10 ×10 = 103 种。 由此可以看出, 首位数字不为0的号码数与首位数字是0的号 码数之和等于号码总数。
例 3. 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共 十个数字,这4个拨号盘可以组成多少个四位数的号码(各位 上的数字允许重复)?首位数字不为0的号码数是多少?首 位数字是0的号码数又是多少? 问: 若设置四个、五个、六个、…、十个等号码盘,号码数 分别有多少种?
练习2.如图,该
电路,从A到B共有 多少条不同的线 路可通电?
A
B
解: 从总体上看由A到B的通电线路可分三类, 第一类, m1 = 3 条 第二类, m2 = 1 条 第三类, m3 = 2×2 = 4, 条 所以, 根据分类记数原理, 从A到 B共有 N=3+1+4=8 条不同的线路可通电。 A
答:它们的号码种数依次是 104 , 105,
106, …… 种。
点评:
分类记数原理中的“分类”要全面, 不能遗漏; 但也不 能重复、交叉;类与类之间是并列的、互斥的、独立的,也就 是说,完成一件事情,每次只能选择其中的一类办法中的某一 种方法。若完成某件事情有n类办法, 即它们两两的交为空集 ,n类的并为全集。 分步记数原理中的“分步”程序要正确。“步”与“步 ”之间是连续的,不间 断的,缺一不可;但也不能重复、交叉;若 完成某件事情需n步, 则必须且只需依次完成这n个步骤后,这件 事情才算完成。
分析2: 按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中 满足条件的两位数分别是 8个,7个,6个,5个,4个,3个,2个,1个. 则根据分类记数原理共有 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 (个)
例 3. 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十 个数字,这4个拨号盘可以组成多少个四位数的号码(各位上 的数字允许重复)?首位数字不为0的号码数是多少?首位数 字是0的号码数又是多少? 分析: 按号码位数,从左到右依次设置第一位、第二位、第三 位,第四位、需分为 四步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m2 = 10,第 四步 , m4 = 10. 根据分步记数原理, 共可以设置N = 10×10×10 ×10 = 104种四位数的号码。
乙地
丙地
㈤ 小结:
1. 本节课学习了那些主要内容? 答:分类记数原理和分步记数原理。 2.分类记数原理和分步记数原理的共同点是什么? 不同点什么? 答: 共同点是, 它们都是研究完成一件事情, 共有多少种 不 同的方法。 不同点是, 它们研究完成一件事情的方式不同,分类 记 数原理是“分类完成”, 即任何一类办法中的任何一 个方法都能完成这件事。分步记数原理是“分步完成 ”, 即这些方法需要分步,各个步骤顺次相依,且每一步 都完成了,才能完成这件事情。这也是本节课的重点。
㈤ 小结:
3. 何时用分类记数原理、分步记数原理呢? 答:完成一件事情有n类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算 完成这件事情的方法总数用分类记数原理。 完成一件事情有n个步骤,若每一步的任何一种 方法只能完成这件事的一部分,并且必须且只需完 成互相独立的这n步后,才能完成这件事,则计算完 成这件事的方法总数用分步记数原理。