2017年第17届中环杯9年级决赛模拟卷数学试题(PDF版)
2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。
中环杯、小机灵杯试题精选(题目)

中环杯、小机灵杯试题精选【1】1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?【2】一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?【3】一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为"三联".小亮想剪出尽可能多的三联,他最多能得到几块三联?【4】第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复8次,那么所以数的和是多少?【5】一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。
如果做对3道或3道以上试题的同学为考试合格。
请问:这次考试的合格率最多达百分之几?最少达百分之几?【6】把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。
有()种分法。
【7】七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有( ) 种.【8】由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。
从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到()辆开往甲城的汽车。
【9】一群公猴、母猴和小猴共38只,每天共摘桃子266个。
已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?【10】甲、乙两列车分别从A,B两站同时相向开出,已知甲车的速度与乙车速度的比为3:2,C站在A,B两站之间。
2017年全国初中数学联合竞赛试题(初三组)

2017年全国初中数学联合竞赛试题参考答案及评分标准第一试(A) 一、选择题:(本题满分42分,每小题7分)1.已知实数满足213390a b c ++=,3972a b c ++=,则32b ca b++= ( )A. 2.B. 1.C. 0.D. 1-.2.已知△ABC 的三边长分别是,,a b c ,有以下三个结论: (1)以(2)以222,,a b c 为边长的三角形一定存在;(3)以||1,||1,||1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( ) A .0. B .1. C .2. D .3.3.若正整数满足a b c ≤≤且2()abc a b c =++,则称为好数组.那么,好数组的个数为 ( )A. 1. B .2. C .3. D .4.,,a b c (,,)a b c 4.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( )A. 109.B. 87. C. 65. D. 43.5.设A 是以BC 为直径的圆上的一点,AD BC ⊥于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足BAF CAE ∠=∠.已知15BC =,6BF =,3BD =,则AE = ( ) A. B. C..D..6.对于正整数n ,设n a 1232001111a a a a ++++=A.1917. B. 1927. C. 1937. D. 1947.二、填空题:(本题满分28分,每小题7分) 1.=的值为_______.a 2.如图,平行四边形中,72ABC ∠=︒,AFBC ⊥于点F ,AF交于点,若2DE AB =,则AED ∠=_______.ABCD BD ,,a b c.3.设,m n 是正整数,且m n >.若9m与9n的末两位数字相同,则m n -的最小值为 .4.若实数,x y 满足3331x y xy ++=,则22x y +的最小值为 .第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)y ax bx c c =++≠的图象与x 轴有唯一交点,则二次函数3233y a x b x c =++的图象与x 轴的交点个数为 ( )A .0.B .1.C .2.D .不确定.2.题目和解答与(A )卷第1题相同. 3. 题目和解答与(A )卷第3题相同. 4.已知正整数,,a b c 满足26390ab c --+=,260a b c -++=,则222a b c ++= ( )A. 424.B. 430.C. 441.D. 460. 5.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( ) A. 43. B. 65. C. 87. D. 109.6.题目和解答与(A )卷第5题相同.二、填空题:(本题满分28分,每小题7分) 1.题目和解答与(A )卷第1题相同. 2.设O 是锐角三角形ABC 的外心,,D E 分别为线段,BC OA 的中点,7ACB OED ∠=∠,5ABC OED ∠=∠,则OED ∠=_________.3. 题目和解答与(A )卷第3题相同.4. 题目和解答与(A )卷第4题相同.第二试 (A )一、(本题满分20分)已知实数,x y 满足3x y +=,221112x y x y +=++,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC >,45BAC ∠=︒,E 是BAC ∠的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB ⊥.已1AF =,5BF =,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(,)a b ,使得34938b a=⨯+.第二试 (B )一、(本题满分20分)已知实数,,a b c 满足a b c ≤≤,16a b c ++=,22211284a b c abc +++=,求c 的值.二、(本题满分25分)求所有的正整数m ,使得21221m m --+是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ∠=∠,OA OD ⊥,OB OC ⊥.求证:2222AB CD AD BC +=+.。
【最新试题库含答案】2017届九年级数学上期末试卷(含答案和解释)

2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。
考生必须在答题卡上解题作答。
答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。
2017年秋期九年级期终调研测试数学试卷

2017年秋期九年级期终调研测试数学试卷一、选择题(每题3分,共30分)1.下列计算正确的是 【 】A .2+4=6B .=432582C .÷=3D .=﹣32732)3( 2.如图的四个转盘中,C,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是【】A .B .C .D .3. 河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:,则AC 的长是 3【 】A .5米B .10米3C .15米D .10米34. 一元二次方程x 2+x +=0的根的情况是 14题号一二三总 分得分【 】A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则为 【 】ABAD A .B .C .D .214241226.对于二次函数y =−(x−1)2+2的图象与性质,下列说法正确的是 【 】A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =−1,最小值是2D .对称轴是直线x =−1,最大值是27.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是【 】A .B .C .D .943161918.如图,在菱形ABCD 中,DC ∥AB ,,BE =2,3cos 5A则tan ∠DBE 的值是【 】A .B .2CD 129. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ′处,则点C 的对应点'C 的坐标为【 】A .B .(2,1)C .D .10.二次函数的图象如图所示,)0(2≠++=a c bx ax y对称轴是直线,下列结论:①;②;1=x 0<ab ac b 42>③;④.其中正确的是 【 】 0<++c b a 02=++c b a A .①④B .②④C . ①②③D .①②③④二、填空题(每小题3分,共15分)11.计算:=.)33()13(-⨯+12.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x 个白球,然后从箱中随机取出一个白球的概率是,则x 的值为 .3213.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x …﹣10123…y…105212…则当x =5时,y 的值为 .14.如图,△ABC 是等边三角形,动点P 从点A 出发,匀速沿A→C→B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),y 与x 之间函数关系的图象如图所示,则这个三角形的周长是cm .15.如图,正方形ABCD 中,AB =4,点E 是BC 的四等分点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,则sin ∠CEF =.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:+(x ﹣),其中x 为方程62122-++x x x 331--x x (x -3)(x -5)=0的根.17.(9分)已知关于x 的一元二次方程:x 2﹣(m ﹣3)x ﹣m =0.(1)试判断原方程根的情况;(2)若抛物线y =x 2﹣(m﹣3)x ﹣m 与x 轴交于A(1,0),B(t ,0)两点,求m 的值.F EDBCA18.(9分)如图,已知AD为△ABC的角平分线,∠ADE=∠B.(1)求证:△ABD∽△ADE;(2)若AB=9,AE=4求AD的长.19.(9分)如果m是从0,2,5三个数中任取的一个数,n是从0,1,4三个数中任取的一个数,用画树状图(或列表)的方法,求关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率.1 20.(9分)如图,已知二次函数y=-x2+bx+c的图象经过A(2,0),2B(0,-6)两点.(1)求这个二次函数的解析式并写出它的对称轴;(2)把该抛物线平移,使它的顶点与B点重合,直接写出平移后抛物线的解析式.21.(10分)如图所示,某数学活动小组选定测量山顶铁塔AE的高,他们在30m 高的楼CD的底部点D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.若小山高BE=62m,楼的底部D与山脚在同一水平面上,求铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)22.(10分)如图1,△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =2,∠BAC =∠DEF =90°,固定△ABC ,将△DEF 绕点A 顺时针旋转,DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,设旋转角为(<<).α︒0α︒90图3图2图1G HHG A(D)A(D)C BFCBE FFBC(E)A(D)(1)问题发现: 当<<时,如图2,可得∠H = 45°-∠CAH =∠GAC .︒0α︒45这时与△AGC 相似的三角形有及;(2)类比探究:当<<时,如图3,(1)中的结论还成立吗?如果成立,︒45α︒90请选取一种情况说明理由;(3)问题解决:当△AGH 是等腰三角形时,直接写出CG 的长.323.(11分)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线43y=ax2+x+c经过B、C两点.4(1)求抛物线的解析式;(2)点E是直线BC上方抛物线上的一动点,过点E作y轴的平行线交直线BC 于点M,交x轴于点F,设E的横坐标为m,请用含m的代数式表示线段EM的长;(3)在(2)的条件下,若B,E,M为顶点的三角形与△BOC相似,请直接写出m 的值.九年级数学期终调研试卷参考答案一、选择题(每题3分,共30分)1.C ;2.A ;3. A ;4. B ;5.D ; 6.B ;7.D ;8.B ;9. C ;10.C .二、填空题(每小题3分,共15分)11. ;12.4; 13.10(由表可知,二次函数的对称轴为直线x =2);14.12;15.32或.2582524三、解答题(本大题8个小题,共75分)16.(8分)解:原式=+=+==,……………………………………………………3分解方程(x ﹣3)(x ﹣5)=0得,x 1=3,x 2=5,…………………………6分当x =3时,原式无意义;………………………………………………7分当x =5时,原式==21.…………………………8分17.(9分)解:(1)△=[﹣(m ﹣3)]2﹣4(﹣m )=m 2﹣2m +9=(m ﹣1)2+8,…3分∵(m ﹣1)2≥0,∴△=(m ﹣1)2+8>0,∴原方程有两个不等实数根;…………………………6分(2)将x =1带入一元二次方程:x 2﹣(m ﹣3)x ﹣m =0中,得12﹣(m ﹣3)﹣m =0,解得m =2……………………………………9分18.(9分)证明:(1)∵AD 为△ABC 的角平分线,∴∠BAD =∠DAE .又∵∠ADE =∠B,∴△ABD ∽△ADE ; ……………………5分(2)∵△ABD ∽△ADE ∴,即 ∴AD =6…………………………………………9分AE AD AD AB =49ADAD =19.(9分)解:关于x 的一元二次方程x 2-2mx +n 2=0有实数根,则△=(﹣2m )2﹣4n 2=4(m 2﹣n 2)≥0,∴m ≥n …………………………………………………………3分画树状图得:…………………………6分∵共有9种等可能的结果,m ≥n 的情况有6种,∴关于x 的一元二次方程x 2﹣2mx +n 2=0有实数根的概率为.…9分3296= 20.(9分)解:(1)y =-x 2+4x -6 …………………………5分12配方得y =-(x -4)2+2,121∴对称轴为x=4,………7分 (2)y=-x2-6…………9分221.(10分)解:如图,过点C作CF⊥AB于点F.设塔高AE=x,作CF⊥AB于点F,则四边形BDCF是矩形,∴CD=BF=30m,CF=BD,∵在Rt△ADB中,∠ADB=45°,∴AB=BD=x+62,…………………………………………4分∵在Rt△ACF中,∠ACF=36°52′,CF=BD=x+62,AF=x+62﹣30=x+32,∴tan36°52′=≈0.75,∴x=58.…………………………………………9分答:该铁塔的高AE为58米.…………………………10分22.(10分)解:(1)△HAB,△HGA;……………………4分(写对1个给2分)(2)成立,取△AGC∽△HAB进行说明.∵∠BHA=∠C+∠CAH=45°+∠CAH ∠GAC=∠GAH+∠CAH=45°+∠CAH∴∠BHA=∠GAC 又∵∠B=∠C∴△AGC∽△HAB………………………………………8分22(3)或4-…………………………2分(写对1个给1分)简析:因为:∠GAH=45°①当∠GAH=45°是等腰三角形.的底角时,如图(1):可知CG=2②当∠GAH=45°是等腰三角形.的顶角时, 如图(2):由△HGA∽△HAB 知:HB=AB=9,也可知BG=HC,可得:CG=4-2B (D )A F E G (H )CB (D )A F E G HC图(1) 图(2) 23.(11分)解:(1)∵直线y =﹣x +3与x 轴交于点C ,与y 轴交于点B ,∴点B 的坐标是(0,3),点C 的坐标是(4,0),∵抛物线y =ax 2+x +c 经过B 、C 两点,∴ 解得∴y =﹣x 2+x +3.…………………………………………………………5分(2)∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,﹣m 2+m +3),点M 的坐标是(m ,﹣m +3),∴EM =﹣m 2+m+3﹣(﹣m +3)=﹣m 2+m …………………9分(3)2或………………11分(答对一个给1分)914简析:两种情况讨论如下:(I )当∠EBM =90°时,过点E 作NE y ⊥轴于点N ,则NE =m ,BN =+3﹣-3=m m 43832+-m m43832+-Rt △ENB ∽ Rt △BOC∴ ,即 ,解得m =0(舍去)或m =OB OC BN EN =3443832=+-m m m 914 (2)当∠BEM =90°时,则BE =m ,Rt △MEB ∽ Rt △BOC ∴ ,即 ,解得m =0(舍去)或m =2OC OB BE EM =4323832=+-m m m ∴2或.建议评讲时参看2017河南省中考卷第23题.914。
2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.41.410⨯ 10.2x ≠ 11.88 12.(2)a a +或22a a + 13.1k > 14.2 15.35 16.9π+ 17.50 18.17三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1) 解:原式=13++ (4)分=4+(结果错误扣1分) (4)分(2) 解: 3)1()3(22+---x x x 24x 2x =-+. …………………3分∵ 0142=--x x ,∴ 241x x -=,∴ 原式=1+2=3. …………………4分 20.(1)解:()522=+x …………………………………………2分∴1222x x =-+=-- (4)分(2)解:由①得: 2.x -≤…………1分 由②得: 0.x < …………3分∴ 2.x ≤- (4)分21.解:(1)1500,(图略); ……………………4分(2)108° …………………………………………6分(3)万人1000%502000=⨯ (8)分22. 解:画树状图如下:2 4 52 4 52 5 5554甲乙 4 5 52. (4)分∴57,1212P P ==(甲胜)(乙胜). (6)分∴甲、乙获胜的机会不相同. …………………………… 8分23.(1)证明:∵∠BAD =∠CAE ∴∠EAB =∠DAC ,在△ABE 和△ACD 中∵AB =AC ,∠EAB =∠DAC ,AE =AD ,∴△ABE ≌△ACD (SAS ) ……………………5分(2)∵△ABE ≌△ACD ∴BE =CD ,又DE =BC ,∴四边形BCDE 为平行四边形.…7分∵AB =AC ,∴∠ABC =∠ACB ,∵△ABE ≌△ACD ∴∠ABE =∠ACD ∴∠EBC =∠DCB ∵四边形BCDE 为平行四边形 ∴ EB ∥DC∴∠EBC +∠DCB =180°∴∠EBC =∠DCB =90° ……………………9分∴四边形BCDE 是矩形. ……………………10分(此题也可连接EC ,DB ,通过全等,利用对角线相等的平行四边形是矩形进行证明) 24.解:设小张骑公共自行车上班平均每小时行驶x 千米, (1)分根据题意列方程得:1010445xx =⨯+……………………5分解得:15x = ………………………8分 经检验15x =是原方程的解且符合实际意义. ………………………9分 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………10分 25.(1)证明:如图,联结BD∵ AD ⊥AB ,∴ DB 是⊙O 的直径,︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C ,∴∠D=∠ABF ∴︒=∠+∠+∠9021ABF 即OB ⊥BF∴ BF 是⊙O 的切线…………………………5分 (2)联结OA 交BC 于点G ,∵AC =AB ,∴弧AC =弧AB ∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG …………7分 ∴54cos 2cos cos=∠=∠=∠ABF D在△ABD 中,∠DAB=90°∴5c o s A DB D D==∴3A B == …8分在△ABG 中,∠AGB=90°∴12c o s 25B G A B =∠=g∴5242==BG BC ………………………10分26.解:(1)当0k >时,(1)(21)4k k +--+=,解得43k =.当0k <时,(21)(1)4k k -+-+=,解得43k =-. ………………5分(2)当2x =-时,4y =;当20m -<<,函数的界高为244m -<,不符合题意; …………6分当02m ≤≤,函数的最大值为4,最小值为0,界高4,符合题意. …9分 当2m >时,函数的界高为24m >,不符合题意. …………10分 综上所述,实数m 的取值范围为02m ≤≤.27.(1 ………………………………………3分 (2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F .则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°,∴∠ABE +∠FBC =90°,l 1 l 2 l 3 l 4又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=BC,则AE=BF=,在直角△ABE中,AB==;………………………6分当AB是长边时,如图(b),同理可得:BC=;故BC=或………………………………………9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC ∴AE=DG=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==. (12)分28.解:(1)y=.………………………………………3分(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w=﹣x2+7x+48;当x≥8时,w=﹣x+48.∴w关于x的函数关系式为:w=.…………7分②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.…………9分(3)设用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;………11分②当x>8时,w=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.………12分综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.。
2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]
20. 解:(1)如图 1,点 M 就是要找的圆
心. 正确即可 (2)证明:由 A(0,4),可得小正方形 的边长为 1,从而 B(4,4)、C(6,2)
(2) ∵m>-t, ∴取 m=0, 方程为 x2-2x=0,
解得 x1=0,x2=2. 19. 解:(1)由图可知,花圃的面积为 (100-2a)(60-2a)=4a2-320a+6000; (2) 由已知可列式: 100×60(100-2a) (60-2a) = ×100×60, 解得:a1=5,a2=75(舍去), 所以通道的宽为 5 米;
A.
m
B.
期中模考·九年级数学(解析卷) 第 1 页 共 15 页
t
m
C.
t
m
D. 1m
8. 如图(见第 1 页),在直角梯形 ABCD 中,AB∥CD,AB⊥BC,以 BC 为直径的⊙O 与 AD 相切,点 E 为 AD 的中点,下列结论正确 的个数是( ) .. (1)AB+CD=AD; (3)AB•CD=
期中模考·九年级数学(解析卷) 第 5 页 共 15 页
23. (12 分)已知:△ABC 内接于⊙O,D 是 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,请你证 明:∠ACD=∠APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、 交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若 ∠ACD-∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC=t,求 BF 的长.
天津市2017中考试题数学卷(含解析)
2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算(3) 5的结果等于( )A. 2 B2C . 8D .8【答案】 A.【解析】试题分析 根据有理数的加法法则即可得原式-2,故选A.2. COS600的值等于( )A 品B.1C 2D1 2【答案】D.【解析】试题分析;棍据特殊角的三角函数值可得3丸0匸:,故选D3.在一些美术字中,有的汉子是轴对称图形 •下面4个汉字中,可以看作是轴对称图形的 是( )礼迎全运CA )(B ) (C ) (D )【答案】C. 【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选 C.4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 放社会保障卡12630000张•将12630000用科学记数法表示为()【答案】B.2017年4月末,累计发 8 7A. 0.1263 10 B . 1.263 106C . 12.63 105D . 126.3 10试题分析:学记数法的表示形式为a x I0n的形式,其中1w|a|v 10, n为整数,n的值为这个数的整数位数减1,所以=1.263 107.故选B.5. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是()第<5)IS (O【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3, 1,故选D.6. 估计.38的值在()A. 4和5之间 B . 5和6之间C. 6和7之间D . 7和8之间【答案】C.【解析】试題分析:由即可得X ,烦<匚故选C7.计算a1的结果为()a 1 a 11A. 1B.aC. a 1Da 1【答案】A.【解析】试题分析:根据同分母的分式相加减的法则可得,原式=a 1 1,故选A.a 1y2x8.方程组J的解是()3x y15x2x4x4x3A.B C. D .y3y3y8y6(A>iD)【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为X 3,故选D.y 69.如图,将ABC绕点B顺时针旋转600得DBE,点C的对应点E恰好落在AB延长线上,连接AD .下列结论一定正确的是()【答案】C.【解析】试题分析;WilSC绕点鸟顺时针谄专6L富3EE ,由此可得遊吧厶BXZEBWr ;即可得△ABD为等边三对略根据等边三角形的性贡可得4期司o° ,所以4蛇立瑰,所以,化”比,其它结论都不能够推岀,故选c10.若点A(1, y i) , B(1,y2), C(3,y3)在反比例函数y3的图象上,贝UXy1,y2, y3 的大小关系是()A. y i y2y3 B . y2 y3 屮 C. y3y2 y1 D . y2 y1 y3【答案】B.【解析】试题分析:把A( 1,yJ , B(1, y2), 53小)分别代入y -可得,Xy i 3,y23,y3 1,即可得y2 y3 y i,故选B.CBE C. AD//BC D . AD BCAABD E A.11.如图,在ABC中,AB AC , AD,CE是ABC的两条中线,P是AD上一个动点,EP最小值的是(C. AD D . AC【解试题分析:在ABC 中,AB AC , AD是ABC的中线,可得点B和点D关于直线AD对称,连结CE交AD于点P,此时BP EP最小,为EC的长,故选 B.12.已知抛物线y x2 4x 3与x轴相交于点A,B (点A在点B左侧),顶点为M .平移该抛物线,使点M平移后的对应点M '落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()2 2 2A. y x 2x 1 B . y x 2x 1 C. y x 2x 1D. y x2 2x 1【答案】A.【解析】试题分析=令 E 即r-4A+3 = 0 ;解得口或3,即可得A (b 0), 抛物线+ 3 = 的顶点坐标为(初・1人平移该挞物袋,使点胚平移后的对应点M落在工轴上点B平移后的对应点B'落在>■轴上,也就是把该抽物线问上平移1个单仏向左平移3个单位,抿協抛物线平移规律可得新抛物线的解析式九丄二0+=$ + 2工+1「故选A.二、填空题13.计算x7 x4的结果等于_____________ .【答案】X3.【解析】试题分析:根据同底数幕的除法法则计算即可,即原式=x3.14. 计算(4 7)(4 . 7)的结果等于________ .【答案】9.【解析】试题分析:根据平方差公式计算即可,即原式=16-7=9.15. 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【答案】5.6【解析】试题分析:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5.616. 若正比例函数y kx ( k是常数,k 0 )的图象经过第二、四象限,贝U k的值可以是(写出一个即可).【答案】k<0,只要符合条件的k值都可,例如k=-1.【解析】试題分析=正比例酗"是常数,的團象经过第二HW限’根16正比例函数的性质可得Z 只要符合条件的k值都可』例如k-h17. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【解析】 试题分析:连结 AC 根据正方形的性质可得 A 、E C 三点共线,连结FG 交AC 于点M ,因正 方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC=FG= 2 ,AC=3 ;2 ,即可得AE=2 2 ,因P 为AE 的中点,可得PE=AP= 2 ,再由正方形的GM=EM=Z ,FG 垂直于 AC,在 Rt △ PGM 中,PM 丄22 2PG=.5.【答案】(1) .17 ;( 2)详见解析 【解析】试题分析:⑴根据勾股定理即可求得AB-, 17 ; (2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点 M 、N ,连结DN 、EM ,DN 与EM 相交于性质可得由勾股定理即可求得18. 如图,在每个小正方形的边长为 1的网格中,点 代B,C 均在格点上.(1)AB 的长等于 ___________ ;(2 )在ABC 的内部有一点P ,满足S PAB : S PBC :: S PCA 1:2,请在如图所示的网格中, 用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证 明)点P,点P即为所求•三、解答题19. 解不等式组X 1 2 ①5x 4x 3 ②请结合题意填空,完成本题的解答•(1) ___________________________ 解不等式①,得;(2) ___________________________ 解不等式②,得;(3 )把不等式①和②的解集在数轴上表示出来:0 12 3 4 5(4)原不等式组的解集为__________ •【答案】(1)x > 1; (2) x< 3; (3)详见解析;(4) K x w 3.【解析】试题分析:⑴ 移莎合并同类项即可求得答案;⑵ 移项、合并同类臥系数化为1即可求得答案:⑶ 根据不等式解集在数轴上的表示方法』画出即可,(4)找出这两个不等式解集的公共咅吩』即可得不等式组的解集.试题解析:(1)x > 1 ;(2) x w 3;(J 2 3^5(3)(3) 1 w x w 3.20.某跳水队为了解运动员的年龄情况, 作了一次年龄调查,根据跳水运动员的年龄 (单位:岁),绘制出如下的统计图①和图② •请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为(2 )求统计的这组跳水运动员年龄数据的平均数、众数和中位数 【答案】(1)40, 30;( 2)15,16,15.【解析】试題分析:(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,祁可得本^接受调查的跳水运动 员人如用泊岁年龄的人数除以本次接登调查的跳水运动员人数即可求得m 的怪<2>根据统计囲中给出 的信息,结合求平t 渊、介数、中位数的方法求解即可.试题解析:(1)40,30; (2)观察条形统计图,-13 4 14 10 15 11 16 12 17 3 , J x ---------------------------------------------------- 15 ,40•••这组数据的平均数为 15;•••在这组数据中,16出现了 12次,出现的次数最多, •这组数据的众数为 16;15 15•••将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15 15 15 ,2•这组数据的中位数为 15.21.已知AB 是O O 的直径,AT 是O O 的切线,ABT 50° , BT 交O O 于点C , E 是,图①中m 的值为AB上一点,延长CE交O O于点D .(1) 如图①,求T和CDB的大小;(2) 如图②,当BE BC时,求CDO的大小.【答案】(1) / T=40。
天津市塘沽区 北塘中学 2017年九年级数学中考模拟测试卷(含答案)
2017年九年级数学中考模拟测试卷一、选择题:1.已知a,b,c在数轴上的位置如图,化简∣a+c∣-∣a-2b∣-∣c-2b∣的结果是()A.0B.4bC.-2a-2cD.2a-4b;2.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定3.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.4.对于用四舍五入法得到的近似数4.609万,下列说法中正确的是( )A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位5.由五个小立方体搭成如图的几何体,从正面看到的平面图形是( )A. B. C. D.6.计算的正确结果是( )A.7B.-7C.±7D.无意义7.下列计算正确的有几个()A.0个B.1个C.2个D.3个8.已知实数a ,b 分别满足a 2-6a+4=0,b 2-6b+4=0,且a ≠b ,则的值是( )A.7B.-7C.11D.-119.二次根式有意义的条件是( )A.x >3B.x >﹣3C.x ≥﹣3D.x ≥310.如图,在平行四边形ABCD 中,AD=7,CE 平分∠BCD 交AD 边于点E,且AE=4,则AB 长为( )A.4B.3C.2.5D.211.若反比例函数k y x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数图象在( ) A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限12.已知反比例函数y=kx -1的图象如图,则二次函数y=2kx 2-4x+k 2的图象大致为( )二 、填空题:13.分解因式:2x 3﹣4x 2+2x= . 14.×= ;= .15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到16.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.17.如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为.18.如图,点A是抛物线y=x2﹣4x对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.三、解答题:19.解不等式组, 并将它的解在数轴上表示出来.20.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.21.如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.(1)求证:PC是⊙O的切线.(2)若AF=1,OA=2,求PC的长.22.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)23.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小.①求y与x小的函数关系式(不必写出x小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).25.如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使,求K点坐标.参考答案1.B2.C3.C4.D5.C6.B7.B8.A9.C10.B11.B12.C13.解:2x3﹣4x2+2x=2x(x2﹣2x+1)=2x(x﹣1)2.故答案为:2x(x﹣1)2.14.答案为:2,.15.答案为:0.8.16.答案为:y=0.15x-1;17.解:过A点作A⊥BD于F,∵∠DBC=90°,∴AF∥BC,∵CE=2AE,∴AF=BC,∵∠ABD=30°,∴AF=AB,∴BC=AB,∵∠ABD=30°,∠ADB=75°,∴∠BAD=75°,∠ACB=30°,∴∠ADB=∠BAD,∴BD=AB,∴BC=BD,∵CE=4,在Rt△CBE中,BC=CE=6,在Rt△CBD中,CD=BC=6.故答案为:6.18.答案为:(2,﹣1)或(2,2).19.答案为:2.5<x≤420.解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.21.解:(1)证明:连接 OC,∵OE⊥AC,∴AE=CE,FA=FC,∴∠FAC=∠FCA,∵OA=OC(圆的半径相等),∴∠OAC=∠OCA,∴∠OAC+∠FAC=∠OCA+∠FCA,即∠FAO=∠FCO,∵FA 与⊙O 相切,且 AB 是⊙O 的直径,∴FA⊥AB,∴∠FCO=∠FAO=90°,∵CO 是半径,∴PC 是⊙O 的切线;(2)解:∵PC 是⊙O 的切线,∴∠PCO=90°,又∵∠FPA=∠OPC,∠PAF=90°,∴△PAF∽△PCO,∴=,∵CO=OA=2,AF=1,∴PC=2PA,设 PA=x,则 PC=2x.在 Rt△PCO 中,由勾股定理得:(2x)2+(2)2=(x+2)2,解得x=,∴PC=2×=.22.解:6.58米.23.(1)根据题意,得y=4x大+210.(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234.②依题意,得3x小+234≤260,解得x小≤8.∵x小为自然数,∴x小最大为8,即最多能放入8个小球.24.(1)∠ACD=∠ABD,BD=CD+AD;(2)略;(3)BD+CD=AD.25.(1)将A(-2,0),B(4,0)两点坐标分别代入y=ax2+bx-3(a≠0),即,解得:抛物线的表达式为:(2)设运动时间为t秒,由题意可知:过点Q作QD⊥AB,垂直为D,易证△OCB∽△DQB,OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t,对称轴当运动1秒时,△PBQ面积最大,,最大为. (3)如图,设K(m,)连接CK、BK,作KL∥y轴交BC与L,由(2)知:,设直线BC的表达式为y=kx+n,解得:直线BC的表达式为y=x-3即:解得:K坐标为(1,)或(3,)。
湖北武汉市江汉区七中 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁2.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )A.0.145×108B.1.45×107C.14.5×106D.145×1054.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或205.下列计算正确的是()A.4x3•2x2=8x6B.a4+a3=a7C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b26.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.0.2B.0.4C.0.6D.0.87.过正方体中有公共顶点的三条棱的中点,切去一个角后,行成如图所示的几何体,其表面展开图正确的是()8.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cmB.4cmC.5cmD.6cm9.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥1.25B.b≥1或b≤﹣1C.b≥2D.1≤b≤2二、填空题:11.分解因式:x3y﹣2x2y+xy= .12.已知α、β是一元二次方程x2﹣2x﹣2=0的两实数根,则代数式(α-2)(β-2)= .13.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.14.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.15.若正n边形的一个外角是一个内角的时,此时该正n边形有_________条对称轴.16.如图,抛物线y=x2﹣2向右平移一个单位得到抛物线y2,则图中阴影部分的面积S= .1三、计算题:17.计算:2sin30°+4cos30°•tan60°﹣cos245°.18.先化简,再求值:,其中a是方程的解.四、解答题:19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.20.学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17届中环杯九年级决赛模拟试卷
填空题(共10题,前5题每题4分,后5题每题6分)
1.方程()()()215215215122150x x x --+- 的解为________.
【答案】108
x =2.若44sin cos 1x x -=,则sin cos x x +=______.
【答案】1
3.如图,I 为ABC ∆的内心,以AI 为直径作一个圆,延长BI 交圆于点D ,延长CI 交圆于点E ,若
75ABC ∠=︒,45ACB ∠=︒,则EDI DEI ∠-∠=________.
【答案】15︒
4.实数,,x y z 满足
11y x y ≥⎧⎪⎨
+=-⎪⎩,则=________.【答案】1
5.如图,在ABC ∆中,AB AC =,点D 、E 分别为AB 、AC 的中点,若ABC BFA ∆∆∽,则
AB BC
=________.
【答案】26.方程组()(
)224253112222132
x y x y x y x y x y x y ⎧-+-++=++⎪⎨--++=⎪⎩的解为________.
【答案】112565x y ⎧=⎪⎪⎨⎪=-⎪⎩
,2
211x y =⎧⎨=⎩7.实数a 使得方程()2
2x a a x ++=有四个不同的实数根,其中最大根与最小根之差为7,则a =________.
【答案】1333
144
-8.我们用()f n 表示!n 的末尾连续0的个数,若
()
f n x n ≤对所有正整数n 都成立,则x 的最小值为________.
【答案】1
4
9.若,x y 都是正数,满足3x y +≥,则222812x y x y
++
+的最小值为________.【答案】2410.如图,BE 、CF 都是ABC ∆的外角平分线,其中点E 在CA 延长线上、点F 在BA 延长线上。
点P
在EF 上,作PM EC ⊥、PN BF ⊥、PQ BC ⊥,求证:PM PN PQ
+=【证明】略。