大学物理第十四章相对论习题解答

合集下载

第14章习题答案

第14章习题答案

s
s′
s′
(∆x=0 ∆t=4.0 s ∆t'=6.0s ) v v t− 2 x ∆t − 2 ∆x c c t′ = ∆t′ = 2 2 1− v2 c2 1− v c
5 v= c 3
= − v∆t 1 − v2 c2 = −1.34 × 109 m
x′ =
x − vt 1− v2 c2
∆x′ =
s
s′
s′
(∆x=0 ∆t=4.0 s ∆t'=6.0s ) v v t− 2 x ∆t − 2 ∆x c c t′ = ∆t′ = 2 2 1− v2 c2 1− v c
5 v= c 3
∆x =
∆x′ +v∆t 1− v c
2 2
=0
′ = −v∆t = −1.34 × 109 m ∆x
习题答案
习题答案
第十四章 相对论
P297 14-13 设想地球上有一观察者测得一宇宙飞船以0.60c的速率向 设想地球上有一观察者测得一宇宙飞船以 的速率向 东飞行, 后该飞船将与一个以0.80c的速率向西飞行的 东飞行,5.0s后该飞船将与一个以 后该飞船将与一个以 的速率向西飞行的 彗星相碰撞,试问: 彗星相碰撞,试问 (1)飞船中的人测得彗星将以多大的速率向它运动? )飞船中的人测得彗星将以多大的速率向它运动? (2)从飞船中的时钟来看,还有多少时间容许它离开航 )从飞船中的时钟来看, 以避免与彗星相撞? 线,以避免与彗星相撞? 解 地球: 系 地球 S系 飞船: 系 飞船 S'系 向东: 向东:x 轴正向
习题答案
第十四章 相对论
P297 14-8 在惯性系S中 一事件,发生于x 在惯性系 中,一事件,发生于 1处, 2.0×10-6s后,另 × 后 一事件发生于x 已知x 一事件发生于 2处,已知 2- x1=300m.问:(1)能否 . 能否 找到一个相对于S系做匀速直线运动的 系做匀速直线运动的S'系 系中, 找到一个相对于 系做匀速直线运动的 系,在 S'系中, 系中 两事件发生于同一地点?( 发生于同一地点?(2) 系中, 两事件发生于同一地点?( )在 S'系中,这两事件的 系中 时间间隔? 时间间隔?

大学物理第十四章相对论习题解答

大学物理第十四章相对论习题解答

§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

第14章相对论习题解答

第14章相对论习题解答

第14章 相对论基础习题14.1一观察者测得运动着的米尺长为0.5m ,问此米尺以多大的速度接近观察者?解:米尺的长度在相对静止的坐标系中测量为1m ,当米尺沿长度方向相对观察者运动时,由于“长度收缩”效应,观察者测得尺的长度与相对运动的速度有关。

设尺的固有长度为L ,由长度收缩效应22'1cL L υ-=,得1822's m 106.21-⋅⨯=-=LL c υ14.2一张正方形的宣传画边长为5m ,平行地贴在铁路旁边的墙上,一高速列车以18s m 102-⋅⨯的速度接近此宣传画,问若是高速列车上的乘客测量该画的边长为多少?解:由题意得,在垂直于相对运动的方向上,画的高度不变,在平行于相对运动的方向上,长度变短。

由长度收缩效应公式m 7.3122'=-=c L L υ乘客测量的尺寸为2m 7.35⨯。

14.3 从地球上测得,地球到最近的恒星半人马座'S 星的距离为m 103416⨯.。

某宇宙飞船以速率υ=0.99c 从地球向该星飞行,问飞船上的观察者将测得地球与该星间的距离为多大?解:飞船上的观察者认为地球与'S 星的距离是运动的,故长度收缩。

即m 101.6115220⨯=-=cl l υ14.4如果地面上的观察者测得彗星的长度等于随彗星运动的观察者所测得的一半,求彗星相对于地面的速率是多少?解:根据长度缩短公式,有2201c vl l -=,又已知210=l l 所以 18s m 106.22/3-⋅⨯==c υ14.5 一根米尺静止在'S 系中,与o ’x ’轴成 30角,如果在S 系中测得米尺与ox 轴成 45角,S ‘相对于S 的速率(沿ox 轴正向运动)必须是多少?S 系测得的米尺的长度是多少?解:设米尺在'S 系中的长度为0l ,坐标为()00,y x ,在S 系中长度为l ,坐标为()y x ,。

在S 系中看来,米尺仅在x 方向缩短21β-倍,y 方向上长度不变。

【良心出品】大学物理复习题第14章相对论 复习题及答案详解

【良心出品】大学物理复习题第14章相对论 复习题及答案详解

第十四章 相对论一.选择题1. 有下列几种说法:(1)真空中,光速与光的频率、光源的运动、观察者的运动无关.(2)在所有惯性系中,光在真空中沿任何方向的传播速率都相同.(3)所有惯性系对物理基本规律都是等价的.请在以下选择中选出正确的答案(A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的.(C) 只有(2)、(3)是正确的.(D) 三种说法都是正确的. [ ]2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?(A )(1)同时,(2)不同时。

(B )(1)不同时,(2)同时。

(C )(1)同时,(2)同时。

(D )(1)不同时,(2)不同时。

[ ]3. K 系中沿x 轴方向相距3m 远的两处同时发生两件事,在K ′系中上述两事件相距5m 远,则两惯性系间的相对速度为(c 为真空中光速)(A) (4/5) c (B) (3/5) c(C) (2/5) c (D) (1/5) c [ ]4. 两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生的两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆,又在K '系x '轴上放置一固有长度为0l 的细杆,从K 系测得此杆的长度为l ,则(A) .;00l l t t <∆<∆ (B) .;00l l t t >∆<∆(C) .;00l l t t >∆>∆ (D) .;00l l t t <∆>∆ [ ]5. 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.6c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为(A) 0.6a2(B) 0.8 a2(C) 0.36a2(D) 0.64a2[]6. 一静止长度为100m的飞船相对地球以0.6 c(c表示真空中光速)的速度飞行,一光脉冲从船尾传到船头。

大学物理相对论习题及解答-精品文档

大学物理相对论习题及解答-精品文档
t vx/c t' , 2 1(v/c)
2
x vt x' 2 1(v/c)
t vx / c 1 1 (1 ) t1 ' 2 1(v/c) 2 t2 vx 2 /c t2 ' 2 1(v/c) 因两个事件在 K 系中同一点发生, t2 t 1 t ' t ' x x , 则 2 1 1 2 2 1 ( v/c )
解:根据洛仑兹力变换公式:
x vt x' , 2 1(v/c)
t vx/ c t' 2 1 (v / c)
2
x vt x vt 2 2 1 1 可得: x '2 , x ' 1 2 2 1 ( v / c ) 1( v/c )
在 K 系,两事件同时发生,t1=t2 则 x x 2 1 x '2 x ' , 1 2 1 ( v /c )
1.宇宙飞船相对于地面以速度 v 作匀速直 线飞行,某一时刻飞船头部的宇航员向飞 船尾部发出一个光讯号,经过 Dt (飞船 上的钟)时间后,被尾部的接收器收到, 则由此可知飞船的固有长度为 ( A )c D t ( B )v D t
( C ) c D t 1 v / c c D t (D ) 2 1 v/c
8.观察者甲、乙,分别静止在惯性系 S、 S’ 中, S’ 相对 S 以 u 运动, S’ 中一个固 定光源发出一束光与 u 同向 (1)乙测得光速为 c . (2)甲测得光速为 c+u; (3)甲测得光速为 cu ; (4)甲测得光相对于乙的速度为 cu。 正确的答案是: (A) (1),(2),(3); (B) (1),(4) (C) (2),(3); (D) (1),(3),(4) [ B ]

相对论习题及答案解析

相对论习题及答案解析
2 2 ⎧ ⎪ ∆x = 1 − (u / c ) ∆x ′ = l 0 1 − (u / c ) cos θ ′ ⎨ ⎪ ⎩∆y = ∆y ′ = l0 sin θ ′
在 K 系中细杆的长度为
l = ∆x 2 + ∆y 2 = l0 1 − (u / c ) cos 2 θ ′ + si n 2 θ ′ = l0 1 − (u cos θ ′ / c )
(A) α > 45° ; (B) α < 45° ; (C) α = 45° ; (D) 若 u 沿 X ′ 轴正向,则 α > 45° ;若 u 沿 X ′ 轴反向,则 α < 45° 。 答案:A 4.电子的动能为 0.25MeV ,则它增加的质量约为静止质量的? (A) 0.1 倍 答案:D 5. E k 是粒子的动能, p 是它的动量,那么粒子的静能 m0 c 等于 (A) ( p c − E k ) / 2 Ek
13. 静止质量为 9.1 × 10 −31 kg 的电子具有 5 倍于它的静能的总能量,试求它的动量和速率。 [提示:电子的静能为 E0 = 0.511 MeV ] 解:由总能量公式
夹角 θ 。 解:光线的速度在 K ′ 系中两个速度坐标上的投影分别为
⎧V x′ = c cos θ ′ ⎨ ′ ⎩V y = c sin θ ′
由速度变换关系
Vx =
u + Vx′ , Vx′ ⋅ u 1+ 2 c
V y′ 1 − Vy =
1+
u2 c2
u V x′ c2
则在 K 系中速度的两个投影分别为
7.论证以下结论:在某个惯性系中有两个事件同时发生在不同的地点,在有相对运动的其他
惯性系中,这两个事件一定不同时发生 。 证明:令在某个惯性系中两事件满足

7-练习册-第十四章 相对论

第十四章 相对论§14-1相对论运动学【基本内容】一、洛仑兹变换1、伽利略变换和经典力学时空观(1)力学相对性原理:一切惯性系,对力学定律都是等价的。

理解:该原理仅指出:力学定律在一切惯性系中,具有完全相同的形式。

对其它运动形式(电磁运动、光的运动)并未说明。

(2)伽利略变换分别在两惯性系S 和S '系中对同一质点的运动状态进行观察,P 点的坐标为::(,,),:(,,)S x y z S x y z ''''S 系中:S '系中x x ut t t ''=+'=x x utt t'=-'=上式S 与S '的坐标变换关系叫伽利略坐标变换。

(3)经典力学时空观在伽利略变换下:(1)时间间隔是不变量t t '∆=∆。

(2)空间间隔是不变量r r '∆=∆。

在任何惯性系中,测量同一事件发生的时间间隔和空间间隔,测量结果相同。

经典力学时空观:时间和空间是彼此独立,互不相关,且独立于物质的运动之外的东西。

2、洛仑兹变换 (1)爱因斯坦假设相对性原理:物理学定律与惯性系的选择无关,一切惯性系都是等价的。

光速不变原理:一切惯性系中,真空中的光速都是c 。

(2)洛仑兹变换在两惯性系S 和S '系中,观察同一事件的时空坐标分别为::(,,,),:(,,,)S x y z t S x y z t '''''洛仑兹逆变换:洛仑兹正变换2()()x x ut u t t x cγγ''=+''=+2()()x x ut u t t x cγγ'=-'=-其中1/γ=u =二、狭义相对论的时空观 1、一般讨论设有两事件A 和B ,其发生的时间和地点为:S 系中观测:S '系中观测:(,)A A A t x(,)B B B t x(,)A AA t x '' (,)BB B t x '' 时间间隔:B A t t t ∆=-BAt t t '''∆=- 空间间隔:B A x x x ∆=-BAx x x '''∆=- 目的:寻求t ∆与t '∆和x ∆与x '∆的关系。

《大学物理》期末复习 第十四章 相对论

第十四章相对论在第一册中讲过的牛顿力学,只适用于宏观物体低速运动,高速运动的物体则使用相对论力学。

相对论内的理论)般参照系包括引力场在广义相对论(推广到一性参照系的理论)狭义相对论(局限于惯本章只介绍狭义相对论§14-1伽利略变换式牛顿绝对时空观一、力学相对性原理力学定律在一切惯性系中数学形式不变理解:体现对称性思想——对于描述力学规律而言,一切惯性系彼此等价。

在一个惯性系中所做的任何力学实验,都不能判断该惯性系相对于其它惯性系的运动。

二、伽利略变换概念介绍:事件:是在空间某一点和时间某一时刻发生的某一现象(例如:两粒子相撞)。

事件描述:发生地点和发生时刻来描述,即一个事件用四个坐标来表示)(t,z,y,x如图所示,有两个惯性系S,'S,相应坐标轴平行,'S相对S以v沿'x正向匀速运动,0=='tt时,O与'O重合。

现在考虑p点发生的一个事件:⎩⎨⎧)时空坐标为(系观察者测出这一事件)时空坐标为(系观察者测出这一事件'''''t ,z ,y ,x S t ,z ,y ,x S按经典力学观点,可得到两组坐标关系为⎪⎪⎩⎪⎪⎨⎧===-=t t z z y y vt x x '''' 或 ⎪⎪⎩⎪⎪⎨⎧===+=''''t t z z y y vtx x (14-1)式(14-1)是伽利略变换及逆变换公式。

三、绝对时空观1、时间间隔的绝对性设有二事件1P ,2P ,在S 系中测得发生时刻分别为1t ,2t ;在'S 系中测得发生时刻分别为't 1,'t 2。

在S系中测得两事件发生时间间隔为12t t t -=∆,在'S 系测得两事件发生的时间间隔为'''tt t 12-=∆。

11t t '=,22t t '=,∴t t '∆∆=。

大学物理 马文蔚 第五版 下册 第十四章 课后答案

第十四章 相 对 论14 -1 下列说法中(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s -1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).14 -2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx ,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δx =0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δx ≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δx ′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.14 -3 有一细棒固定在S′系中,它与Ox ′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S 系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).14 -4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A) 21v v +L (B) 12v -v L (C) 2v L (D) ()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C). 讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.14 -5 设S′系以速率v =0.60c 相对于S系沿xx′轴运动,且在t =t ′=0时,x =x ′=0.(1)若有一事件,在S系中发生于t =2.0×10-7s,x =50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,x =10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x ,y ,z ,t )表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为 s 1025.1/1721211-⨯=--='c x c t t 2v v (2) 同理,第二个事件发生的时刻为s 105.3/1722222-⨯=--='c x c t t 2v v 所以,在S′系中两事件的时间间隔为s 1025.2Δ712-⨯='-'='t t t 14 -6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8 s ,x ′=60m ,y ′=0,z ′=0处若S′系相对于S 系以速率v =0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 m 93/12=-'+'=c t x x 2v vy =y′=0z =z′=0s 105.2/1722-⨯=-'+'=c x c t t 2v v 14 -7 一列火车长0.30km(火车上观察者测得),以100km·h -1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx ′=x ′2 -x ′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1)()()21221212/1cx x c t t t t 2v v ----='-' (2) 将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论, 运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为()s 26.91412212-⨯-='-'='-'x x ct t v 负号说明火车上的观察者测得闪电先击中车头x ′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1 相同的结果.相比之下解1 较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一已知条件.14 -8 在惯性系S中,某事件A 发生在x 1处,经过2.0 ×10-6s后,另一事件B 发生在x 2处,已知x 2-x 1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S 系沿x 轴正向运动,因在S 系中两事件的时空坐标已知,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即x ′2-x ′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果. 解 (1) 令x ′2-x ′1=0,由式(1)可得c t t x 50.0s m 1050.11-8121=⋅⨯=--=2x v (2) 将v 值代入式(2),可得()()()s 1073.1/1/162122121212-⨯=--=----='-'c t t c x x t t t t 222v v c v这表明在S′系中事件A 先发生.14 -9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析 设对撞机为S系,沿x 轴正向飞行的正电子为S′系.S′系相对S系的速度v =0.90c ,则另一电子相对S系速度u x =-0.90c ,该电子相对S′系(即沿x 轴正向飞行的电子)的速度u′x 即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解 按分析中所选参考系,电子相对S′系的速度为c u cu u u x x x x 994.012-=-'-='v 式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行.讨论 若按照伽利略速度变换,它们之间的相对速度为多少?14 -10 设想有一粒子以0.050c 的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c ,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析 这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v =0.050c .题中所给的电子速率是电子相对衰变粒子的速率,故u′x =0.80c . 解 根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为c u cu u x x x 817.012='-+'=v v 14 -11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1 i .同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0×108m·s-1 i .问:(1) 此火箭相对宇航飞船的速度为多少? (2) 如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少? 请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.分析 该题仍是相对论速度变换问题.(2)中用激光束来替代火箭,其区别在于激光束是以光速c 相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.解 设宇航飞船为S系, 航天器为S′系, 则S′系相对S系的速度v =1.2 ×108m·s-1 ,空间火箭相对航天器的速度为u ′x =1.0×108m·s-1,激光束相对航天器的速度为光速c .由洛伦兹变换可得:(1) 空间火箭相对S 系的速度为 1-82s m 1094.11⋅⨯='++'=x x x u cu u v v (2) 激光束相对S 系的速度为 c c c c u x =++=21v v 即激光束相对宇航飞船的速度仍为光速c ,这是光速不变原理所预料的.如用伽利略变换,则有u x =c +v >c .这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.14 -12 以速度v 沿x 方向运动的粒子,在y 方向上发射一光子,求地面观察者所测得光子的速度.分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u 的分量u x 、u y 和u z ,然后才能求u 的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u ′x =0,u ′y =c ,u ′z =0. 解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为v v v ='++'=x x x u cu u 21 222/11/1c c u cc u u x y y 22v v v -='+-'= 0=z u所以,光子相对S系速度u 的大小为c u u u u z y x =++=222速度u 与x 轴的夹角为vv 22arctan arctan -==c u u θx y讨论 地面观察者所测得光子的速度仍为c ,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.14 -13 设想地球上有一观察者测得一宇宙飞船以0.60c 的速率向东飞行,5.0s后该飞船将与一个以0.80c 的速率向西飞行的彗星相碰撞.试问:(1) 飞船中的人测得彗星将以多大的速率向它运动? (2) 从飞船中的钟来看,还有多少时间允许它离开航线,以避免与彗星碰撞?分析 (1) 这是一个相对论速度变换问题.取地球为S系,飞船为S′系,向东为x 轴正向.则S′系相对S系的速度v =0.60c ,彗星相对S系的速度u x =-0.80c ,由洛伦兹速度变换可得所求结果.(2) 可从下面两个角度考虑:a.以地球为S系,飞船为S′系.设x 0=x′0 =0 时t 0=t′0=0,飞船与彗星相碰这一事件在S系中的时空坐标为t =5.0s,x =vt .利用洛伦兹时空变换式可求出t′,则Δt′=t′-t′0表示飞船与彗星相碰所经历的时间.b.把t 0=t′0=0 时的飞船状态视为一个事件,把飞船与彗星相碰视为第二个事件.这两个事件都发生在S′系中的同一地点(即飞船上),飞船上的观察者测得这两个事件的时间间隔Δt′为固有时,而地面观察者所测得上述两事件的时间间隔Δt =5.0s比固有时要长,根据时间延缓效应可求出Δt′.解 (1) 由洛伦兹速度变换得彗星相对S′系的速度为 c u cu u x x x 946.012-=--'='v v 即彗星以0.946c 的速率向飞船靠近. (2) 飞船与彗星相碰这一事件在S′系中的时刻为s 0.4/122=--'='c c t t 2v vx即在飞船上看,飞船与彗星相碰发生在时刻t′=4.0s.也可以根据时间延缓效应s 0.5/1ΔΔ2=-'=c t t 2v ,解得Δt′=4.0 s,即从飞船上的钟来看,尚有4.0 s 时间允许它离开原来的航线.14 -14 在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S′中观察到这两个事件的时间间隔为6.0 s ,试问从S′系测量到这两个事件的空间间隔是多少? 设S′系以恒定速率相对S系沿xx′轴运动.分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S 系的运动速度v ,进而得到两事件在S′系中的空间间隔Δx′=vΔt′(由洛伦兹时空变换同样可得到此结果).解 由题意知在S系中的时间间隔为固有的,即Δt =4.0s,而Δt′=6.0 s.根据时间延缓效应的关系式2/1ΔΔc tt 2v -=',可得S′系相对S系的速度为c c t t 35ΔΔ12/12=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛'-=v 两事件在S′系中的空间间隔为 m 1034.1ΔΔ9⨯='='t x v14 -15 在惯性系S 中, 有两个事件同时发生在xx′轴上相距为1.0×103m 的两处,从惯性系S′观测到这两个事件相距为2.0×103m ,试问由S′系测得此两事件的时间间隔为多少? 分析 这是同时不同地的两事件之间的时空转换问题.由于本题未给出S′系相对S 系的速度v ,故可由不同参考系中两事件空间间隔之间的关系求得v ,再由两事件时间间隔的关系求出两事件在S′系中的时间间隔.解 设此两事件在S 系中的时空坐标为(x 1 ,0,0,t 1 )和(x 2 ,0,0,t 2 ),且有x 2 -x 1 =1.0×103m , t 2 -t 1 =0.而在S′系中, 此两事件的时空坐标为(x′1 ,0,0,t′1 )和(x′2 ,0,0,t′2 ),且|x′2 -x′1| =2.0×103m ,根据洛伦兹变换,有 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)由式(1)可得()()c c x x x x 2312/1212212=⎥⎦⎤⎢⎣⎡'-'--=v 将v 值代入式(2),可得 s 1077.5612-⨯='-'t t 14 -16 有一固有长度为l0 的棒在S 系中沿x 轴放置,并以速率u 沿xx′轴运动.若有一S′系以速率v 相对S 系沿xx′轴运动,试问从S′系测得此棒的长度为多少?分析 当棒相对观察者(为S′系)存在相对运动时,观察者测得棒的长度要比棒的固有长度l 0短,即220/1c u l l '-=.式中u′是棒相对观察者的速度,而不要误认为一定是S′系和S 系之间的相对速度v .在本题中,棒并非静止于S系,因而S′系与S 系之间的相对速度v 并不是棒与S′系之间的相对速度u′.所以本题应首先根据洛伦兹速度变换式求u ′,再代入长度收缩公式求l .解 根据分析,有21cu u uv v --=' (1) 220/1c u l l '-= (2)解上述两式,可得()()[]2/1222202v v ---=c u c u c l l14 -17 若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少? (以光速c 表示)解 设宇宙飞船的固有长度为l 0 ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为2/0l ,根据洛伦兹长度收缩公式,有200/12/c l l 2v -=可解得v =0.866c14 -18 一固有长度为4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?解 由洛伦兹长度收缩公式m 2.3/120=-=c l l 2v*14 -19 设一宇航飞船以a =9.8 m·s-2 的恒加速度,沿地球径向背离地球而去,试估计由于谱线的红移,经多少时间,飞船的宇航员用肉眼观察不到地球上的霓虹灯发出的红色信号.分析 霓虹灯发出的红色信号所对应的红光波长范围一般为620nm ~760 nm ,当飞船远离地球而去时,由光的多普勒效应可知,宇航员肉眼观察到的信号频率ν <ν0 ,即λ>λ0 ,其中ν0 和λ0 为霓虹灯的发光频率和波长.很显然,当λ0=620 nm ,而对应的红限波长λ=760 nm 时,霓虹灯发出的红色信号,其波长刚好全部进入非可见光范围,即宇航员用肉眼观察不到红色信号.因此,将上述波长的临界值代入多普勒频移公式,即可求得宇航员观察不到红色信号时飞船的最小速率v ,再由运动学关系,可求得飞船到达此速率所需的时间t .解 当光源和观察者背向运动时,由光的多普勒效应频率公式 2/10⎪⎭⎫ ⎝⎛+-=v v v v c c得波长公式 2/10⎪⎭⎫ ⎝⎛-+=v v c c λλ式中v 为飞船相对地球的速率.令λ0 =620 nm ,λ=760 nm ,得宇航员用肉眼观察不到地球上红色信号时飞船的最小速率为1-8202202s m 1060.0⋅⨯=+-=λλλλv 飞船达此速率所需的时间为a 0.20s 101.66≈⨯==at v 14 -20 若一电子的总能量为5.0MeV ,求该电子的静能、动能、动量和速率. 分析 粒子静能E 0 是指粒子在相对静止的参考系中的能量,200c m E =,式中为粒子在相对静止的参考系中的质量.就确定粒子来说,E 0 和m 0均为常数(对于电子,有m 0 =9.1 ×10-31kg,E 0=0.512 MeV).本题中由于电子总能量E >E 0 ,因此,该电子相对观察者所在的参考系还应具有动能,也就具有相应的动量和速率.由相对论动能定义、动量与能量关系式以及质能关系式,即可解出结果.解 电子静能为 MeV 512.0200==c m E电子动能为 E K =E -E 0 =4.488 MeV由20222E c p E +=,得电子动量为 ()1-212/1202s m kg 1066.21⋅⋅⨯=-=-E E c p 由2/12201-⎪⎪⎭⎫ ⎝⎛-=c E E v 可得电子速率为c E E E c 995.02/12202=⎪⎪⎭⎫ ⎝⎛-=v14 -21 一被加速器加速的电子,其能量为3.00 ×109eV.试问:(1) 这个电子的质量是其静质量的多少倍? (2) 这个电子的速率为多少?解 (1) 由相对论质能关系2mc E =和200c m E =可得电子的动质量m 与静质量m 0之比为 320001086.5⨯===cm E E E m m (2) 由相对论质速关系式2/12201-⎪⎪⎭⎫ ⎝⎛-=c m m v 可解得c c m m 999999985.012/120=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-v可见此时的电子速率已十分接近光速了. 14 -22 在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射.假定正负电子在湮没前均静止,由此估算辐射的总能量E .分析 在相对论中,粒子的相互作用过程仍满足能量守恒定律,因此辐射总能量应等于电子偶湮没前两电子总能之和.按题意电子偶湮没前的总能只是它们的静能之和.解 由分析可知,辐射总能量为MeV 1.02J 1064.121320=⨯==-c m E14 -23 若把能量0.50 ×106 eV 给予电子,让电子垂直于磁场运动,其运动径迹是半径为2.0cm 的圆.问:(1) 该磁场的磁感强度B 有多大? (2) 这电子的动质量为静质量的多少倍?分析 (1) 电子在匀强磁场中作匀速圆周运动时,其向心力为洛伦兹力F =evB ,在轨道半径R 确定时,B =B (p ),即磁感强度是电子动量的函数.又由相对论的动能公式和动量与能量的关系可知电子动量p =p (E 0 ,E K ),题中给予电子的能量即电子的动能E K ,在电子静能20c m E =已知的情况下,由上述关系可解得结果.(2) 由相对论的质能关系可得动质量和静质量之比.本题中电子的动能E K =0.50 MeV 与静能E 0=0.512 MeV 接近,已不能用经典力学的方法计算电子的动量或速度,而必须用相对论力学.事实上当E K =0.50 E 0 时,用经典力学处理已出现不可忽略的误差.解 (1) 根据分析,有E =E 0 +E K (1)22202c p E E += (2)Rv m vB 2=e (3) 联立求解上述三式,可得eRcE E E B k k 002+=(2) 由相对论质能关系,可得 98.11000=+==E E E E m m k 本题也可以先求得电子速率v 和电子动质量m ,但求解过程较繁.14 -24 如果将电子由静止加速到速率为0.10c ,需对它作多少功? 如将电子由速率为0.80c 加速到0.90c ,又需对它作多少功?分析 在相对论力学中,动能定理仍然成立,即12ΔΔk k k E E E W -==,但需注意动能E K 不能用2v m 21表示. 解 由相对论性的动能表达式和质速关系可得当电子速率从v1 增加到v2时,电子动能的增量为()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---=-=--2/1222/12220202120221211ΔΔc c c m c m c m c m c m E E E k k k v v根据动能定理,当v 1 =0,v 2 =0.10c 时,外力所作的功为eV 1058.2Δ3⨯==k E W当v 1 =0.80 c ,v 2=0.90 c 时,外力所作的功为eV 1021.3Δ5⨯='='kE W 由计算结果可知,虽然同样将速率提高0.1 c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大.。

相对论答案

• • 解:(1)该观测站测得的飞船长度 通过观测站的时间
v L L0 1 54m c
2
Hale Waihona Puke L t 2.25 10 7 s v

(2)该过程对宇航员来说,是观测站以v的速度通过 L0
t
• 也可利用时钟延缓效应
L0 3.75 10 7 s v
t
二、填空题 • 1. 某加速器将电子加速到能量E = 2×106 eV时,该电 EK 1._____eV 49106 子的动能___ . • (电子的静止质量me = 9.11×10-31 kg, 1 eV =1.60×10-19 J) • 2. 以速度v相对于地球作匀速直线运动的恒星所发射的 C 光子,其相对于地球的速度的大小为_____ • 3. 观察者甲以 0.8c的速度(c为真空中光速)相对于静 止的观察者乙运动,若甲携带一质量为1 kg的物体,则 (1) 甲测得此物体的总能量为____________; (2) 乙测得此物体的总能量为___ _________. • 4. 已知一静止质量为m0的粒子,其固有寿命为实验室 测量到的寿命的1/n,则此粒子的动能是 __________________. • 5. 一观察者测得一沿米尺长度方向匀速运动着的米尺的 长度为 0.5 m.则此米尺以速度v =___ _______m· s-1 接近观察者.
2 2 2
0.0805
4 • 8. 观察者甲以 c的速度(c为真空中光速)相对于静止的观察者乙 5
运动,若甲携带一长度为l、截面积为S,质量为m的棒,这根棒安放 m 在运动方向上,则 • (1) 甲测得此棒的密度为 lS ; • (2) 乙测得此棒的密度为 25m
9lS
三、计算题 1.一艘宇宙飞船的船身固有长度L0=90m,相对于地面以v=0.8c(c为真 空中的光速)的匀速度在一观察站的上空飞过。问: (1)观察站测得飞船的船身通过观察站的时间间隔是多少? (2)宇航员测得船身通过观察站的时间间隔是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§14.1 ~14. 3
14.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为
t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x c
t (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】
(A )0.67c (B )1.34c (C )0.92c (D )c
分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为
动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v c
v v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值)
,根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】
(A )221c u
/)ut x (x −−=′; (B )22
1c
u
/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有22
11c
v −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

此题的迷惑性在于(B ),因为S '和S 系的选取是相对的,只是习惯上将动系选为S ',仅仅是字母符号的不同。

14.5 设想从某一惯性系K 系的坐标原点O 沿X 方向发射一光波,在K 系中测得光速u x =c ,则光对另一个惯性系K'系的速度u'x 应为【D 】
(A )c 32; (B )c 54; (C )c 3
1; (D )c 分析:光速不变原理
14.6 某地发生两个事件,静止于该地的甲测得时间相隔为4s ,若相对于甲作匀速直线运动的乙测得此两事件时间间隔为5s ,求:(1)乙相对甲的运动速度;(2)乙测得两事件空间距离是多少?
解:设甲所在惯性系为S 系,乙所在惯性系为S′系,则固有时间Δt=4s ,Δt′=5s
(1) 根据“动钟变慢”公式:c .v ,)c v (t
t 6012
=⇒−∆=′∆
(2) 乙测得两事件空间距离m t v L 8109×=′∆=′
§14.4 ~14. 5
14.7 在狭义相对论中,下列几种说法中正确的是:
【C 】 (1)一切运动物体相对于观察者的速度都不能大于真空中的光速;
(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的;
(3)在一个惯性系中同一时刻的两个事件,在其他一切惯性系中也是同时发生的;
(4)在某一个惯性系中的观察者,观察一个相对于他做匀速直线运动的时钟时,会看到这个时钟比与他相对静止的相同的时钟走得慢些。

(A )(1)、(2)、(3); (B )(1)、(3)、(4);
(C )(1)、(2)、(4); (D )(1)、(2)、(3)、(4)。

分析:(1)由22
11c
v −=γ可知,v 不能大于c ,否则出现虚数。

(2)由狭义相对论的时空观、能量可知:质量、长度、时间的测量值都是相对的
(3)参看复习提纲P.14-P.15
(4)“动钟变慢”
14.8 电子的静止能量为MeV E 5.00=,根据相对论动力学,动能为MeV E k 25.0=的电子,其运动速度等于【C 】
(A )0.1c ; (B )0. 5c ; (C)0.75c ; (D)0.85c 。

分析:由相对论动能公式202k c m mc E −=可得:
MeV .E E c m E mc 7500k 20k 2=+=+=
14.9 把一个静止质量为m 0的粒子,由静止加速到c v 6.0=(c 为真空中的光速)需要做的功等于:【B 】
(A )0.18m 0c 2 ; (B )0. 25 m 0c 2; (C)0.36 m 0c 2 ; (D)1.25 m 0c 2。

分析:由动能定理可知:外力所做的功大小等于粒子动能的改变量。

根据狭义相对论动能公式202k c m mc E −=,静止时粒子的动能为0(因为m=m 0),加速后动能增量为
20k c )m m (E −=∆,代入相对论质量公式201β
−=m m ,v =β,可得答案B 。

14.10一物体由于运动速度的加快而使其质量增加了10%,则此物体在其运动方向上的长度缩短了:【D 】
(A )10%; (B )90%; (C )
1110 ; (D )111。

分析:相对论质量公式20
1β−=m m ,一物体由于运动速度的加快而使其质量增加了
10111-200.m m m =−−=β,得到11112
.=−β。

根据动尺缩短公式111020.l l l =−=β,于是长度缩短了
1111111-00=−=.l l l 。

14.11 μ子是1936年由安德森(C. D. Anderson )等人在宇宙线中发现的一种不稳定的粒子,可自发衰变为一个电子和两个中微子,已知静止μ子的平均寿命是s 61015.2−×。

设来自太空的宇宙射线在离地面6000m 的高空产生相对地球运动速率为v=0.995c ( c 为真空中的光速)的μ子,试分别用时间延缓和长度收缩效应分析μ子在衰变前能否到达地面?
解:设地面为S 系,μ子所在参考系为S′系。

(1)时间延迟法:S 系里测得μ子的平均寿命为s (52620)
1015299501101521−−×=−×=−=βττ,
在该时间内μ子运动的距离为m m c v L 60006420995.01015.25>=××==−τ,所以μ子能到达地面。

参看复习提纲P.33例3。

(2)长度收缩法:S′系里测得μ子到地面的距离m .l l 5999950160001220=−×=−=β则在S′系里测得μ子到达地面的时间s .s c
.v l 66101521029950599−−×=<×≈==
ττ,故在衰变前也能到达地面。

14.12若一电子的总能量为5.0MeV ,求该电子的静能、动能、动量和速率。

解: 电子静质量m 0=9.11×10-31 kg ,电子静能Mev ...c m E 51201061103101191928312
00≈××××==−−)(,其中1 eV = 1.6×10-19 J ;于是动能Mev ...E E E k 48845120050=−=−=;由22202c p E E +=得:动量s m kg c E E P /1066.2212202⋅×=−=−;因v c v
m mv P 220
1−==,可得v=0.995c 。

相关文档
最新文档