大学物理相对论练习题
大学物理:练习-相对论例题

O
O' O'
O'
S
S' S'
S'
x
蓝色:飞船路径;红色:光的路径
(1) 地球惯性系 S : 发、收光信号两事件时间间隔
t t 40 50s 1 (u / c)2 1 (3/ 5)2
(2) 在米尺参考系中,观察者掠过米尺的时间为
t
l u
1 0.6 3 108
5.55109s
在观察者参考系中,观察者不动,测出固有时
t t 1 u2 / c2 5.56109 1 0.62 4.44109s
例 飞船以速度 u = 3c/5 飞离地球,它发射一个无线 电信号,经地球反射, 40s 后飞船才收到返回信号。飞船 发射信号时、 信号被地球反射时、飞船接收到信号 时,分别从地球、飞船上测量,飞船离地球有多远?
u 0.99 3108
事件1
S系 (x1,0,0,t1)
S’系 (x’1,0,0,t’1)
事件2
(x2,0,0,t2)
(x’2,0,0,t’2)
其中: x1=0,x2=106m,t1=t2
则
t'2
t'1
(t2
t
1)
u c2
(
x2
1 u2 /
x1 c2
)
9 103 (3 108 )2
返
S
S
S
S'
x'
各 需
8c
时
20c
20
大学物理相对论练习题及答案

大学物理相对论练习题及答案一、选择题1. 相对论的基本假设是:A. 电磁场是有质量的B. 速度光速不变C. 空间和时间是绝对的D. 物体的质量是不变的答案:B2. 相对论中,当物体的速度接近光速时,它的质量会:A. 减小B. 增大C. 不变D. 可能增大或减小答案:B3. 太阳半径为6.96×10^8米,光速为3×10^8米/秒。
如果一个人以0.99光速的速度环绕太阳一圈,他大约需要多长时间(取π≈3.14):A. 37分钟B. 1小时24分钟C. 8小时10分钟D. 24小时答案:B4. 相对论中的洛伦兹收缩效应指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:B5. 相对论中的时间膨胀指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:A二、填空题1. 物体的质量与运动速度之间的关系可以用___公式来表示。
答案:爱因斯坦的质能方程 E=mc^2.2. 相对论中,时间膨胀和洛伦兹收缩的效应与___有关。
答案:物体的运动速度.3. 光速在真空中的数值约为___,通常记作c。
答案:3×10^8米/秒.4. 相对论中,当物体的速度超过光速时,其相对质量会无限___。
答案:增大.5. 狭义相对论是由___发展起来的。
答案:爱因斯坦.三、简答题1. 请简要解释狭义相对论的基本原理及其对物理学的影响。
狭义相对论的基本原理是光速不变原理,即光速在任何参考系中都保持不变。
它推翻了经典牛顿力学中对于时间和空间的绝对性假设,提出了时间膨胀和洛伦兹收缩的效应。
狭义相对论在物理学中的影响非常深远,它解释了电磁现象、粒子物理现象等方面的问题,为后续的广义相对论和量子力学提供了理论基础。
2. 请解释相对论中的时间膨胀和洛伦兹收缩效应。
时间膨胀效应指的是当物体具有运动速度时,其所经历的时间相对于静止状态下的时间会变得更长。
大学物理 相对论量子论练习题答案

相对论、量子理论练习题解一.选择题1.D .2.D .3.A .4.B .5.A 6.B 7.A 8.A 二.填空题1. 光速不变,真空中的速度是一个常量,与参考系和光源的运动无关。
狭义相对性,物理规律在所有惯性系中具有相同的形式。
2. 同时,不同时。
3. 与物体相对静止的参考系中所测量的物体,本征长度最长,绝对。
4. 同一地点,本征时间最短。
5. 等效,弱,引力场同参考系相当的加速度等效;广义相对性原理;物理学规律对任何以加速度抵消掉该处引力场的惯性系都具有相同的形式。
6. 引力红移;雷达回波延迟 ; 水星近日点的进动,或光线在引力场中偏折。
7. 1.33X10-23 .8. 德布罗意波是概率波,波函数不表示实在物理量在空间的波动,其振幅无实在物理意义。
9. 自发辐射,受激辐射,受激辐射。
10. 受激辐射,粒子数反转分布,谐振腔。
11. 相位 ,(频率, 传播方向, 偏振态。
12. 能量,能量,动量。
三.小计算题 1.cv c v c v x t cv x c v t t 6.0541451145450's 4'11)''(22222222=∴⎪⎭⎫ ⎝⎛=-=-====∆=∆-=∆+∆=∆γγγγγcv l l c v l l c v l l 8.0531531.222202=∴⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛-=-光年光年c v c v v c v c v c v c v c v c v t c t v c v x x tcx t S 171616171616)1(1611641'1'164''.322222222222=∴=-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-∆=∆⎪⎭⎫⎝⎛-∆=∆∆==∆=∆光年原长年(原时)系32m 075.03.05.05.0m3.06.05.01=⨯⨯==⨯=⎪⎭⎫⎝⎛-=V c v l l 沿运动方向长度收缩5. MeV49.1eV 1049.11051.01000.2eV 1051.0J 102.81099.811091011.966620261415163120=⨯=⨯-⨯=-=⨯=⨯≈⨯=⨯⨯⨯=---c m mc E c m K6.c v c v c v c v c v c v c v c m c m mc E K 359413211123111211115.04111122222220202=∴=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=-=7.120201020102010202002201010011222)(221)4()3()4()()2()3()()1(ννννννννννννννννννννννν-=-=--=-=--=-+==-+=eU h h eU h eU h h eU h8.120201020102010202002201010011222)(221)4()3()4()()2()3()()1(ννννννννννννννννννννννν-=-=--=-=--=-+==-+=eU h h eU h eU h h eU h9.13)(44431212323212121020222022======v v nn v v n r r n r e r m e v r e r v m n n nn n n πεεππε10.aaa a a a aa 2122122145cos 16523cos12265=⋅-=⋅-==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ψππψ概率密度四、大计算题1. (1)对不同金属斜率相同。
大学物理相对论习题及解答共43页文档

46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁
大学物理相对论

14. 相对论班级 学号 姓名 成绩一、选择题1.⑴某惯性系中一观察者,测得两事件同时刻、同地点发生, 则在其它惯性系中,它们不同时发生。
⑵在惯性系中同时刻、不同地点发生的事件,在其它惯性系中必不同时发生;⑶在某惯性系中不同时、不同地发生的两事件,在其它惯性系中必不同时,而同地发生;⑷在不同惯性系中对同一物体的长度、体积、质量、寿命的测量结果都相同;⑸某惯性系中观察者将发现,相对他静止的时钟比相对他匀速运动的时钟走得快。
正确说法是:(A) ⑴、⑶、⑷、⑸; (B) ⑴、⑵、⑶; (C) ⑵、⑸; (D) ⑴、⑶。
( C )解:根据洛伦兹坐标变换式22222/1,/1c v x c v t t c v t v x x -∆-∆='∆-∆-∆='∆, (1)当0,0=∆=∆t x 时,应有0',0'=∆=∆t x ,错误。
(2)当0,0=∆≠∆t x 时,应有0',0'≠∆≠∆t x ,正确。
(3)当0,0≠∆≠∆t x 时,应有0',0'≠∆≠∆t x ,错误。
(4)长度、体积、质量、寿命的测量结果都具有相对性,相对于不同惯性系,错误。
(5)根据运动时钟延缓效应,相对观察者静止的时钟总比相对他匀速运动的时钟走得快,正确。
2.相对地球的速度为υ的一飞船,要到离地球为5光年的星球去。
若飞船上的宇航员测得该旅程为3光年,则υ应是: (A)c 21; (B) c 53; (C) c 109; (D) c 54。
( D ) 解:原长为l 0=5光年,运动长度为l =3光年,根据运动长度收缩公式l l =解得45c υ=。
3.坐标轴相互平行的两个惯性系S 、S′,S ′相对S 沿OX 轴正方向以 υ匀速运动,在S ′中有一根静止的刚性尺,测得它与OX ˊ轴成30º角,与OX 轴成45º角,则υ应为: (A) c 32; (B) c 31; (C) c 21)32(; (D) c 31)31(。
大学物理相对论习题及解答-精品文档

2
x vt x' 2 1(v/c)
t vx / c 1 1 (1 ) t1 ' 2 1(v/c) 2 t2 vx 2 /c t2 ' 2 1(v/c) 因两个事件在 K 系中同一点发生, t2 t 1 t ' t ' x x , 则 2 1 1 2 2 1 ( v/c )
解:根据洛仑兹力变换公式:
x vt x' , 2 1(v/c)
t vx/ c t' 2 1 (v / c)
2
x vt x vt 2 2 1 1 可得: x '2 , x ' 1 2 2 1 ( v / c ) 1( v/c )
在 K 系,两事件同时发生,t1=t2 则 x x 2 1 x '2 x ' , 1 2 1 ( v /c )
1.宇宙飞船相对于地面以速度 v 作匀速直 线飞行,某一时刻飞船头部的宇航员向飞 船尾部发出一个光讯号,经过 Dt (飞船 上的钟)时间后,被尾部的接收器收到, 则由此可知飞船的固有长度为 ( A )c D t ( B )v D t
( C ) c D t 1 v / c c D t (D ) 2 1 v/c
8.观察者甲、乙,分别静止在惯性系 S、 S’ 中, S’ 相对 S 以 u 运动, S’ 中一个固 定光源发出一束光与 u 同向 (1)乙测得光速为 c . (2)甲测得光速为 c+u; (3)甲测得光速为 cu ; (4)甲测得光相对于乙的速度为 cu。 正确的答案是: (A) (1),(2),(3); (B) (1),(4) (C) (2),(3); (D) (1),(3),(4) [ B ]
大学物理练习题 相对论力学基础

练习二十 相对论力学基础一、选择题1. 一匀质矩形薄板,当它静止时,测得其长度为a ,宽度为b ,质量为m 0。
由此可算出其质量面密度为 σ = m 0/(ab )。
假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此种情况下,测算该薄板的质量面密度为 (A ) ()[]2201c v ab m −。
(B ) ⎟⎠⎞⎜⎝⎛−2201c v ab m 。
(C ) ()⎥⎦⎤⎢⎣⎡−232201c v ab m 。
(D ) ()ab c v m 2201−。
2. 一个电子的运动速度v =0.99c ,它的动能是(A ) 3.5MeV 。
(B ) 4.0MeV 。
(C ) 3.1MeV 。
(D ) 2.5MeV 。
3. 某核电站年发电量为100亿度,它等于3.6×1016J 。
如果这些能量是由核材料的全部静止能转化产生的,则需要消耗的核材料的质量为 (A ) 0.4kg 。
(B ) 0.8kg 。
(C ) 12×107kg 。
(D ) (1/12)×107kg 。
4. 把一个静止质量为m 0的粒子,由静止加速到v =0.6c (c 为真空中的光速)需做功为 (A ) 0.18m 0c 2。
(B ) 0.25m 0c 2。
(C ) 0.36m 0c 2。
(D ) 1.25m 0c 2。
5. 在惯性系S 中一粒子具有动量(p x , p y , p z )=(5,3,2)MeV /c ,总能量E =10 MeV (c 为真空中的光速),则在S 系中测得粒子的速度v 最接近于 (A ) 3c /8。
(B ) 2c /5。
(C ) 3c /5。
(D ) 4c /5。
6. 圆柱形均匀棒静止时的密度为ρ0,当它以速率u 沿其长度方向运动时,测得它的密度为ρ,则两测量结果的比ρ:ρ0是 (A )221c u −。
(B )2211c u −。
(C )221c u −。
大学物理相对论例题

一、选择题1.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲作匀速直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)[ ]A 、(4/5)cB 、(3/5)cC 、(1/5)cD 、(2/5)c2.一宇宙飞船相对地球以 0.8c(c表示真空中光速)的速度飞行.一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为 90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为[ ]A 、90mB 、54mC 、270mD 、150m3.K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿OX轴正方向匀速运动.一根刚性尺静止在K'系中,与O'X'轴成 30°角.今在K系中观测得该尺与OX轴成 45°角,则K'系相对于K系的速度是[ ]A 、(2/3)cB 、(1/3)cC D4.某宇宙飞船以0.8c 的速度离开地球,若地球上接收到它发出的两个信号之间的时间间隔为10s ,则宇航员测出的相应的时间间隔为[ ]A 、6sB 、8sC 、10sD 、3.33s5.一个电子的运动速度为v =0.99c ,则该电子的动能k E 等于(电子的静止能量为0.51MeV )[ ]A 、3.5MeVB 、4.0MeVC 、3.1MeVD 、2.5MeV6.宇宙飞船以速度v 相对地面作匀速直线飞行,某一时刻,飞船头部的宇航员想飞船尾部发出一光讯号,光速为c,经t ∆时间(飞船上的钟测量)后,被尾部接收器收到,由此可知飞船固有长度为[ ]A 、c t ∆B 、v t ∆C 、c t ∆ [1-(v/c)2]1/2D 、c t ∆/[1-(v/c)2]1/2二、填空题1.惯性系S 和S ',S '相对S 的速率为0.6c ,在S 系中观测,一件事情发生在43210,510t s x m -=⨯=⨯处,则在S '系中观测,该事件发生在 处。
2.惯性系S 和S ',S '相对S 的速率为0.8c ,在S '系中观测,一事件发生在110,0t s x m ''==处,第二个事件发生在722510,120t s x m -''=⨯=-处,则在S 系中测得两事件的时空坐标为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结束 目录
飞船的飞行时间也可以这样求得:对于飞船 上的观察者来说,从地球出发及到达月球这两事 件都发生在飞船上,他所测得的时间为固有时间 τ0由时间膨胀公式可得:
τ
0
2 v 2 = Δ t 1 c 2 = 4.27 1 0.3 = 4.08s
结束 目录
5-6 在K系中观察到两个事件同时发生在 x 轴上,其间距离是1m,在K′系中观察这 两个事件之间的空间距离是2m,求在K′系 中这两个事件的时间间隔。
而根据咖利略速度变换 v = 0.8c 0.8c = 1.6c > c u´ x = ux
结束 目录
5-11 一原子核以0.5c 的速度离开一观察 者而运动。原子核在它运动方向上向前发射 一电子,该电子相对于核有0.8c 的速度;此 原子核又向后发射了一光子指向观察者。对 静止观察者来讲, (1)电子具有多大的速度; (2)光子具有多大的速度。
结束 目录
解:由已知条件可得π+介子衰变的固有 时间为: τ 0 = 2.6×10-8 s
(1)在实验室中观测到π+介子的寿命为: -8 2.6 × 10 τ -8 s 0 4.33 × 10 Δ t= = = 2 2 v 1 0.8 1 c2 (2)在实验室坐标系中观测到π+介子的飞 行距离为: L = vΔ t = 0.8×3.0×108×4.33×108 =10.4m
结束 目录
解:设观测者为K系,原子核为K′系。
电子在K′系中的速度为: u´ x = 0.8c K′系相对K系是速度为:
v = 0.5c
电子在K 系中的速度为:
u ´ 0.8 c 0.5 c x+ v + 0.93c ux = v u = = ´ 1+ 0.8× 0.5 1+ c 2 x 根据光速不便原理,光子的速度为 c 。
5-13 如一观察者测出电子质量为2m。, 问电子速度为多少?(m。为电子的静止质 量)
结束 目录
解:
2m 0 = m0 1 v2 c2
1 1 v2 c2 = 2 3 v = c = 0.866 c 2
结束 目录
5-14 某人测得一静止棒长为人质量为m, 于是求得此棒线密度为ρ=m/l 。假定此棒 以速度 v 在棒长方向上运动,此人再测棒的 线密度应为多少,若棒在垂直长度方向上运 动,它的线密度又为多少?
= 4.55×10-19 J
结束 目录
当电子的速度为v2=1.0×108 m/s时的动能 E k2 = m 2c 2 m 0c 2 = 1 =( 1 v2 c2 =
1 1 ( 2.0 )2 3.0
m 0c 2
1 v2 c2
结束 目录
5-12 一光源在K′坐标系的原点0 ″ 发出一光线。光线在 x′y′平面内与x′ 轴的交角为θ′。设 K′相对K以速度 u 沿 x 轴运动。试求在 K 坐标中看到这 光线的传播方向。
结束 目录
解:设该一光线在K系 x 轴的交角为θ。 光子在K′系中的速度为: u´ uy u´ ´ = c sinq ´ x = c cosq ´ z =0 在K 系中观察 u v ´ ´ c cos q x +v + ux = v = u v ´ u ´ x x 1+ c 2 1+ c 2 u´ y c sinq ´ 1 v 2 c 2 uy = = v u v u´ ´ x g (1+ 2 x ) 1+ c 2 c 2 2 u y sin ´ c v c 1 q tg q = ux = c cosq ´+ v 结束 目录
结束 目录
解:设 K′系相对于K 系以速度v 沿x 轴正 向运动,K系中观测到两事件同时发生Δt =0, 空间间隔Δx =1m;K′系中观测到这两事 件发生的时间间隔为Δt′,空间间隔Δx′ =2m。 v t Δ x Δ Δ x ´= 2 v 1 c2 Δt =0 解得: v= 3 c 2 2 1 Δx v = 1 2 = 2 c Δ x´
结束 目录
v t Δ Δt 2 c Δ t ´= = 2 (0 2 v 1 c2 -8s 0.577 × 10 = ´
3 c ×1) 2 c2
所以在K′系中观测两事件相隔0.577×10-8s
发生。若K′系相对于K系沿 x 轴负向运动, 则 v = 3c ,Δt′= 0.577×10-8 s 2
结束 目录
天 航 国 中 天 航 国 中
飞船A在K′系中的速度为
8 2.0×108 u v 2.5 × 10 x u´ x = v ux = 8×2.0×108 2.5 × 10 1 c2 1 9.0×1016 8 m/s 1.125 × 10 =
结束 目录
5-10 二只宇宙飞船相对某遥远的恒星以 0.8c 的速率向相反方向移开。试用速度变换 法则证明,二飞船的相对速度是1.6c/1.64, 并与们利略变换所得的结果进行比较。
结束 目录
解:固定在此星上的参照系测得的闪光 周期为固有时间τ 0 时间Δ t =5既包括地球上测得的闪光周期 τ ,还包括光信号传递的时间vτ /c ,即: Δt v τ τ = v Δ t= c + τ (1 + c ) 2 2 Δt v v τ 0= τ 1 c2 = v 1 c2 (1 + c ) 5 2 5 = 1 0.8 = 1+0.8 3 在此星上测得的闪光周期为5/3昼夜 结束 目录
5-5 假设宇宙飞船从地球射出,沿直线 到达月球,距离是3.84×108m,它的速率 在地球上被量得为0.30c。根据地球上的时 钟,这次旅行花多长时间?根据宇宙飞船所 做的测量,地球和月球的距离是多少?怎样 根据这个算得的距离,求出宇宙飞船上时钟 所读出的旅行时间?
结束 目录
解:设地球至月球的距离为H0,飞船的速度为v,地 球上的观察者测得飞船从地球到月球的时间为Δt
结束 目录
5-15 设有一静止质量为 m0 、带电荷量 为 q 的粒子,其初速为零,在均匀电场E 中 加速,在时刻 t 时它所获得的速度是多少? 如果不考虑相对论效应,它的速度又是多少? 这两个速度间有什么关系?讨论之。
结束 目录
解:
Eq t = m v = E q t =
2 2 2 2
m 0v 1 v2 c2 2 m2 v 0
天 航 国 中 天 航 国 中
飞船B 在K′系中的速度为
8 2.5×108 u v 2.0 × 10 x u´ x = v ux = 8×2.5×108 2.0 × 10 1 c2 1 9.0×1016 8 m/s 1.125 × 10 =
结束 目录
(2) 设地球为K系,飞船B为K′系。由 已知条件可知K′系相对K系是速度为 v = 2.0×108 m/s K′ v 飞船A 在K系中的速度为 x B u´ K u 8 ux = 2.5×10 m/s x A
结束 目录
解:由长度收缩公式:
2 2 v 2 l = l 0 1 c 2 = 5 1 ( ) = 3.7m 3 h = l0= 5
画面的尺寸为 5×3.7 m2
结束 目录
5-4 远方的一颗星以0.8c的速度离开我 们,接受到它辐射出来的闪光按 5昼夜的周 期变化,求固定在此星上的参考系测得的闪 光周期。
2 5 τ 0 ª 可得: v = ª c 1 ( c ) = 3 Δ t´
v t 3 5 Δ x Δ c ×2) (0 Δ x ´= = 2 2 3 v 1 c2 8m 6.71 × 10 = 所以在K′系测得两事件发生的空间间隔为: 6.71×108 m 结束 目录
ª ª ª
5-8 π+介于是一不稳定粒于,平均寿命 是2.6×l0-8 s(在它自己参考系中测得). (1)如果此粒于相对于实验室以0.8c的速 度运动,那么实验室坐标系中测量的π+介子 寿命为多长? (2)π+介于在衰变前运动了多长距离?
H0 3.84 ×108 Δ t= v = = 4.27s 8 0.3×3.0×10 在飞船上测量,地球到月球的距离H为
2 2 2 v H = H 0 1 c 2 = 3.84×10 1-0.3 = 3.67×108m
在飞船上测量,飞船的旅行时间为:
8 H 3.67 × 10 Δ t′ = v = = 4.08s 8 0.3×3.0×10
相对论 基础
爱因斯坦
结束
习题总目录
相对论习题
5-1 5-7 5-2 5-8 5-3 5-9 5-4 5-10 5-5 5-11 5-6 5-12
5-13
5-19
5-14
5-20
5-15
5-21
5-16
5-22
5-17
5-23
5-18
习题总目录
5-1 一个质点,在惯性系K′中作匀速圆 周运动,轨道方程为: x´2+ y´2 = a 2 z´= 0 试证:在惯性系K中的观察者测得该质 点作椭圆运动,椭圆的中心以速度u 移动。
2 2 2
1 v2 c2
2
E q tc v = 2 2 2 2 2 m 0 c +E q t Eq tc v= 2 2 2 2 2 m 0 c +E q t 若不考虑相对论效应 Eq t v= m Eq t = m 0v 0
结束 目录
5-16 设电子的速度为 (1)1.0×106 m/s; (2) 2.0×108m/s,试计算电子的动能各是多 少?如用经典力学公式计算电子动能又各为 多少?
结束 目录
解: (1)按〇相对论〈计算 当电子的速度为v1=1.0×106 m/s时的动能 E k1 = m 1c 2 m 0c 2 = 1 =( 1 v2 c2 =
1 1 2 1 ( ) 300
m 0c 2
1 v2 c2
m 0c 2
1 )m 0c 2