二元液系气液平衡相图

合集下载

双液系气液平衡相图-物理化学实验

双液系气液平衡相图-物理化学实验

一、实验目的1、绘制在标准大气压下乙酸乙酯-乙醇双液系的气液平衡相图;2、掌握测定双组分液体的沸点及正常沸点的方法;3、掌握用折射率确定二元液体组成的方法二、实验仪器FDY沸点测定仪1只;丙酮(分析纯);玻璃水银温度计(50~100℃,分度值0.1℃)1支;玻璃漏斗(直径5cm)1只;称量瓶(高型)10只;调压变压器(0.5kV·A)1只;长滴管10条;阿贝折射仪(棱镜恒温)1只;带橡皮塞试管(5cm3)20只;烧杯(50 cm3、250 cm3)各一只;乙酸乙酯(分析纯);重蒸馏水;无水乙醇(分析纯);冰。

三、实验原理1、完全互溶双液系的沸点-组成(T-x)(1) 理想的双液系:溶液沸点介于两纯物质沸点之间;(2) 具有恒沸点的双液系:①各组分对拉乌尔定律发生负偏差,其溶液有最高沸点;②各组分对拉乌尔定律发生正偏差,其溶液有最低沸点。

双液系的T-x图如下图所示:(a)为理性的双液系;(b)为各组分对拉乌尔定律发生正偏差,溶液有最低沸点;(c)为各组分对拉乌尔定律发生负偏差,溶液有最高沸点。

实验报告内容:一实验目的二实验仪器三实验原理四实验步骤五、实验数据和数据处理六实验结果七.分析讨论八.思考题2、沸点测定仪本实验所用沸点仪是一只带回流冷凝管的长颈圆底烧。

冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。

电热丝直接加热液体以减少溶液沸腾时的过热现象及防止瓶暴沸。

小玻璃管有利于降低周围环境对温度计读数可能造成的波动。

3.组成分析本实验选用的乙酸乙酯和乙醇两者折射率相差颇大,而折射率测定又只需要少量样品,所以可用折射率-组成工作曲线来测得平衡体系的两相组成。

4、相图的绘制为了绘制二元双液系的T-x图,需在气液相达平衡后,同时测定气相组成、液相组成和溶液沸点。

实验装置图如图所示:四、实验步骤(1) 安装沸点仪并接通冷凝水;(2) 将乙醇加入沸点仪内,加热至缓慢沸腾(3) 记录乙醇的沸点(4) 测定乙醇的折射率(5) 加入不同摩尔分数的乙酸乙酯-乙醇溶液(6) 记录沸点(7) 吸取气相冷凝液、液相冷凝液测定折射率(8) 将溶液倒入回收瓶(9) 绘制曲线五、实验数据和数据处理室温:25℃大气压:100kPa M无水乙醇=46.07g/mol、M乙酸乙酯=88.11g/mol ρ无水乙醇=0.79g·mol-1ρ乙酸乙酯=0.902g·mol-1无水乙醇体积(ml) 乙酸乙酯体积(ml) 乙酸乙酯浓度(mol%)折射率n90 10 0.063 1.36380 20 0.131 1.36470 30 0.206 1.36560 40 0.287 1.36650 50 0.377 1.36740 60 0.476 1.36830 70 0.585 1.36920 80 0.707 1.37010 90 0.845 1.371 根据乙酸乙酯浓度与折射率,作图如下:添加直线拟合线及拟合方程,由拟合方程式可知:x=(y-1.3626)/0.0104室温:25℃大气压:100kPa混合体系沸点气相冷凝液折射率n 液相冷凝液折射率n 气相组成液相组成78 -- --0 076.8 1.3635 1.3626 0.0865 0.000076.2 1.3642 1.3629 0.1538 0.028875.5 1.3648 1.3632 0.2115 0.057774.7 1.3655 1.3635 0.2788 0.086574 1.3663 1.3642 0.3558 0.153873.3 1.3668 1.3651 0.4038 0.240472.6 1.3673 1.3659 0.4519 0.317372 1.368 1.3672 0.5192 0.442372.7 1.3695 1.3701 0.6635 0.721273.4 1.3697 1.3703 0.6827 0.740474.8 1.3703 1.3709 0.7404 0.798175.5 1.3708 1.3712 0.7885 0.826976.2 1.3713 1.3715 0.8365 0.855876.7 1.3716 1.3717 0.8654 0.875077 -- -- 1 1 查询数据可知:无水乙醇沸点:78℃乙酸乙酯沸点:77℃;由图可知在液相组成时,混合体系沸点76.8℃对应的值为0.0000;此数值属于误差,应当剔除。

物理化学实验二 双液系的气—液平衡相图

物理化学实验二   双液系的气—液平衡相图

实验二双液系的气—液平衡相图1. 目的要求(1) 绘制在p0下环己烷-乙醇双液系的气-液平衡相图,了解相图和相律的基本概念。

(2) 掌握测定双组分液体沸点的方法。

(3) 掌握用折光率确定二元液体组成的方法。

2. 基本原理任意两个在常温时为液态的物质混合起来组成的体系称为双液系。

两种溶液若能按任意比例进行溶解,称为完全互溶双液系;若只能在一定比例范围内溶解,称为部分互溶双液系。

环己烷-乙醇二元体系就是完全互溶双液系。

双液系蒸馏时的气相组成和液相组成并不相同。

通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点(T)组成(x)图,即T—x图。

它表明了在沸点时的液相组成和与之平衡的气相组成之间的关系。

图2.2.1 双液系的T-x图双液系的T—x图有三种情况:(1)理想溶液的T—x图(图2.2.1a),它表示混合液的沸点介于A、B二纯组分沸点之间。

这类双液系可用分馏法从溶液中分离出两个纯组分。

(2)有最低恒沸点体系的T—x图(图2.2.1b)和有最高恒沸点体系的T—x图(图2.2.1c)。

这类体系的T—x图上有一个最低和一个最高点,在此点相互平衡的液相和气相具有相同的组成,分别叫做最低恒沸点和最高恒沸点。

对于这类的双液系,用分馏法不能从溶液中分离出两个纯组分。

本实验选择一个具有最低恒沸点的环己烷—乙醇体系。

在101.325kPa下测定一系列不同组成的混合溶液的沸点及在沸点时呈平衡的气液两相的组成,绘制T—x图,并从相图中确定恒沸点的温度和组成。

测定沸点的装置叫沸点测定仪(图2.2.2)。

这是一个带回流冷凝管的长颈圆底烧瓶。

冷凝管底部有一半球形小室,用以收集冷凝下来的气相样品。

电流通过浸入溶液中的电阻丝。

这样可以减少溶液沸腾时的过热现象,防止暴沸。

测定时,温度计水银球要一半在液面下,一半在气相中,以便准确测出平衡温度。

溶液组成分析:由于环己烷和乙醇的折光率相差较大,而折光率的测定又只需少量样品,4. 实验步骤(1) 纯液体折光率的测定 :分别测定乙醇和环己烷的折光率,重复2次~3次。

6-2二组分系统理想液态混合物的气—液平衡相图

6-2二组分系统理想液态混合物的气—液平衡相图
二组分系统液态互溶情况:
(a)完全互溶
(b)完全不互溶 (c)部分互溶
液态完全互溶系统 p-x、t-x图
理想系统 真实系统
一般正偏差 最大正偏差
一般负偏差 最大负偏差
液态部分互溶系统 t-x图
气相组成介于两液相之间 气相组成位于两液相同侧
液态完全不互溶系统 t-x图
完全互溶系统:理想液态混合物系统气-液平衡相图
1. 压力—组成图
A、B形成理想液态混合物:均符合拉乌尔定律
A组分分压: pA pA* xA pA* 1 xB
B组分分压: pB pB* xB
pA,pB,p和xB均成
气相总压: p pA pB
直线关系
pA* 1 xB pB* xB
pA* pB* pA* xB
液相线:气相总压 p 与液相组成 xB 之间的关系曲线
nL
解: (1) 先确定系统点的总组成
xM
nB nA nB
6 46
0.6
利用
nG (xM yB ) nL (xB xM ) 即 nG (0.6 0.2) nL (0.7 0.6) (1)
nG nL n总 =4+6=10mol (2)
解得
nG =2mol
nL =8mol
(2) 气相中: 甲苯 nB nG yB 2 0.2 0.4mol 苯 nA nG yA 2 0.8 1.6mol
(4)最大负偏差系统
p实际 p理想
且在某一组成范围内比 难挥发组分的饱和蒸气 压还小,实际蒸气总压 出现最小值
液相线
氯仿(A)—丙酮(B)系统
加上气相线:
一般正偏差系统
一般负偏差系统
最大正偏差系统
液相线 气相线

二元系统气液平衡数据测定1

二元系统气液平衡数据测定1

一、实验目的1. 了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。

2. 了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。

3. 通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。

4. 掌握二元系统气液平衡相图的绘制。

二、实验原理以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。

当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。

冷凝器凝液蒸气循环线蒸气加热液体液体循环线图1 平衡法测定气液平衡原理图BA图1 平衡法测定气液平衡原理图当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为:V i L i f f = (1) i i i x f py 0i i γφ=常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f = 从而得出低压下气液平衡关系式为:py i =γi0i p i x (2)式中,p ——体系压力(总压);0i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; x i 、y i ——分别为组分i 在液相和气相中的摩尔分率; γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用i p x py i ii =γ (3) 计算出不同组成下的活度系数。

本实验中活度系数和组成关系采用Wilson 方程关联。

Wilson 方程为: ln γ1=-ln(x 1+Λ12x 2)+x 2(212112x x Λ+Λ -121221x x Λ+Λ) (4)ln γ2=-ln(x 2+Λ21x 1)+x 1(121221x x Λ+Λ -212112x x Λ+Λ) (5)Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。

目标函数选为气相组成误差的平方和,即F =2221211((j mj j y y y y ))计实计实-+-∑=三、主要仪器设备与实验装置流程图:1.平衡釜一台 2.阿贝折射仪一台 3.超级恒温槽一台4.50-100十分之一的标准温度计一支5.所用试剂(无水甲醇、异丙醇)为分析纯试剂。

13 实验五 二元液体溶液的气—液平衡相图

13 实验五 二元液体溶液的气—液平衡相图

实验五 二元液态混合物的气-液平衡相图【目的要求】1.实验测定并绘制环己烷-乙醇体系的沸点组成(T -x )图,确定其恒沸点及恒沸混合物的组成。

2.了解测量折光率的原理,掌握阿贝折光仪的使用方法。

【实验原理】两种液体能在任意浓度范围内完全相溶的体系称完全互溶的双液体系。

根据相律:f =K Φ+2式中:f 为体系的自由度;K 为体系中的组分数;Φ为体系中的相数;2是指压力和温度两个变量。

对于定压下的二组分液态混合物,相律可表示为:f =3-Φ。

在大气压力下,液体的蒸气压和外压相等时,平衡温度即为沸点。

对于完全互溶的双液体系,当气液两相平衡时Φ=2,f =1。

完全互溶的双液体系在定压下并没有固定的沸点,为一沸程,并且是和溶液的组成有关的,即T 是x 的函数。

完全互溶的双液体系,由于两种液体的蒸气压不同,溶液上方的气相组成和液相组成是不相同的,测定溶液的沸点和溶液在沸点时的气相和液相的组成,可绘制出溶液的气-液平衡相图,即溶液的沸点与组成关系图,T -x -y 图。

完全互溶的双液体系,T -x -y 图可分三类:如图5-1所示。

图5-1(1)是理想液态混合物和偏离拉乌尔定律较小的体系的T -x -y 相图;图5-1(2)是对拉乌尔定律有较大正偏差的体系;图5-1(3)是对拉乌尔定律有较大负偏差的体系。

在图5-1(2)和图5-1(3)中,由于偏离拉乌尔定律较大以致在T -x -y 图上分别出现了最低点和最高点,在最低点和最高点上,液态混合物的气相组成和液相组成相同,这种组成的液态混合物称为恒沸混合物,在最高点和最低点上时液态混合物的沸点称为恒沸点。

将一定组成的环已烷-乙醇混合物在特制的蒸馏器中进行蒸馏。

当温度保持不变时,即表示气、液两相己达平衡,记下沸点温度,并测定沸点时气相(冷凝液)和液相的组成,Fig.5-1 二组分完全互溶双液体系的T -x -y 相图 (1)理想或近似理想的体系 (2)有最低恒沸点的体系 (3)有最高恒沸点的体系 Fig.5-1 Phase diagram for mixture of binary liquid(1)Ideal mixture (2)With minimum aezotropic point (3) With maximum aezotropic 液相Liquid 气相Gas T B x B (y B ) (3) M A B液相Liquid气相Gas T A T B x B (y B ) T (1) AB 液相Liquid 气相Gas T A T Bx B (y B ) (2) M A B T A图5-2 沸点仪示意图 1.温度计;2.接加热器;3.加液口;4.电热丝连接点;5.电热丝;6.分馏液;7.分馏液取样口 Fig.5-2 The sketch of ebulliometer 1.thermometer;2. connection pole;3. inlet orifice; 4. connection point of heater with wire;5.heater; 6. fractional liquid;7. sampling orifice 即可得到一组T -x -y 数据。

双液系的气液平衡相图

双液系的气液平衡相图

一、目的要求1.用沸点仪测定在一大气压下乙醇及环己烷双液系的气液平衡时气相与液相的组成及平衡温度,绘制温度-组成图,并找出恒沸混合物的组成及恒沸点的温度。

2.学会阿贝折光仪的使用。

二、原理两种在常温时为液态的物质混合起来而组成的二组分体系称为双液系,两种液体若能按任意比例互相溶解,称为完全互溶的双液系。

若只能在一定比例范围内互相溶解,则称部分互溶双液系。

双液系的气液平衡相图T-x 图可分为三类,见图5-1。

相线,表示在不同溶液的沸点时与溶液成平衡时的气相组成,下面的曲线表示液相线,代表平衡时液相的组成。

例如图x,液相组成点x。

无水乙醇(ml)1234环己烷(ml)43213.用阿贝折光仪测标准溶液以及纯乙醇、纯环己烷的折射率。

4.测定体系的沸点及气液两相的折射率。

测定方法如下:将一配制好的样品注入沸点仪中,液体量应盖过加热丝,处在温度计水银球的中部,旋开冷凝水,接通电源,电压不能超过规定电压,否则会烧断加热丝。

当液体沸腾、温度稳定后,记下沸腾温度及环境温度,并停止加热。

分别用滴管吸取气相及液相的液体用阿贝折光仪测其折射率,每份样品读数二次取平均值。

测定完之后,将沸点仪中的溶液倒回原试剂瓶中,换另一种样品按上述操作进行测定。

五、注意事项1.沸点仪中没有装人溶液之前绝对不能通电加热,如果没有溶液,通电加热丝后沸点仪会炸裂。

2.一定要在停止通电加热之后,方可取样进行分析。

3.使用阿贝折光仪时,棱镜上不能触及硬物(滴管),用擦镜纸擦镜面。

六、数据处理1.将标准溶液的体积百分数按式(5-1)换算成重量百分数,然后以重量百分数对折射作图。

W%=×100% (5-1)式中V1、D1分别代表乙醇的体积及比重,乙醇的比重在20℃为0.7893;V2、D2分别代表环己烷的体积及比重,环己烷的比重在20℃时为0.7791。

2.沸点校正,由于温度计的水银柱未全部浸人待测温度的区域内而须进行露茎校正。

校正公式 D t露=K·n·(t测一t环) (5-2)式中K=0.00016,n为露出于被测体系之外的水银柱长度,t测为测量温度计上的读数,t环为环境温度。

二元液系气液平衡相图

二元液系气液平衡相图

实验二二元液系气液平衡相图一、实验目得1、了解环己烷—乙醇系得沸点—组成图2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%)3、学会使用数字阿贝折射仪4、学会使用WTS-05数字交流调压器二、原理一个完全互溶双液体系得沸点—组成图,表明在气液二相平衡时沸点与二相成分间得关系,它对了解这一体系对行为及分馏过程都有很大得实用价值。

在恒压下完全互溶双液系得沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点、图1表示有最低恒沸点,本次实验图形也像如此得样子,A′LB′代表液相线得交点表示在该温度时互成平衡得二相得成份。

绘制沸点—成份图得简单原理如下:当总成份为X得溶液开始蒸馏时,体系得温度沿虚线上升,开始沸腾时成份为Y得气相生成、若气相量很少,x、y二点即代表互成平衡时液气二相成份。

继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相与液相线上沿箭头指示方向变化。

当二相成份达到某一对数值x′与y′,维持二相得量不变,则体系气液二相又在此成份达到平衡,而二相得物质数量按杠杆原理分配。

本实验利用回流得方法保持气液二相相对量一定,则体系温度恒定。

待二相平衡后,取出二相得样品,用阿贝折光仪测定其折射率。

得出该温度下气液二相平衡成份得坐标点,改变体系得总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点与液相点连成气相线与液相线,即得T—X平衡图。

三、步骤1、安装接通仪器,打开冷凝水;2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器;3、A组加入乙醇0。

5ml,用上法测定温度,然后关闭调压器,取出气相,液相得样品,测其折射率,以后分别加入1。

0,2.0,4、0,8.0,12、0ml乙醇;4、B组加入20ml无水乙醇,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2-3分钟基本不变,记下温度,关闭调压器;5、加环己烷0。

双液系的气-液平衡相图

双液系的气-液平衡相图

双液系的气-液平衡相图1.实验目的①掌握采取阿贝折光仪确定二元液体组成的方法;②掌握测定双组份液体的沸点及正常沸点的方法;③绘制在恒压下环己烷-乙醇双液系的气-液平衡相图。

2.实验原理①双液系:两种液态物质混合而成的二组分体系。

其沸点不仅与外压有关,还与双液系的组成有关;②本实验测定一系列不同组成的双液系溶液的气液相平衡时的沸点及此时的气、液相的组成,利用回流及分析的方法来绘制相图,即的T-x图。

主体包括一系列混合体系的沸点测定和气-液相组成分析两个主要内容。

③沸点仪:采用电热丝直接加热溶液,以防过热现象,同时FDY双液系沸点仪用平衡蒸馏法分离气液两相,具有可便于取样分析及避免分馏等优点。

构造如图:④阿贝折光仪使用步骤:将超级恒温槽调到测定所需之温度,并将此恒温水通入阿贝折光仪的两棱镜恒温夹套中,检查棱镜上的温度计读数;阿贝折光仪至于光亮处,调节反射镜,使白光进入棱镜;打开棱镜,滴1-2滴丙酮在镜面上,将棱镜轻轻合上,校正;测量时,用滴管取待测试样,滴在两棱镜间的缝隙间,旋紧锁钮,使被测液均匀覆盖于两棱镜间镜面上,不可有气泡;转棱镜使目镜中看到半明半暗现象,让明暗界线落在目镜里交叉法线的交点上,如有色散现象,调节消色补偿器使色散消失;简单表示为:安装-加样-对光-下旋钮粗调明暗面-上旋钮细调消色散-读数。

3.实验仪器与试剂FDY双液系沸点测定仪、阿贝折光仪、超级恒温槽、长滴管、烧杯、球形冷凝管、移液管,烧瓶丙酮(AR级)、环己烷(AR级)、乙醇(AR级)4.实验步骤①调节阿贝折光仪超级恒温槽温度为25℃,启动恒温水循环;②配制系列环己烷-乙醇溶液,环己烷与乙醇的体积比分别为5:95、15:85、25:75、35:65、45:55、50:50、55:45、65:35、85:15、95:5;③环己烷-乙醇溶液的组成——折光率曲线的测定:10ml具塞锥形瓶中采用称量法配制环己烷摩尔分数为0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90的环己烷-乙醇标准溶液;调节水浴温度,分别测定上述9个溶液及乙醇和环己烷的折光率,作出工作曲线图;注意:称量尽可能迅速;使用仪器时须对零点校正;测量前须用丙酮洗涤棱镜;④环己烷-乙醇二组分溶液的气液平衡数据测定:连接好实验装置,传感器勿与加热丝接触;接通冷凝水,从侧管向蒸馏瓶中二组分溶液,传感器与加热丝浸入溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二二元液系气液平衡相图
一、实验目的
1、了解环己烷—乙醇系的沸点—组成图
2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%)
3、学会使用数字阿贝折射仪
4、学会使用WTS—05数字交流调压器
二、原理
一个完全互溶双液体系的沸点—组成图,表明在气液二相平衡时沸点和二相成分间的关系,它对了解这一体系对行为及分馏过程都有很大的实用价值。

在恒压下完全互溶双液系的沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点。

图1表示有最低恒沸点,本次实验图形也像如此的样子,A′LB′代表液相线的交点表示在该温度时互成平衡的二相的成份。

绘制沸点—成份图的简单原理如下:当总成份为X的溶液开始蒸馏时,体系的温度沿虚线上升,开始沸腾时成份为Y的气相生成。

若气相量很少,x、y二点即代表互成平衡时液气二相成份。

继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相和液相线上沿箭头指示方向变化。

当二相成份达到某一对数值x′和y′,维持二相的量不变,则体系气液二相又在此成份达到平衡,而二相的物质数量按杠杆原理分配。

本实验利用回流的方法保持气液二相相对量一定,则体系温度恒定。

待二相平衡后,取出二相的样品,用阿贝折光仪测定其折射率。

得出该温度下气液二相平衡成份的坐标点,改变体系的总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点和液相点连成气相线和液相线,即得T—X平衡图。

三、步骤
1、安装接通仪器,打开冷凝水;
2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器;
3、A组加入乙醇0.5ml,用上法测定温度,然后关闭调压器,取出气相,液相的样品,测其折射率,以后分别加入1.0,2.0,4.0,8.0,12.0ml乙醇;
4、B组加入20ml无水乙醇,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器;
5、加环己烷0.2ml用上法测定温度,然后关闭调压器,取出气相,液相样品,测其折射率,以后分别加入0.2,0.3,0.5,1.0,2.0ml环己烷;
6、将所得的折射率在相应的工作曲线上找到组成;
7、关闭电源,冷凝水,整理好仪器,倒掉废液;
8、签字,还工作曲线表。

四、数据处理
1、将测得的数据列成表格;
2、在标准计算纸上作沸点—组成图;
3、由图上标出最低恒沸温度和最低恒沸组成。

五、注意事项
1、平衡温度一定是稳定2—3分钟后的数字温度计上的读数;
2、来回振荡3次,并且充分均匀;
3、传感器不可靠在电热丝上;
4、传感器保持一段在液面下面,以免影响平衡温度;
5、调压器上的电源打在10V左右;
6、折光率要看正确,即一半白一半黑,黑白交叉正好在十字中心;
7、测定折光率时不可将取样管碰撞棱镜;
8、被测液放入后应立即关闭棱镜,以免挥发;
9、液体须充满整个棱镜,不可有气泡产生;
10、沸腾不能太过分厉害,以免冷凝不及;
11、塞子要塞紧,沸腾时不可打开侧盖上的管子,更不可一边沸腾,一边进行取样;
12、取样管用过一次以后希望不再用第二次;
13、测过折射率后应将棱镜打开晾干,以便下次再用,如不干则用吸球吹吹;
14、严禁用手擦棱镜及光学零件;
15、折光仪上严禁测定有腐蚀性的液体;
16、 折光仪不能曝晒强日光中;
17、 液体没有淹没电热丝时,切勿通电,否则电热丝要烧断;
18、 查工作曲线是时候要注意20D n ,就是说D n 表示折射率,上面的20或25,30表示
的是温度,因此做的是哪个温度,切勿乱用或混用,以免造成误差;
19、 作图时希望同学们注意使用的小方格坐标纸至少取10×10cm ;
20、 确定恒沸温度和恒沸组成应由图上找得,并纪录在数据处理栏中。

六、 思考题
1、 本实验气液二相是怎样达成平衡的?
2、 在室温下测折射率存在什么问题?
3、 小槽体积小对测量有何影响?
4、 本实验加入量多用量筒量取,那么这体积是否要求加入量很准确?
5、 要求沸腾时不能打开塞子或打开侧管取样,这是为了什么?如果这样做又将会怎
样?
6、 为什么要来回振荡几次?
7、 温度计为什么要不靠电热丝?
8、 要求沸腾不宜过快这是为了什么?
9、 如何判断气液二相是否处于平衡?
10、 如何保证测定折射率时液体保持平衡时的组成?
11、 本实验主要误差来自何处?
七、 指导教师要注意的易发生的问题
1、 此实验据我们实验结果看共是十二点,加上二点唇溶液的点,共十四个,实验时间如果不重做,3.5个小时可以完成,如果中途遇到曲折可能来不及;
2、 从现象看比以前的要易做些,但学生的数据仍有可能会发生倒个现象,特别是环己烷中加乙醇的前2个点。

如发生倒个现象可以请学生再蒸馏一下,特别是到达平衡点附近时要注意学生数据;
3、 实验中要常查学生数据,发现问题及早解决;
4、 现使用蒸馏仪比较好,漏气现象并不严重,因此一般不会发生一会儿温度就上升的现象,如发现有要及早帮助学生查找原因。

八、 结论
1、经过实验总结,认为方案比乙酸乙脂—乙醇体系要好些,主要是气液拉开,特别是上下点相反的图几乎是很少发生了,作图较以前好看些,偏离的点也少些了;
2、同以前一样,恒温的温度越低越好,挥发的慢,因此建议能避免避开30,35℃;
3、本实验蒸馏气到达冷凝前,常会有一些沸点较高的组分已经冷凝,因而所测气相成份可能并不代表真正的气相成份,为减少由此引入的误差,支管位置不宜太高,沸腾液体之液面与分支管上袋装部分间距离不应太远;
4、本实验系环己烷—乙醇系的沸点—组成图,数据基本上为南大书上查得:
最低恒沸物组成:68.5%(环己烷)
最低恒沸温度:64.8℃。

相关文档
最新文档