计算机图形学真实图形

合集下载

《计算机图形学》习题与解答

《计算机图形学》习题与解答

《计算机图形学》习题与解答第一章概述1. 试描述你所熟悉的计算机图形系统的硬软件环境。

计算机图形系统是计算机硬件、图形输入输出设备、计算机系统软件和图形软件的集合。

例如:计算机硬件采用PC、操作系统采用windows2000,图形输入设备有键盘、鼠标、光笔、触摸屏等,图形输出设备有CRT、LCD等,安装3D MAX图形软件。

2. 计算机图形系统与一般的计算机系统最主要的差别是什么?3. 图形硬件设备主要包括哪些?请按类别举出典型的物理设备?图形输入设备:鼠标、光笔、触摸屏和坐标数字化仪,以及图形扫描仪等。

图形显示设备:CRT、液晶显示器(LCD)等。

图形绘制设备:打印机、绘图仪等。

图形处理器:GPU(图形处理单元)、图形加速卡等等。

4. 为什么要制定图形软件标准?可分为哪两类?为了提高计算机图形软件、计算机图形的应用软件以及相关软件的编程人员在不同计算机和图形设备之间的可移植性。

图形软件标准通常是指图形系统及其相关应用系统中各界面之间进行数据传送和通信的接口标准,另外还有供图形应用程序调用的子程序功能及其格式标准。

5. 请列举出当前已成为国际标准的几种图形软件标准,并简述其主要功能。

(1)CGI(Computer Graphics Interface),它所提供的主要功能集包括控制功能集、独立于设备的图形对象输出功能集、图段功能集、输入和应答功能集以及产生、修改、检索和显示以像素数据形式存储的光栅功能集。

(2)GKS(Graphcis Kernel System),提供了应用程序和图形输入输出设备之间的接口,包括一系列交互和非交互式图形设备的全部图形处理功能。

主要功能如下:控制功能、输入输出功能、变换功能、图段功能、询问功能等。

6. 试列举计算机图形学的三个应用实例。

(1)CAD/CAM(2)VISC(3)VR.第二章光栅图形学1. 在图形设备上如何输出一个点?为输出一条任意斜率的直线,一般受到哪些因素影响?若图形设备是光栅图形显示器,光栅图形显示器可以看作是一个像素的矩阵,光栅图形显示器上的点是像素点的集合。

《计算机图形学》课件

《计算机图形学》课件
04
光照模型与阴影生成算法的应用广泛,例如在游戏开发、虚拟现实和 电影制作等领域。
纹理映射算法
纹理映射算法用于将图像或纹理贴图映射到三维物体 的表面。
输标02入题
常用的纹理映射算法包括纹理坐标、纹理过滤和纹理 压缩等。
01
03
纹理映射算法的应用广泛,例如在游戏开发、虚拟现 实和数字艺术等领域。
04
工业设计
使用CAD等技术进行产品设计和原型制作 。
游戏开发
创建丰富的游戏场景和角色,提供沉浸式 的游戏体验。
科学可视化
将复杂数据以图形方式呈现,帮助人们理 解和分析数据。
虚拟现实与增强现实
构建虚拟环境,实现人机交互,增强现实 感知。
02
计算机图形学基础知识
图像与图形的关系
图像
由像素组成的二维或三维数据,通常 用于表示真实世界或模拟的视觉信息 。
全息投影技术
总结词
全息投影技术能够实现三维立体显示,为观众提供沉浸式的 观影体验。
详细描述
全息投影技术利用干涉和衍射原理,将三维物体以全息图像 的形式呈现出来,使观众能够从不同角度观察到物体的立体 形态。这种技术将为电影、游戏和其他娱乐领域带来革命性 的变化。
增强现实技术
总结词
增强现实技术能够将虚拟信息与现实世界相结合,提供更加丰富的交互体验。
HSL和HSV模型
基于色调、饱和度和亮度(或 明度)来描述颜色。
RGBA模型
在RGB基础上增加透明度通道 。
图像处理技术
滤波和锐化
通过改变图像的像素值 来减少噪声、突出边缘
或细节。
色彩调整
改变图像中颜色的分布 和强度,以达到特定的
视觉效果。
图像分割

计算机图形学8

计算机图形学8
一般约定,边界面上任一点的法向指向物体外部。显然,这
是一种利用正则集合算子产生正则形体的直接方法。
16
8.2 常用形体的表示方式
8.2.3 实体的边界表示(Brep Boundary Representation)
前面已经讨论了用实体的边界表示一个实体的理论基础。这
里主要讨论边界表示正确性的检验及边界表示的数据结构。 形体的边界表示就是用面、环、边、点来定义形体的位置和 形状;是最成熟、无二义的表示法。实体的边界通常是由面 的并集来表示,而每个面又由它所在的曲面的定义加上其边 界来表示,面的边界是边的并集,而边又是由点来表示的。 边界表示的一个重要特点是:描述形体的信息包括几何信息 (Geometry)和拓扑信息(Topology)两个方面,拓扑信息 描述形体上的顶点、边、面的连接关系,拓扑信息形成物体 边界表示的“骨架”,形体的几何信息犹如附着在“骨架” 上的肌肉。例如形体的某个表面位于某一个曲面上,定义这 一曲面方程的数据就是几何信息。此外,边的形状、顶点在 三维空间中的位置(点的坐标)等都是几何信息,一般说来 ,几何信息描述形体的大小、尺寸、位置、形状等。
20
8.2 常用形体的表示方式
8.2.3 实体的边界表示
为了方便对形体的修改,还定义了两个辅助的操作:
11).semv(e1,v,e2),将边e1分割成两段,生成一个新的点v和一条新的边e2 。 12).jekv(e1,e2),合并两条相邻的边e1、e2,删除它们的公共端点。
8
8.2 常用形体的表示方式
8.2.1 实体的定义及正则形体
Voelcker及Requicha等基于点集拓扑的理论,认为:
三维空间中的物体是空间中点的集合。 组成一个三维物体的点的集合可以分为内部点和边界点两部分。由内部 点构成的点集的闭包就是正则集。 三维空间中点集的正则集就是三维正则形体,即有效的实体。 形象地说,正则形体是由其内部的点集及紧紧包这些点的表皮组成的。

计算机图形学第五次实验报告

计算机图形学第五次实验报告

《计算机图形学》实验报告实验十一真实感图形一、实验教学目标与基本要求初步实现真实感图形, 并实践图形的造型与变换等。

二、理论基础运用几何造型, 几何、投影及透视变换、真实感图形效果(消隐、纹理、光照等)有关知识实现。

1.用给定地形高程数据绘制出地形图;2.绘制一(套)房间,参数自定。

三. 算法设计与分析真实感图形绘制过程中, 由于投影变换失去了深度信息, 往往导致图形的二义性。

要消除这类二义性, 就必须在绘制时消除被遮挡的不可见的线或面, 习惯上称之为消除隐藏线和隐藏面, 或简称为消隐, 经过消隐得到的投影图称为物体的真实图形。

消隐处理是计算机绘图中一个引人注目的问题, 目前已提出多种算法, 基本上可以分为两大类:即物体空间方法和图象空间方法。

物体空间方法是通过比较物体和物体的相对关系来决定可见与不可见的;而图象空间方法则是根据在图象象素点上各投影点之间的关系来确定可见与否的。

用这两类方法就可以消除凸型模型、凹形模型和多个模型同时存在时的隐藏面。

1).消隐算法的实现1.物体空间的消隐算法物体空间法是在三维坐标系中, 通过分析物体模型间的几何关系, 如物体的几何位置、与观察点的相对位置等, 来进行隐藏面判断的消隐算法。

世界坐标系是描述物体的原始坐标系, 物体的世界坐标描述了物体的基本形状。

为了更好地观察和描述物体, 经常需要对其世界坐标进行平移和旋转, 而得到物体的观察坐标。

物体的观察坐标能得到描述物体的更好视角, 所以物体空间法通常都是在观察坐标系中进行的。

观察坐标系的原点一般即是观察点。

物体空间法消隐包括两个基本步骤, 即三维坐标变换和选取适当的隐藏面判断算法。

选择合适的观察坐标系不但可以更好地描述物体, 而且可以大大简化和降低消隐算法的运算。

因此, 利用物体空间法进行消隐的第一步往往是将物体所处的坐标系转换为适当的观察坐标系。

这需要对物体进行三维旋转和平移变换。

常用的物体空间消隐算法包括平面公式法、径向预排序法、径向排序法、隔离平面法、深度排序法、光线投射法和区域子分法。

计算机图形学ppt(共49张PPT)

计算机图形学ppt(共49张PPT)
实现自动化、智能化的 加工和生产。
应用领域
广泛应用于机械、电子、建筑、汽车等制造业领域。
计算机游戏设计与开发
游戏引擎
基于计算机图形学技术构建游戏引擎, 实现游戏场景、角色、特效等的渲染 和交互。
应用领域
广泛应用于娱乐、教育、军事模拟等 领域。
游戏设计
利用计算机图形学技术进行游戏关卡、 任务、角色等的设计,提高游戏的可 玩性和趣味性。
纹理映射与表面细节处理
纹理坐标
定义物体表面上的点与纹理图像上的点之间 的映射关系。
Mipmapping
使用多级渐远纹理来减少纹理采样时的走样 现象。
Bump Mapping
通过扰动表面法线来模拟表面凹凸不平的细 节。
Displacement Mapping
根据高度图调整顶点位置,实现更真实的表 面细节。
透明度与半透明处理
Alpha Blending
通过混合像素的颜色和背景颜 色来实现透明度效果。
Order-Independent Transparency
一种解决透明物体渲染顺序问 题的方法,可以实现正确的透 明效果叠加。
Depth Peeling
通过多次渲染场景,每次剥离 一层深度,来实现半透明物体 的正确渲染。
如中点画圆算法,利用圆 的八对称性,通过计算决 策参数来生成圆。
多边形的生成算法
如扫描线填充算法,通过 扫描多边形并计算交点来 生成多边形。
二维图形的变换与裁剪
二维图形的变换
包括平移(Translation)、旋转(Rotation)、 缩放(Scaling)等变换,可以通过变换矩阵来实 现。
二维图形的裁剪
后期制作
在影视制作后期,利用计算机图形学技术进行颜色校正、合成、剪 辑等处理,提高影片质量。

计算机图形学课程设计-三维真实感图形设计与绘制

计算机图形学课程设计-三维真实感图形设计与绘制

计算机图形学课程设计报告一、实验题目三维真实感图形设计与绘制(1)题目内容说明:本题目要求应用OpenGL的光照技术和纹理技术实现一个简单的三维真实感图形的程序设计。

具体要求实现功能:1)通过对话方式实现交互式设计光照模型功能。

2)实现三维模型纹理映射功能3)用鼠标跟踪球方法实现三维模型的空间旋转2)实现鼠标跟踪球方法程序二、需求分析真实感图形的设计与绘制,是计算机图形学中的一个重要研究领域,也是三维实体造型系统和特征造型系统的重要组成部分。

一般地,三维实体在计算机显示屏上有三种表现形式:简单线框图、线框消隐图和真实感图形。

其中,简单线框图能够粗略表达实体的形状,但由于简单线框图的二义性,从而导致表达其的实体形状具有不确定性。

而线框消隐图虽然能反映实体各表面间的相互遮挡关系,从而达到消除简单线框图产生的二义性的目的,但是这两者一样地只能反映实体的几何形状和实体间的相互关系,而不能反映实体表面的特征,如表面的颜色、材质、纹理等。

所以,只有真实感图形才能表现实体的这些特征,因此,在三维实体造型中,生成三维实体的光照模型,进行实体的真实感绘制与显示占有重要的地位,是很有必要的,也是我做此设计的初衷。

在设计中,我主要使用Opengl绘制真实感图形,它作为一种强大的三维图形开发工具,通过便捷的编程接口提供了处理光照和物体材质、颜色属性等通用功能。

真实感图形学是计算机图形的核心内容之一,是最能直接反映图形学魅力的分支。

寻求能准确地描述客观世界中各种现象与景观的数学模型,并逼真地再现这些现象与景观,是图形学的一个重要研究课题。

很多自然景物难以用几何模型描述,如烟雾、植物、水波、火焰等。

本文所讨论的几种建模及绘制技术都超越了几何模型的限制,能够用简单的模型描述复杂的自然景物。

在计算机的图形设备上实现真实感图形必须完成的四个基本任务。

1. 三维场景的描述。

三维造型。

2. 将三维几何描述转换成为二维透视图。

透视变换。

计算机图形学-第7章-消除隐藏线和隐藏面

计算机图形学-第7章-消除隐藏线和隐藏面

可能的四种形体
隐藏线和隐藏面
不可见的线和面分别称为隐藏线和隐藏面。 隐藏线和面不仅仅有形体自身的,而且还 有形体之间互相遮挡的。消除它们即称为 消除隐藏线和消除隐藏面。
形体之间互相遮挡的隐藏线
当我们显示线条图或用笔式绘图仪或其 它线画设备绘制线条图形时,要解决的 主要是消除隐藏线的问题。而当用光栅 扫描显示器显示物体的明暗图形时,就 必须要解决消除隐藏面的问题。
设n={A,B,C},而
n
A ( y j )(zi z j ) i 1 n
B (zi z j )(xi x j ) i 1 n
C (xi x j )( yi y j ) i 1
式中若 i n,则j=i+1;否则i=n,j=1。 以上算法适合任何平面多边形。
非平面但接近平面的多边形的最佳逼近平面 的法矢量也可用此算法求出。为避免在程序 中出现两种计算平面外矢量的方法,建议凸 多边形也采用该算法计算外法矢量。多边形 所在平面的方程可写成
Ax By Cz D 0
其中 D ( Ax0 By0 Cz0 ,)
(x0 , y0 , z0 ) 为平面上任意一点。
7.2.2 深度检验
深度检验是比较位于同一条投射线的若干 个点的深度坐标(一般为z坐标),以确定 哪个点是可见的,将可见点表示出来。消 隐时必须进行深度检验。一般将需要比较 的各点的z坐标按递增或递减排序,也可从 中选出最大或最小的z坐标。至于选最大或 最小与所选的坐标系有关。
7.2.1 平面多边形的外法矢量
为了判别物体上各表面是朝前面还是朝后
面,需求出各表面(平面多边形)指向体外
的法矢量。设物体在右手坐标系中,多边
形顶点按逆时针排列。当多边形为凸多边
形时,则其法矢可取成多边形相邻两边矢

计算机图形学完整ppt课件

计算机图形学完整ppt课件

工业设计
利用计算机图形学进行产品设计、仿 真和可视化,提高设计效率和质量。
建筑设计
建筑师使用计算机图形学技术创建三 维模型,进行建筑设计和规划。
计算机图形学的相关学科
计算机科学
计算机图形学是计算机科学的一个重 要分支,涉及计算机算法、数据结构、 操作系统等方面的知识。
物理学
计算机图形学中的很多技术都借鉴了 物理学的原理,如光学、力学等,用 于实现逼真的渲染效果和物理模拟。
02
03
显示器
LCD、LED、OLED等,用 于呈现图形图像。
投影仪
将计算机生成的图像投影 到大屏幕上,用于会议、 教学等场合。
虚拟现实设备
如VR头盔,提供沉浸式的 3D图形体验。
图形输入设备
键盘和鼠标
最基本的图形输入设备,用于操 作图形界面和输入命令。
触摸屏
通过触摸操作输入图形指令,常 见于智能手机和平板电脑。
多边形裁剪算法
文字裁剪算法
判断一个多边形是否与另一个多边形相交, 如果相交则求出交集部分并保留。
针对文字的特殊性质,采用特殊的裁剪算法 进行处理,以保证文字的完整性和可读性。
05
光照模型与表面绘制
光照模型概述
光照模型是计算机图形学中用于模拟光线与物体表面交互的数学模型。
光照模型能够模拟光线在物体表面的反射、折射、阴影等效果,从而增强图形的真 实感。
二维纹理映射原理
根据物体表面的顶点坐标和纹理坐标,计算出每个像素点对应的纹 理坐标,从而确定像素点的颜色值。
二维纹理映射实现方法
使用OpenGL中的纹理映射函数,将纹理图像映射到物体表面。
三维纹理映射技术
三维纹理坐标
定义在三维空间中的坐标,表示纹理图像上的位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <GL/glut.h>
#include <stdlib.h>
/* Initialize material property, light source, lighting model,
* and depth buffer.
*/
void init(void)
{
GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = { 50.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat lightPos[]={0.0f,0.0f,75.0f,1.0f};
GLfloat ambientLight[]={0.0f,0.0f,75.0f,1.0f};
GLfloat specular[]={0.0f,0.0f,75.0f,1.0f};
GLfloat specref[]={0.0f,0.0f,75.0f,1.0f};
GLfloat spotDir[]={0.0f,0.0f,75.0f,1.0f};
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_SMOOTH);//设置阴影模型
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);//镜面光分量强度glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);//镜面光反射指数glLightfv(GL_LIGHT0, GL_POSITION, light_position);//设置光源的位置
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);
glLightfv(GL_LIGHT1,GL_DIFFUSE,ambientLight);
glLightfv(GL_LIGHT1,GL_SPECULAR,specular);
glLightfv(GL_LIGHT1,GL_POSITION,lightPos);
glLightf(GL_LIGHT1,GL_SPOT_CUTOFF,50.0f);
glEnable(GL_LIGHT1);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);
glMaterialfv(GL_FRONT,GL_SPECULAR,specref);
glMateriali(GL_FRONT,GL_SHININESS,128);
glEnable(GL_LIGHTING);//启动光照
glEnable(GL_LIGHT0);//激活光源
glEnable(GL_LIGHT1);//激活光源
glEnable(GL_DEPTH_TEST);
}
/* 调用glut函数绘制一个球*/
void display(void)
{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);//半径为1,20条纬线,16条经线
glFlush ();
}
/* 定义GLUT 的reshape 函数,w、h 分别是输出图形的窗口的宽和高*/
void reshape (int w, int h)//输出图形的宽高
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);//创建平行视景体
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;
}
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);//环境初始化
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);//显示模式初始化glutInitWindowSize (500, 500); //定义窗口大小
glutInitWindowPosition (100, 100);//定义窗口位置
glutCreateWindow (argv[0]);//显示窗口,窗口标题为执行函数名
init ();
glutDisplayFunc(display); //注册opengl绘图函数
glutReshapeFunc(reshape);//注册窗口大小改变时的相应函数
glutKeyboardFunc(keyboard);
glutMainLoop();//进入glut消息循环,开始执行程序
return 0;
}。

相关文档
最新文档