劳斯判据练习题
自动控制原理(非自动化)1-3章答案

自动控制原理(非自动化类)教材书后第1章——第3章练习题1。
2 根据题1。
2图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与C,d 用线连接成负反馈系统; (2) 画出系统框图。
解:1)由于要求接成负反馈系统,且只能构成串联型负反馈系统,因此,控制系统的净输入电压△U 与U ab 和U cd 之间满足如下关系: 式中,U ab 意味着a 点高,b 点低平,所以,反馈电压U cd 的c 点应与U ab 的a 点相连接,反馈电压U cd 的d 点应与U ab 的b 点相连接.2)反馈系统原理框图如图所示。
1.3题1.3图所示为液位自动控制系统原理示意图。
在任何情况下,希望液面高度c 维持不变,说明系统工作原理并画出系统框图。
题1.3图第二章 习 题2.1 试求下列函数的拉氏变换,设f<O 时,z(f)=0: (1) (2)(3) (4)2。
2试求下列象函数x(s )的拉氏反变换X (t ): 解:(1) 其中(2)2.3 已知系统的微分方程为式中,系统输入变量r(f )=6(£),并设,,(O)=),(0)=O ,求系统的输出y (£)。
题1.2图2.4 列写题2。
4图所示RLC 电路的微分方程。
其中,u i 为输入变量,u o 为输出变量。
解:根据回路电压方程可知2.5 列写题2。
5图所示RLC 电路的微分方程, 其中,u.为输入变量,u 。
为输出变量。
解:由电路可知, 2。
6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。
求题2。
6图所示运 算放大电路的传递函数。
其中,u i 为输入变量,u o 为输出变量.解:根据运算放大器的特点有2.7 简化题2.7图所示系统的结构图,并求传递函数C (s ) / R (s )。
题2.7图解:根据梅逊公式得: 前向通道传递函数P K :回路传递函数L K :(注意到回路中含有二个负号)特征方程式: 余子式:于是闭环传递函数为:2.8 简化题2.8图所示系统的结构图,并求传递函数C (s ) / R (s )。
1习题集第五章系统稳定性

【解】 由特征方程列劳斯表如下:
S4
1
T 100
S3
2
10
S 2 T 5 100
S1 10(T 5) 200
S0
100
T 50 由劳斯判据,系统稳定,则
10(T 5) 200 0 解得: T 25
5-8 已知系统特征方程如下,试求系统在 s 右平面的根数及虚根值. (1) s5 3s4 12s3 24s2 32s 48 0
1.5K 0
解得: 0 K 5 3 5
5-12 试确定如下图所示系统的稳定性.
【解】 由系统方框图可得系统的闭环传递函数为:
10(10s 1)
(s)
特征方程为: s(s 1) 10(10s 1) 0
s(s 1) 10(10s 1)
即: s2 101s 10 0
5-3 设单位反馈系统的开环传递函数分别为
K (s 1) G(s)
s (s 1) (s 5)
1 K * (s 1) 【解】 G(s) 5
1 s(s 1)( s 1)
5
所以开环增益 K 1 K * 5
由开环传递函数可得系统的闭环传递函数为:
K (s 1) (s)
1 s(s 1)( s 1) K (s 1)
,试用对数频率特性判别系统的稳定性。
【解】画出开环频率特性,并依系统中有两个积分环节做出辅助线如图所示:
在 L() 0范围内,N N 0 ,故 P 2N ,则系统闭环稳定。
10
0.1K A 0
0.1K A (0.09 0.2K A ) 0.1K A 0
Routh稳定判据

s = s +1 第24页
用Matlab进行两个多项式的乘积:
D( s ) = 0.025s3 + 0.35s2 + s + K = 0
第2问中,设z=s+1,也就是s=z-1
D( z ) = 0.025(z − 1)3 + 0.35(z − 1)2 + (z − 1) + K = 0
s2 D1 D2 s1 E1 s0 F1
A1
=
an−1an−2 − anan−3 an−1
A2
=
an−1an−4 − anan−5 an−1
A3
=
an−1an−6 − anan−7 an−1
一直进行到其余的值全部等于零为止。第四行各元由下式计 算:
第8页
sn an an−2 an−4 an−6 sn−1 an−1 an−3 an−5 an−7 sn−2 A1 A2 A3 A4 sn−3 B1 B2 B3 B4
s3
08
906 0 即8和96代替,继续进行运算
s2
24 − 50 0
s1 112.7 0
s
− 50
符号变化一次
此表第一列各元符号改变次数为1,因此断定该系统包
含一个具有正实部的特征根,系统是不稳定的。
解辅助方程 2s4 + 48s2 − 50 = 0 s=±1;s=±j5
即得出两组数值相同、符号相异的根。这两对根是原方程
an 0,an−1 0,...,a1 0,a0 0
第5页
当然,由式还可看出,仅仅有各项系数ai >0,还不一定能 判定s1, s2,…, sn均具有负实部,也许特征根中有正有负,它 们组合起来仍能满足各式。上述条件仅仅是必要条件。
自控试题练习题集

第一章习题1-1日常生活中有许多开环和闭环控制系统,试举几个具体例子,并说明它们的工作原理。
1-2说明负反馈的工作原理及其在自动控制系统中的应用。
自动驾驶器用控制系统将汽车的速度限制在允许范围内。
画出方块图说明此反馈系统。
1-3双输入控制系统的一个常见例子是由冷热两个阀门的家用沐浴器。
目标是同时控制水温和流量,画出此闭环系统的方块图,你愿意让别人给你开环控制的沐浴器吗?1-4开环控制系统和闭环控制系统各有什么优缺点?1-5反馈控制系统的动态特性有哪几种类型?生产过程希望的动态过程特性是什么?1-6对自动控制系统基本的性能要求是什么?最主要的要求是什么?1-7下图表示一个水位自动控制系统,试说明其作用原理.1-8下图是恒温箱的温度自动控制系统.要求:(1) 画出系统的原理方框图;(2) 当恒温箱的温度发生变化时,试述系统的调解过程;(3) 指出系统属于哪一类型?1-9 下图为位置随动系统,输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,s K 为功率放大器SM 为伺服电动机.要求: (1)说明系统由哪几部分组成,各起什么作用? (2)画出系统原理方框图;(3)说明当r θ 变化时, c θ的跟随过程.1-10 位置随动系统如下图所示,回答以下问题 1.说明该系统的以下(1)-(10)各是什么:(1)被控制对象 (2)被控制量 (3)给定元件 (4)给定量 (5)主反馈元件 (6)主反馈量 (7)误差量 (8)负载 (9)积分元件 (10)执行元件. 2.画出系统作用方框图,表出个环节的输入输出量。
3.判断(在括号内对的上面打"对号")(1)该系统是(按偏差;按扰动)原则的控制系统; (2)该系统是(有差;无差)系统; (3)该系统是(0型,1型,2型)系统; (4)该系统的输入量是(rr U Q 、);(5)该系统的输出量是(c c U Q 、)。
1-11下图为温度自动控制系统,改变a 点位置可以改变恒温温度.试说明该系统的工作原理和性能,并指出它属何种类型?1-12如题图(a )、(b )所示两水位控制系统,要求∙ 画出方块图(包括给定输入量和扰动输入量); ∙ 分析工作原理,讨论误差和扰动的关系。
机械控制工程基础第五章练习习题及解答

题型:选择题题目:关于系统稳定的说法错误的是【】A.线性系统稳定性与输入无关B.线性系统稳定性与系统初始状态无关C.非线性系统稳定性与系统初始状态无关D.非线性系统稳定性与系统初始状态有关分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。
答案:C习题二题型:填空题题目:判别系统稳定性的出发点是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在是系统稳定的充要条件。
分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。
答案:负实数、复平面的左半平面习题三题型:选择题题目:一个线性系统稳定与否取决于【】A.系统的结构和参数B.系统的输入C.系统的干扰D.系统的初始状态分析与提示:线性系统稳定与否取决于系统本身的结构和参数。
答案:A习题四题型:填空题题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。
答案:初始状态习题五题型:填空题题目:系统的稳定决定于的解。
分析与提示:系统的稳定决定于特征方程的解。
答案:特征方程题型:填空题题目:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据又称为 判据。
分析与提示:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据,又称为代数稳定性判据。
答案:代数稳定性习题二题型:填空题题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为 ;各阶子行列式都 。
分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。
答案:正、大于零习题三题型:计算题题目:系统的特征方程为010532234=++++s s s s用胡尔维兹判据判别系统的稳定性。
控制理论作业二答案

第三章3-1 已知二阶系统闭环传递函数为 369362++=s s G B 。
试求单位阶跃响应的t r , t m ,δ% , t s 的数值?解:[题意分析]这是一道典型二阶系统求性能指标的例题。
解法是把给定的闭环传递函数与二阶系统闭环传递函数标准形式进行对比,求出n ω参数,而后把n ω代入性能指标公式中求出r t ,m t ,%δ,s t 和N 的数值。
上升时间 t r峰值时间t m 过度过程时间t s 超调量δ%3-2 设单位反馈系统的开环传递函数为试求系统的性能指标,峰值时间,超调量和调节时间。
解:[题意分析]这是一道给定了开环传递函数,求二阶系统性能指标的练习题。
在这里要抓住二阶系统闭环传递函数的标准形式与参数(ζ,n ω)的对应关系,然后确定用哪一组公式去求性能指标。
根据题目给出条件可知闭环传递函数为与二阶系统传递函数标准形式2222nn n s s ωζωω++相比较可得12,12==n n ζωω,即n ω=1,ζ=0.5。
由此可知,系统为欠阻尼状态。
故,单位阶跃响应的性能指标为3-3 如图1所示系统,假设该系统在单位阶跃响应中的超调量%δ=25%,峰值时间m t =0.5秒,试确定K 和τK,τ与ζ,n ω的关系;%δ,m t 与ζ,nω 由系统结构图可得闭环传递函数为 与二阶系统传递函数标准形式相比较,可得由题目给定: %25%100%21=⨯=--ζζπδe即 25.021=--ζζπe两边取自然对数可得 依据给定的峰值时间: 5.012=-=ζωπn m t (秒)所以 85.615.02=-=ζπωn (弧度/秒)3-4 已知系统的结构图如图2所示,若)(12)(t t x ⨯= 时,试求:(1) 当τ=0时,系统的t r , t m , t s 的值。
(2) 当τ≠0时,若使δ%=20%,τ应为多大。
求出可得 )/(07.750秒弧度==n ω 由于ss X 2)(=输出的拉氏变换为 则拉氏反变换为(2) 当τ≠0时,闭环传递函数由 %20%100%21=⨯=--ζζπδe两边取自然对数 61.12.0ln 12-==--ζζπ, 可得故 73.85.)107.746.0(2=-⨯=o τ3-5(1) 什么叫时间响应答:系统在外加作用的激励下,其输出随时间变化的函数关系叫时间响应。
机械控制工程基础第五章 练习习题及 解答

机械控制工程基础第五章练习习题及解答习题一题型:选择题题目:关于系统稳定的说法错误的是【】A.线性系统稳定性与输入无关B.线性系统稳定性与系统初始状态无关C.非线性系统稳定性与系统初始状态无关D.非线性系统稳定性与系统初始状态有关分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。
答案:C习题二题型:填空题题目:判别系统稳定性的出发点是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在是系统稳定的充要条件。
分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。
答案:负实数、复平面的左半平面习题三题型:选择题题目:一个线性系统稳定与否取决于【】A.系统的结构和参数B.系统的输入C.系统的干扰D.系统的初始状态分析与提示:线性系统稳定与否取决于系统本身的结构和参数。
答案:A习题四题型:填空题题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。
答案:初始状态习题五题型:填空题题目:系统的稳定决定于的解。
分析与提示:系统的稳定决定于特征方程的解。
答案:特征方程习题一题型:填空题题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为判据。
分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,又称为代数稳定性判据。
答案:代数稳定性习题二题型:填空题题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为;各阶子行列式都。
分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。
答案:正、大于零习题三题型:计算题题目:系统的特征方程为2s4?s3?3s2?5s?10?0用胡尔维兹判据判别系统的稳定性。
JZ09_劳斯判据及习题s

系统在脉冲信号下的响应为
c(t ) ci e e ( Ai cos it Bi sin it )
pi t
it
当pi和σi都为负值时,随时间趋于无穷, 响应趋于零.
系统稳定的充分必要条件: 系统特征方程的根全部具有负实部, 或系统的极点全部在S平面左半部
若特征根在S右半平面,则系统不稳定。 若特征根在虚轴上,则系统临界稳定。
劳斯判据: 系统稳定的充分必要条件为劳斯阵列 的第一列元素不改变符号.
若第一列元素改变符号,则系统不 稳定.且符号改变的次数等于正实根的 个数.
例
s 2s 3s 4s 5 0
4 3 2
s 3 s s
2
4
s s
1 0
1 3 5 2 4 0 2 3 1 4 2 5 1 0 1 5 2 2 1 4 2 5 6 0 1 5
K 2 s( s s 1)( s 2) K
特征方程
s 3s 3s 2s K 0
4 3 2
s 3 s s s s
2
4
1 3 7 3 9 2 K 7 K
3 2 K 0 0
K 0
14 0 K 8
1 0
5 4 3 2
s s s s s s
5 4 3 2 1 0
1 1 4 2.5 0.4 6
5 5 6 0
6 6
辅助多项式 s 5s 6
4 2
10 0
求导 4 s 10 s
3
在这种情况下,系统有特征方 程的根在虚轴上。 求解辅助方程可以求得在虚轴上 的根的大小。
Edward John Routh 小传 1831–1907
• 1932 Nyquist 发展了稳定性的判别方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知单位反馈系统的开环传递函数为 ()(0.11)(0.51)K
G s s s s =++,用劳斯判据分析确
定系统稳定时K 值的范围。
2.已知系统的特征方程为 s 4+8s 3+10s 2+8s +1=0,用劳斯判据判断系统的稳定性。
3.已知系统的特征方程为 s 4+s 3+3s 2+3s +5=0,用劳斯判据判断系统的稳定性。
4.已知三阶系统的特征方程为
a 3s 3+ a 2s 2+ a 1s + a 0=0,式中,a i 为方程的系数,i =0,1,2,3
用劳斯判据分析确定系统稳定的充分必要条件。
5.已知系统的特征方程为 s 4+2s 3+s 2+2s +1=0,用劳斯判据判断系统的稳定性。
6.已知单位反馈系统的开环传递函数为 1136()(1)(1)K
G s s s s =++,用劳斯判据分析确定闭
环系统稳定时K 值的范围。
7.某系统传递函数框图如题图所示,试分析闭环系统的稳定性。
X i (s)
8、闭环系统的传递函数为:
G (s)=23222()2n n n n
s K s s s K ωζωωω++++ 式中,ζ=0.2,n ω=86.6,用劳斯判据分析确定系统稳定时K 值的范围。