迭代法求非线性方程的根讲解
第4章 非线性方程求根的迭代法

精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)
Newton迭代法求解非线性方程

Newton迭代法求解非线性方程一、 Newton 迭代法概述构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。
因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。
牛顿(Newton)法就是一种将非线性方程线化的一种方法。
设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即:)x x )(x ('f )x (f )x (f k k k -+≈ (1-1)于是我们得到如下近似方程:0)x x )(x ('f )x (f k k k =-+ (1-2)设0)('≠k x f ,则方程的解为:x ̅=x k +f(x k )f(x k )́ (1-3)取x ~作为原方程(1.1)的新近似根1+k x ,即令: )x ('f )x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。
用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。
牛顿法具有明显的几何意义。
方程:)x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。
迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。
正因为如此,牛顿法也称为切线法。
牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。
一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。
若要保证初值在较大范围内收敛,则需对)x (f 加一些条件。
如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式:)x ('f )x (f x x k k k 1k λ-=+,⋯=,2,1,0k (1-6)上式中,10<λ<,称为下山因子。
非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。
设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。
(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。
解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。
解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。
求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。
牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。
本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。
我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。
我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。
我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。
通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。
二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。
其基本原理是利用泰勒级数的前几项来寻找方程的根。
如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。
给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。
每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。
牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。
然而,这种方法也有其局限性。
它要求函数在其迭代点处可导,且导数不为零。
牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。
因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。
数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。
非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。
本文将详细介绍这些数值解法及其原理和应用。
一、迭代法迭代法是解非线性方程的一种常用数值方法。
该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。
迭代法的求根过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
常用的迭代法有简单迭代法、弦截法和牛顿法。
简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。
该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。
弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。
该方法通过用切线来逼近方程的根。
二、牛顿法牛顿法是解非线性方程的一种常用迭代法。
该方法通过使用方程的导数来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0。
2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。
3.重复步骤2,直到满足停止准则为止。
牛顿法的收敛速度较快,但要求方程的导数存在且不为0。
三、割线法割线法是解非线性方程的另一种常用迭代法。
该方法通过连接两个点上的函数值的割线来逼近方程的根。
迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。
3.重复步骤2,直到满足停止准则为止。
割线法的收敛速度介于简单迭代法和牛顿法之间。
简单迭代法求方程的根matlab

简单迭代法求方程的根1. 引言简单迭代法是一种常用的求解非线性方程根的方法。
它基于方程的连续性和局部斜率连续的性质,通过迭代逼近方程的根。
在本文中,我们将详细介绍简单迭代法的原理和步骤,并使用MATLAB编写代码来解决方程求根问题。
2. 简单迭代法原理简单迭代法的基本思想是,将非线性方程转化为迭代形式,通过不断迭代逼近方程的根。
其原理基于不动点定理,即给定一个函数f(x),若存在一个不动点x∗,满足x∗=f(x∗),则迭代过程x k+1=f(x k)中的序列x k将收敛到x∗。
对于求解方程f(x)=0的问题,我们可以将其转化为x=g(x)的形式,其中g(x)= x−f(x),且f′(x)不等于0。
这样,我们可以通过迭代逼近x=g(x)的根,从而得f′(x)到原方程的解。
3. 简单迭代法步骤简单迭代法的步骤如下:3.1 选择初始点选择一个合适的初始点x0作为迭代的起点。
3.2 迭代计算根据迭代公式x k+1=g(x k),计算序列x k的下一个值。
3.3 判断终止条件根据预设的终止条件,判断是否满足终止条件。
常用的终止条件包括: - 迭代次数达到预设的最大值。
- 迭代过程中下一个值与当前值之差小于预设的精度。
3.4 输出结果当满足终止条件时,输出最终的逼近根的值。
4. 简单迭代法在MATLAB中的实现以下是简单迭代法在MATLAB中的实现代码:function root = simple_iter_method(f, g, x0, max_iter, precision) % f: 原方程% g: 迭代函数% x0: 初始点% max_iter: 最大迭代次数% precision: 精度x = x0;iter = 0;while iter < max_iterx_next = feval(g, x); % 使用feval函数计算迭代值if abs(x_next - x) < precisionroot = x_next;return;endx = x_next;iter = iter + 1;enderror('达到最大迭代次数,未找到合适的解');end5. 示例与应用5.1 示例:求解方程x2−3x+2=0。
迭代法解非线性方程

则对一个任意接近 x*的初始值,迭代公式
xk1 ( xk )是 p阶收敛的,且有
lim
k
xk1 x * ( xk x*)p
( p)( x*)
p!
定理3可以利用泰勒展开式加以证明
二、弦截法
1. 弦截法的算法过程
(1)过两点(a,f (a)),(b,f (b))作一直线,它与x轴有一个交点,记为x1; (2)如果f (a)f (x1)<0,过两点(a,f (a)),(x1,f (x1 ))作一直线,它与x轴的交点 记为x2, 否则过两点(b,f (b)),(x1,f (x1 ))作一直线,它与x轴的交点记为x2; (3)如此下去,直到|xn-xn-1|< , 就可认为xn为 f (x)=0在区间[a,b]上的一 个根。
2. 弦截法的迭代公式
x1
a
ba f (b) f (a)
f (a),
xk
1
xk
1
a b
xk a f ( xk ) f (a)
xk b f ( xk ) f (b)
f (a), f (b),
f (a) f ( xk ) 0 f (a) f ( xk ) 0
3.弦截法的Matlab编程实现
function root=chord_cut(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点
function [root,n]=chord_cut2(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点,n迭代次数
2. 迭代法的收敛性
第7章 非线性方程求根

k 且区间长度逐次减半, bk ak (b a) 2 .
非线性方程求根的二分法
二分法基本步骤: 随着k的增大,有根区间长度趋于零,区间端点向 * lim a lim b lim x x . 一点收缩, k k k k k k 显然x*即为f(x)=0的根。而x0, x1, …,xk,…为近似根 * 序列。设要求精度为ε ,即 x xk ,
x1 x* ( )(x0 x* ) M ( x0 x* ), x2 ( x1 ), x2 x M ( x1 x ).
* *
加速迭代法
消去M得
x1 x* x0 x* , * * x2 x x1 x
2
2 x x x ( x x ) 1 0 x* x1 0 2 1 x0 , x2 2 x1 x0 x0 2 x1 x2
斯蒂芬森迭代法
结合埃特金加速法和不动点迭代法形成斯 蒂芬森迭代法:
yk ( xk ), z k ( yk ), ( y k xk ) xk 1 xk z k 2 y k xk
2
(k 0,1, ).
斯蒂芬森迭代法几何意义
定义x点关于方程 x ( x) 的误差为: ( x) ( x) x. * * * * ( x ) ( x ) x 0. 则该方程的根x 的误差
非线性方程的迭代法求根
基本概念 非线性方程f(x)=0的根(解) x*,也称为非线性 函数f(x)的零点,f(x*)=0。 f(x)=0的m重根定义:f(x)=(x-x*)mg(x), g(x*)≠0,则称x*为f(x)=0的m重根,或f(x)的 m重零点。 m重根的判定条件: x*为f(x)=0的m重根当 且仅当 * * ( m1) * ( m) * f (x ) f (x ) f ( x ) 0; f ( x ) 0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
证明:由于 ( x) 0 。据定理一,立即可以断定迭 代过程
xk 1 ( xk ) 具有局部收敛性。再将( xk ) 在根 x * 处展开,利
下一页
7
返回
实用中(1.2)式常用
| ( x) | L 1 x (a, b)
定理一:假定函数( x) 满足下列条件:
1、对任意 x a, b有
a ( x) b;(1.1)
2、存在正数 L<1,使对任意
( x1 ) ( x2 ) L x1 x2
故当 k 时迭代值 xk x * 按(1.2)式 有 xk 1 xk ( xk ) ( xk 1 ) L xk xk 1 (1.4), 据此反复递推得:xk 1 xk Lk x1 x0 于是对任意正整数p有
x k p x k x k p x k p 1 x k p 1 x k p 2 x k 1 x k
xk 1 ( xk )
确实为P阶收敛,证毕。 上述定理告诉我们,迭代过程的收敛速度依赖于迭代函数. 如果选取当 x a, b 时( x) 0,则该迭代过程只能是线性
f ( x) 收敛。对于牛顿迭代公式(1),其迭代函数为 ( x) x f ( x)
,假定 x * 是f(x)的一个单根, f ( x* ) 0 ( x * ) 0 , 即 f ( x * ) 0 则由上式知 。 于是依据定理二可以断定,牛顿法在根 的邻近是平方 x* 12 下一页 返回 收敛的。 由于 ( x)
xk 1 ( xk )
• 当给定处值x0 后, 由迭代格式可求得数列{xk}。如果{xk}收敛于x*, 则它就是方程的根。因为: • * *
x lim x k 1 lim ( xk ) (lim xk ) ( x )
k k k
• 但迭代格式有多种,迭代格式如何建立才能保证迭代法的数列收 敛?有如下定理:
*
x , x a, b
1 2
有
(1.2)
0 L 1
则迭代过程 xk 1 ( xk ) 对于任意初值 x0 a, b 均收敛于方程 x ( x) 的根 x ,且有如下的误差估计式:
xk x
*
Lk x1 x0 1 L
(1.3)
8
下一页
返回
证明:设方程 x ( x) 在区间 a, b 内有根 x * ,
f ( x) :如果存在 x * 的某个邻域R : x x *
,使迭代过程
xk 1 ( xk ) 对于任意初值x0 R 均收敛,则称迭代过程 xk 1 ( xk ) 在根 x * 邻近具有局部收敛性。
定理三:设 x *为方程 x ( x) 的根,( x)在 x * 的邻近连续。 且则迭代过程在邻近具有局部收敛性。
下一页
13
返回
证明:由连续函数的性质,存在 x * 的某个邻域 R : x x *
,使对于任意 x R 成立 ( x) L 1 。此外,对于任意 x R 总有( x) R。这是因为 依据定义三,可以断定,迭代过程 值
xk 1 ( xk ) 对于任意初
* ( x) x * ( x) ( x * ) L x x * x x,
k L ( Lk p 1 Lk p 2 Lk ) x1 x0 x1 x0 1 L
在上式令 p ,注意到 lim xk p x * 即得式(1.3)。证毕。
p
10
下一页
返回
定理二:对于迭代过程xk 1 ( xk ),如果 ( p) ( x) 在所求根x *
则有 x* ( x* )
由
xk 1 ( xk )
| xk 1 x* || ( xk ) ( x* ) | L | xk x* |
故
x k 1 x * L x k x *
据此反复递推有
x k x * Lk x 0 x *
9
下一页
返回