计算方法:非线性方程迭代求解

合集下载

迭代法求非线性方程的根讲解

迭代法求非线性方程的根讲解
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。

7、解非线性方程的迭代法

7、解非线性方程的迭代法
那么迭代过程在x * 附近是p阶收敛的. 特别地,当0 <| ϕ ′( x*) |< 1时, 迭代法线性收敛; 当ϕ ′( x*) = 0, ϕ ′′( x*) ≠ 0时, 平方收敛. 作业: P290, 2,4.
§3 迭代收敛的加速方法
一、埃特金加速收敛方法
对于收敛的迭代过程,由迭代公式校正一次得 x1 = ϕ ( x0 ),
二分法优、缺点; 用途。
§2
一、不动点迭代
迭代法
将非线性方程f ( x) = 0化为等价形式 x = ϕ ( x).
(2.1)
f ( x*) = 0 ⇔ x* = ϕ ( x*) ; 称x * 为函数ϕ ( x)的一个不动点.
给定初始近似值x0 , 可以得到x1 = ϕ ( x0 ). 如此反复,构造迭代公式 xk +1 = ϕ ( xk ), k = 0,1,2,⋯. 称ϕ ( x)为迭代函数. (2.2)
(ϕ ( x) − x) 2 . ψ ( x) = x − ϕ (ϕ ( x)) − 2ϕ ( x) + x
(3.4)
(3.5)
定理5 定理5 若x * 为ψ ( x)的不动点, 则x * 为ϕ ( x)的不动点. 反之, x * 为ϕ ( x)的不动点,设ϕ ′′( x)存在, ϕ ′( x*) ≠ 1,则x * 为ψ ( x) 的不动点,且斯蒂芬森迭代法(3.3)是2阶收敛的.
k +1
.
(1.ቤተ መጻሕፍቲ ባይዱ)
例2 求x3 − x − 1 = 0在[1.0,1.5]内的一个实根,准确到 小数点后2位.
k ak 0 1.0 1 1.25 2 3 1.3125 4 5 6 1.3203 bk 1.5 1.375 1.3438 1.3281 xk 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242 f(xk)符号 − + − + + − −

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法
迭代法是一种通过迭代逼近的方式来求解方程的方法。

它的基本思想是通过不断逼近
方程的解,使得逼近值与真实解的差距越来越小,最终得到方程的解。

下面介绍三种新的迭代法:牛顿迭代法,弦截法和切线法。

一、牛顿迭代法
牛顿迭代法是一种通过利用函数导数的信息来逼近方程解的方法。

它的迭代公式为:
x_(n+1) = x_n - f(x_n)/f'(x_n)
x_n表示第n次迭代得到的逼近解,f(x_n)表示在x_n处的函数值,f'(x_n)表示在x_n 处的导数值。

牛顿迭代法的优点是收敛速度快,通常是二阶收敛,但其缺点是需要计算函数的导数,如果导数计算困难或者导数为零的情况下,该方法可能不适用。

二、弦截法
三、切线法
切线法的优点和牛顿迭代法类似,但其缺点是需要计算函数的导数,且对于初始逼近
解的选择比较敏感。

牛顿迭代法、弦截法和切线法都是三种常用的非线性方程迭代法。

它们各自有着优点
和缺点,适用的领域和条件也不尽相同。

在实际问题中,需要根据具体情况选择合适的方
法来求解非线性方程。

第7章.非线性方程迭代法

第7章.非线性方程迭代法

f
的重根
=
的单根。
➢ 正割法 / Secant Method / :
Newton’s Method 一步要计算 f 和 f ’,相当于2个函数值, 比较费时。现用 f 的值近似 f ’,可少算一个函数值。
割线
/ secant line /
收敛比Newton’s Method 慢, 且对初值要求同样高。
牛顿迭代法的改进与推广
➢ 重根 / multiple root / 加速收敛法:
Q1: 若 f (x*) ,0 Newton’s Method 是否仍收敛? 设 x* 是 f 的 n 重根,则:f ( x) ( x x*)n q( x) 且 q( x*) 0。
因为 Newton’s Method 事实上是一种特殊的不动点迭代,

|
x
*
xk
|
1
1
L
|
xk 1
xk
|
?
✓ | xk1 xk | | x * xk | | x * xk1 | | x * xk | L | x * xk |

|
x*
xk
|
Lk 1 L
|
x1
x0
|
?
可用 | xk1 xk |来 控制收敛精度
| xk1 xk | | g( xk ) g( xk1 ) | | g(ξk )(xk xk1 ) |
3
| g( x) | | x2 | 1
现令 ( x) (1 K )x Kg( x) (1 K )x K ( x3 1)
3
希望 | ( x) | | 1 K Kx2 | 1,即
2 K 0 x2 1
在 (1, 2) 上可取任意 2 K,例0如K = 0.5,则对应

第4章 非线性方程求根的迭代法

第4章 非线性方程求根的迭代法
{ x k }。这种方法算为简单迭代法。
精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

42 非线性方程组的迭代解法讲解

42 非线性方程组的迭代解法讲解
* (k )
x ( k ) x ( k 1) x
(k )

2o 由
L知简单迭代法是线性收敛的;
3o 对线性方程组迭代函数G ( x ) Bx d , 有L= B <1是收敛的充分 必要条件。
局部收敛定理 定理5(局部收敛定理 ) 设G:D R n R n ,x * int( D )
其中, 0 k 1, k 1, 2,
, n。
三、收敛向量序列的收敛速度
定义3 设向量序列 xk 收敛于 x * , ek x * xk 0,
k 1,2,
, 如果存在常数r 1和常数c 0,使极限
lim
k
e
k
e k 1
r
c
r
成立,或者使得当k K (某个常数)时,有 ek 1 ek
(4Байду номын сангаас2.2)
其中,F : D R n R n是定义在区域D R n上的向量 值函数。 若存在x * D , 使F ( x * ) ,则称x *是方程组(4.2.1)或 (4.2.2)的解。
二、多元微分学补充
定义1 设f :D R n R,x int( D ) (即x是D的内点), 若存在向量l ( x ) R n ,使极限
L (k ) ( k 1) L(1 L ) ( k ) ( k 1) x x x x 1 L 1 L L * (k ) 再让m , 得 x x x ( k ) x ( k 1) ■ 1 L
m
i 1 i 1
说明
1o 简单迭代法的精度控制与终止条件e( k ) x * x ( k +1) x x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OhSo basically we are yeah? Who tells done! the method you that I can’t believe it’s so simple! is convergent? What’s the problem?
Company Logo

Company Logo
3. 实根的对分法
When to stop?
a x1 x* x2 b
x k 1 x k ε1

f ( x ) ε2
不能保证 x 的精 度
2
x* x

Company Logo
3. 实根的对分法

Company Logo
1. 化工实际问题的提出
通常,非线性方程的根不止一个,而任何一种方法只能 算出一个根。因此,在求解非线性方程时,要给定初始 值或求解范围。而对于具体的化工问题,初值和求解范 围常常可根据具体的化工知识来决定。常见的雷诺数和 摩擦系数关系方程在雷诺数低于4000时有以下关系式:
1 x
0 .5
,
2εi di
0 .1 , R e 5 0 0 0 , x
0
0 , 0 .5
则利用松弛迭代公式可得:
x
(k 1)
0 .5 x
(k )
0 .5 1 .7 4 2 lg
1 8 .7 k 0 .1 x , k 1, 2 , 5000

Company Logo
2. 数值法求根
首选要给出一个初始猜测解,然后通过各种迭代格式 使其逐次逼近准确解。 初值好坏对迭代收敛性有很大影响,因此初值的选取 很重要。 对于有专业背景的问题,初值可以按条件选择,对于 没有经验的问题,可以用图解法和计算机试算搜索法 初估近似解。
L | x k x k 1 | ...... L | x 1 x 0 |
| x1 x0 | ?
可用 | x k 1 x k | 来 控制收敛精度
k

L 越 小 收敛越快
Company Logo
对分法举例
例:求 x 点后2位。
3
x1 0
在[1.0, 1.5]内的一实根,精确到小数
k
ak
bk 1.5 1.375
xk 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242
f(xk)符号 − + − + + − −
Company Logo
1
0 .5
2 i 1 8 .7 1 .7 4 2 lg 0 .5 R e di
(1)

Company Logo
1. 化工实际问题的提出
这是一个典型的非线性方程。我们在管路设计中经常碰 到。当我们已知雷诺数Re,如何根据公式 (1) 求出摩擦 系数 λ,这是我们在管路设计中必须首先解决的问题。 对于方程 (1) 而言,无法用解析的方法求出摩擦系数, 只能用数值求解的方法。如用在下面即将介绍的松弛迭 代法,假设:
( I ) 当 x[a, b] 时, g(x)[a, b];
( II ) 0 L < 1 使得 | g’(x) | L < 1 对 x[a, b] 成立。
则任取 x0[a, b],由 xk+1 = g(xk) 得到的序列 x 收敛 于g(x) 在[a, b]上的唯一不动点。并且有误差估计式:
1 1 L
k
| x k 1 x k | ?
| x k 1 x k | | x * x k | | x * x k 1 | | x * x k | L | x * x k |

| x * xk |
| x k 1
L
1 L x k | | g ( x k ) g ( x k 1 ) | | g ( ξ k )( x k x k 1 ) |
经11次迭代可得摩擦系数为0.07593。
Company Logo
1. 化工实际问题的提出
饱和蒸气压是我们经常要用到的数据,虽然我们可以通过实验测量来 获取饱和蒸气压的数据,但我们通常利用前人已经测量得到的数据或 回归的公式来获取,这可以减轻我们大量的基础实验工作。公式 (2) 是一种常用的饱和蒸气压计算公式:
化工计算:一元非线性方程求解
1. 化工实际问题的提出 2. 数值法求根 3. 实根的对分法 4. 直接迭代法 5. 松弛迭代法 6. 韦格斯坦法 7. 牛顿迭代法

Company Logo
1. 化工实际问题的提出
求解非线性方程是化工设计及模拟计算中必须解决的一个问题。 与线性方程相比,非线性方程问题无论是从理论上还是从计算 公式上,都要比线性方程复杂的多。对于一般的非线性 f(x)=0 , 计算方程的根既无一定章程可循也无直接方法可言。 例如:求解高次方程组7x6-x3+x-1.5=0的根; 求解含有指数和正弦函数的超越方程ex-sin(x)=0的零点。 解非线性方程或非线性方程组也是计算方法中的一个主题。一 般地,我们用符号f(x)来表示方程左端的函数,方程的一般形 式表示为f(x)=0,方程的解称为方程的根或函数的零点。 对于高次代数方程,当次数>4时,则没有通解公式可用,对于 超越方程既不知有几个根,也没有同样的求解方式。实际上, 对于n≥3代数方程以及超越方程都采用数值方法求近似根。
误差 分析: 第1步产生的
x1 ab 2
§2 Bisection Method
有误差
|x 1 x*|
ba 2 ba
2
k
第 k 步产生的 xk 有误差
|x k x*|
对于给定的精度 ,可估计二分法所需的步数 k : ln b a b a ①简单; ② 对f (x) 要求不高(只要连续即可) . ①无法求复根及偶重根 ② 收敛慢
~ ~ ~ ~ x* x g ( x *) g ( x ) g ( ξ ) ( x * x ), 在 x * 和 x 之间 ~ ~ ( x* x )( 1 g ( ξ )) 0 而 | g ( ξ ) | 1 x * x

③ 当k 时, xk 收敛到 x* ?

Company Logo
逐步扫描法求根的初始近似值
用数值法求方程的根可分为两步,首先要找出根的某个近 似值,又称为“初始值”,然后再采用特定算法将初始值 逐步接近真实值,直到获得满足要求的结果。 逐步扫描法
y
y
y = f (x )
y = f (x )
x3=(x0+x2)/2 x0 x3 x2 x2= (x0+x1)/2
Company Logo
x1
3. 实根的对分法 求 f (x) = 0 的根
原理:若 f C[a, b],且 f (a) · (b) < 0, f 则 f 在 (a, b) 上必有一根。
k
证明:① g(x) 在[a, b]上存在不动点?

f ( x) g( x) x
a g( x) b
f (a ) g (a ) a 0 ,
f (x)
f (b ) g (b ) b 0
有根

~ ~ x g ( x ),则
② 不动点唯一?
反证:若不然,设还有
| x * x k | | g ( x *) g ( x k 1 ) | | g ( ξ k 1 ) | | x * x k 1 |
L | x * x k 1 | ...... L | x * x 0 | 0
k


| x * xk |
2
k
ε

k
ln ε
ln 2

注:用二分法求根,最好先给出 f (x) 草图以确定根的大 概位置。或用搜索程序,将[a, b]分为若干小区间,对每一 个满足 f (ak)· (bk) < 0 的区间调用二分法程序,可找出区 f 间[a, b]内的多个根,且不必要求 f (a)· (b) < 0 。 f
y p1 p0
y=x y=g(x)
y p0
y=x

x x0 y y=g(x) x1 x* y=x y y=g(x) p0 x0 x*

p1 y=g(x) x x1 y=x
p0 p1

x x0 x*
p1

x
x1 x0 x*
x1
4. 直接迭代法
定理
考虑方程 x = g(x), g(x)C[a, b], 若
a+h
0 a b x
0
a
a+2h
b
x

Company Logo
3. 实根的对分法
对分法或称二分法是求方程近似解的一种简单直观的方 法。设函数 f(x) 在[a,b]上连续,且 f(a)f(b)<0,则f(x)在 [a,b]上至少有一零点,这是微积分中的介值定理,也是使 用对分法的前提条件。计算中通过对分区间,逐步缩小 区间范围的步骤搜索零点的位置。 如果我们所要求解的方程从物理意义上来讲确实存在实 根,但又不满足 f(a)f(b)<0,这时,我们必须通过改变a和 b的值来满足二分法的应用条件。
0 1.0 1 1.25 2 3 1.3125 4 5 6 1.3203

1.3438 1.3281
4. 直接迭代法
等价变换
f (x) = 0 f (x) 的根
x = g (x) g (x) 的不动点
相关文档
最新文档