迭代法求非线性方程的根.
牛顿法与割线法求解非线性方程

牛顿法与割线法求解非线性方程在数学中,非线性方程是指方程中包含未知数的幂次大于等于2的项的方程。
求解非线性方程是数学中一个重要的问题,它在科学、工程和经济等领域中有着广泛的应用。
本文将介绍两种常用的非线性方程求解方法:牛顿法和割线法。
一、牛顿法牛顿法是一种迭代方法,用于求解非线性方程的根。
它基于泰勒级数展开的思想,通过不断迭代逼近方程的根。
牛顿法的基本思想是:选择一个初始值x0,然后通过迭代公式xn+1 = xn - f(xn)/f'(xn),不断逼近方程的根。
具体步骤如下:1. 选择一个初始值x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 使用迭代公式xn+1 = xn - f(xn)/f'(xn)计算下一个近似解xn+1;4. 判断是否满足停止准则,如果满足,则输出近似解xn+1,算法结束;如果不满足,则将xn+1作为新的近似解,返回第2步继续迭代。
牛顿法的优点是收敛速度快,但缺点是对初始值的选择较为敏感,可能会陷入局部最优解。
二、割线法割线法也是一种迭代方法,用于求解非线性方程的根。
它与牛顿法类似,但是割线法不需要计算函数的导数。
割线法的基本思想是:选择两个初始值x0和x1,通过迭代公式xn+1 = xn - f(xn)(xn - xn-1)/(f(xn) - f(xn-1)),不断逼近方程的根。
具体步骤如下:1. 选择两个初始值x0和x1;2. 使用迭代公式xn+1 = xn - f(xn)(xn - xn-1)/(f(xn) - f(xn-1))计算下一个近似解xn+1;3. 判断是否满足停止准则,如果满足,则输出近似解xn+1,算法结束;如果不满足,则将xn+1作为新的近似解,返回第2步继续迭代。
割线法的优点是不需要计算函数的导数,但缺点是收敛速度相对较慢。
三、牛顿法与割线法的比较牛顿法和割线法都是求解非线性方程的有效方法,它们各有优缺点。
牛顿法的收敛速度较快,但对初始值的选择较为敏感;割线法不需要计算函数的导数,但收敛速度相对较慢。
迭代法求非线性方程的根讲解

迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
数值计算的例子

数值计算的例子数值计算在现代科学和工程中起着非常重要的作用,它们可以帮助我们解决各种实际问题,从物理学到金融学,从天文学到工程学。
下面是一些以数值计算为主题的例子:1. 迭代法求方程的根迭代法是一种常用的数值计算方法,可以用来求解方程的根。
例如,我们可以使用牛顿迭代法来求解一个非线性方程的根。
假设我们要求解方程f(x)=0,我们可以选择一个初始近似解x0,然后使用迭代公式x_{n+1} = x_n - f(x_n)/f'(x_n)来逐步逼近方程的根。
2. 数值积分数值积分是一种计算定积分近似值的方法。
例如,我们可以使用梯形法则来计算一个函数在给定区间上的定积分。
假设我们要计算函数f(x)在区间[a,b]上的定积分,我们可以将这个区间分成n个小区间,然后使用梯形面积的近似值来计算整个区间上的定积分。
3. 线性方程组的求解线性方程组求解是数值计算中的一个重要问题。
例如,我们可以使用高斯消元法来求解一个线性方程组Ax=b,其中A是一个矩阵,b是一个向量。
高斯消元法可以将这个线性方程组转化为一个上三角矩阵,然后通过回代求解出方程的解。
4. 数值微分数值微分是一种计算导数近似值的方法。
例如,我们可以使用中心差分法来计算一个函数在某一点的导数。
假设我们要计算函数f(x)在点x0处的导数,我们可以选择一个很小的步长h,然后使用中心差分公式f'(x0) ≈ (f(x0+h) - f(x0-h))/2h来估计导数的值。
5. 最优化问题最优化问题是数值计算中的一个重要问题,它可以帮助我们找到一个函数的最小值或最大值。
例如,我们可以使用梯度下降法来求解一个无约束的最小化问题。
梯度下降法通过迭代地沿着函数的负梯度方向更新变量的值,从而逐步接近最优解。
6. 插值和拟合插值和拟合是数值计算中常用的技术,它们可以帮助我们从离散数据中推测出连续函数的形状。
例如,我们可以使用拉格朗日插值法来构造一个通过给定数据点的插值多项式。
第4章 非线性方程求根的迭代法

精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)
非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。
设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。
(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。
解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。
解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。
求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。
牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。
本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。
我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。
我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。
我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。
通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。
二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。
其基本原理是利用泰勒级数的前几项来寻找方程的根。
如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。
给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。
每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。
牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。
然而,这种方法也有其局限性。
它要求函数在其迭代点处可导,且导数不为零。
牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。
因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。
迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。
这种方法通常用于求解方程、优化问题、积分问题等。
迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。
这个终止条件可以是精度要求、迭代次数限制等。
常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。
2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。
3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。
4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。
5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。
使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。
同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。
非线性方程组迭代法

实验二 非线性方程的数值解法1.1 实验内容和要求在科学研究和工程技术中大量的实际问题是非线性的,求非线性方程()0f x =满足一定精确度的近似根是工程计算与科学研究中诸多领域经常需要解决的问题。
实验目的:进一步理解掌握非线性方程求根的简单迭代法、埃特金Aitken 加速法、牛顿迭代法的思想和构造。
实验内容: 求方程2320x x x e -+-=的实根。
要求:(1)设计一种简单迭代法,要使迭代序列收敛,然后再用埃特金Aitken 加速迭代,计算到-8110k k x x --<为止。
(2)用牛顿迭代法,同样计算到-8110k k x x --<(3)输出迭代初值、迭代次数k 及各次迭代值,并比较算法的优劣。
1.2 算法描述普通迭代法计算步骤:(1)给定初始近似值0x ,eps 为精确度。
(2)用迭代公式x =x 2+2−e x 3进行迭代,直到-8110k k x x --<为止。
埃特金Aitken 加速迭代法计算步骤:(1)将()0f x =化成同解方程()x x ϕ=()k k y x ϕ= ,()k k z y ϕ=21()2k k k k k k k y x x x z y x +-=--+=22k k k k k kx z y z y x --+ (2)计算到-8110k k x x --<为止。
牛顿法计算步骤:给定初始近似值0x ,1ε为根的容许误差,2ε为()f x 的容许误差,N 为迭代次数的容许值。
计算00(),()f x f x '(1)如果0()0f x '=或者迭代次数大于N ,则算法失败,结束;否则执行(2)(2)按公式0100()()f x x x f x =-'迭代一次,得到新的近似值1x ,计算11(),()f x f x ' (3)如果101x x ε-<或者12()f x ε<,则迭代终止,以1x 作为所求的根,结束;否则执行(4)(4)以111(,(),())x f x f x '代替000(,(),())x f x f x ',转步骤(1)继续迭代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页
13
返回
证明:由连续函数的性质,存在 x * 的某个邻域 R : x x *
,使对于任意 x R 成立 ( x) L 1 。此外,对于任意 x R 总有( x) R。这是因为 依据定义三,可以断定,迭代过程 值
xk 1 ( xk ) 对于任意初
* ( x) x * ( x) ( x * ) L x x * x x,
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
证明:由于 ( x) 0 。据定理一,立即可以断定迭 代过程
xk 1 ( xk ) 具有局部收敛性。再将( xk ) 在根 x * 处展开,利
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
下一页
7
返回
实用中(1.2)式常用
| ( x) | L 1 x (a, b)
定理一:假定函数( x) 满足下列条件:
1、对任意 x a, b有
a ( x) b;(1.1)
2、存在正数 L<1,使对任意
( x1 ) ( x2 ) L x1 x2
则有 x* ( x* )
由
xk 1 ( xk )
| xk 1 x* || ( xk ) ( x* ) | L | xk ቤተ መጻሕፍቲ ባይዱ* |
故
x k 1 x * L x k x *
据此反复递推有
x k x * Lk x 0 x *
9
下一页
返回
xk 1 ( xk )
• 当给定处值x0 后, 由迭代格式可求得数列{xk}。如果{xk}收敛于x*, 则它就是方程的根。因为: • * *
x lim x k 1 lim ( xk ) (lim xk ) ( x )
k k k
• 但迭代格式有多种,迭代格式如何建立才能保证迭代法的数列收 敛?有如下定理:
k L ( Lk p 1 Lk p 2 Lk ) x1 x0 x1 x0 1 L
在上式令 p ,注意到 lim xk p x * 即得式(1.3)。证毕。
p
10
下一页
返回
定理二:对于迭代过程xk 1 ( xk ),如果 ( p) ( x) 在所求根x *
xk 1 ( xk )
确实为P阶收敛,证毕。 上述定理告诉我们,迭代过程的收敛速度依赖于迭代函数. 如果选取当 x a, b 时( x) 0,则该迭代过程只能是线性
f ( x) 收敛。对于牛顿迭代公式(1),其迭代函数为 ( x) x f ( x)
,假定 x * 是f(x)的一个单根, f ( x* ) 0 ( x * ) 0 , 即 f ( x * ) 0 则由上式知 。 于是依据定理二可以断定,牛顿法在根 的邻近是平方 x* 12 下一页 返回 收敛的。 由于 ( x)
*
x , x a, b
1 2
有
(1.2)
0 L 1
则迭代过程 xk 1 ( xk ) 对于任意初值 x0 a, b 均收敛于方程 x ( x) 的根 x ,且有如下的误差估计式:
xk x
*
Lk x1 x0 1 L
(1.3)
8
下一页
返回
证明:设方程 x ( x) 在区间 a, b 内有根 x * ,
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
故当 k 时迭代值 xk x * 按(1.2)式 有 xk 1 xk ( xk ) ( xk 1 ) L xk xk 1 (1.4), 据此反复递推得:xk 1 xk Lk x1 x0 于是对任意正整数p有
x k p x k x k p x k p 1 x k p 1 x k p 2 x k 1 x k
f ( x) f ( x) f ( x)2
定义一:如果存在 x * 的某个邻域R : x x *
,使迭代过程
xk 1 ( xk ) 对于任意初值x0 R 均收敛,则称迭代过程 xk 1 ( xk ) 在根 x * 邻近具有局部收敛性。
定理三:设 x *为方程 x ( x) 的根,( x)在 x * 的邻近连续。 且则迭代过程在邻近具有局部收敛性。