与三角形有关的角同步测试题C

合集下载

《与三角形有关的角》习题精选

《与三角形有关的角》习题精选

《与三角形有关的角》习题精选习题一一、选择题:1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角 B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角 D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60°,90°,75° B.48°,72°,60°C.48°,32°,38° D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100° B.120° C.140° D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中 ( )A.有两个锐角、一个钝角 B.有两个钝角、一个锐角C.至少有两个钝角 D.三个都可能是锐角7.在△ABC中,∠A=∠B=∠C,则此三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形二、填空题:1.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20º,则此三角形的最小内角的度数是________.2.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.3.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为_______.4.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132º,则∠A=_______度.5.如图,已知∠1=20º,∠2=25º,∠A=35º,则∠BDC的度数为________.三、基础训练:1.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=(∠C−∠B).2.在△ABC中,已知∠B−∠A=5°,∠C−∠B=20°,求三角形各内角的度数.四、提高训练:如图所示,已知∠1=∠2,∠3=∠4,∠C=32º,∠D=28º,求∠P的度数.五、探索发现:如图,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.六、中考题与竞赛题:(2001·天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=________度.答案:一、1.A 2.C 3.B 4.B 5.C 6.C 7.B二、1.40° 2.直角钝角 3.36°或90° 4.84 5.80°三、1.解:∵AD⊥BC,∴∠BDA=90º,∴∠BAD=90º−∠B,又∵AE 平分∠BAC,∴∠BAE=∠BAC=(180º−∠B−∠C),∴∠EAD=∠BAD−∠BAE=90º−∠B−(180º−∠B−∠C)=90º−∠B−90º+∠B+∠C=∠C−∠B=(∠C−∠B).2.∠A=50º,∠B=55º,∠C=75º.四、∠P=30°五、解:∵∠1=180º−2∠CEF,∠2=180º−2∠CFE,∴∠1+∠2=360º−2(∠CEF+∠CFE)=360º−2(180º−∠C)=360º−360º+2∠C=2∠C.六、68.习题二一、选择题:1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定2.如果三角形的一个外角和与它不相邻的两个内角的和为180º,那么与这个外角相邻的内角的度数为( )A.30° B.60° C.90° D.120°3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120°4.已知等腰三角形的一个外角是120º,则它是( )A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形5.如图(1)所示,若∠A=32º,∠B=45º,∠C=38º,则∠DFE等于( )A.120° B.115° C.110° D.105°(1) (2)(3)6.如图(2)所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A B.∠2=∠5−∠A C.∠5=∠1+∠4 D.∠1=∠ABC+∠4二、填空题:1.三角形的三个外角中,最多有_______个锐角.2.如图(3)所示,∠1=_______.3.如果一个三角形的各内角与一个外角的和是225º,则与这个外角相邻的内角是____度.4.已知等腰三角形的一个外角为150º,则它的底角为_____.5.如图,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60º,则∠BOC=_______,∠D=_____,∠E=________.6.如图,∠A=50º,∠B=40º,∠C=30º,则∠BDC=________.三、基础训练:如图,在△ABC中,∠A=70º,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.四、提高训练:如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63º,求∠DAC的度数.五、探索发现:如图,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.六、中考题与竞赛题:(2004·吉林)如图所示,∠CAB的外角等于120º,∠B等于40º,则∠C 的度数是_______.答案:一、1.C 2.C 3.C 4.C 5.B 6.C二、1.1 2.120° 3.95 4.30°或75° 5.120° 30° 60° 6.120°三、∠BOC=125°四、∠DAC=24°五、(1)β = 90º+α;(2)β =α;(3)β = 90º−α (说明略)六、80º.。

人教版八年级数学上册第十一章三角形11.2与三角形有关的角11.2.1三角形内角和定理习题新版

人教版八年级数学上册第十一章三角形11.2与三角形有关的角11.2.1三角形内角和定理习题新版

11.2.1 三角形内角和定理学校:___________姓名:___________班级:___________一.选择题(共10小题)1.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°2.(2018•长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°3.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°4.(2018•河北二模)如图,将直角三角形ABC折叠,使点A与点B重合,折痕为DE,若∠C=90°,∠A=35°,则∠DBC的度数为()A.40° B.30° C.20° D.10°5.(2018•河北模拟)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°6.(2018•大庆模拟)如图,△ABC 中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40° B.20° C.25° D.30°7.(2018•绿园区一模)如图,在△ABC中,点D在AB边上,点E在AC 边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75° B.50° C.35° D.30°8.(2018•长春模拟)如图,在△ABC 中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M 的大小为()A.20° B.25° C.30° D.35°9.(2018•裕华区一模)如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38° B.39° C.42° D.48°10.(2018•津南区二模)如图,△ABC 纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76° B.74° C.72° D.70°二.填空题(共8小题)11.(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE 相交于点D,则∠BDC= .12.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= .13.(2018•微山县一模)如图,点E 在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.14.(2018•兴化市一模)如果将一副三角板按如图方式叠放,那么∠1= .15.(2018•南开区模拟)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1= .∠A1BC的平分线与∠A1CD 的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010= .16.(2018•岐山县三模)如图,AE 是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.(2018•下城区二模)在△ABC中,∠ABC,∠ACB的角平分线交于点P,若∠BPC=110°,则∠A= °.18.(2018•安阳县一模)如图,△ABC 中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α= °三.解答题(共3小题)19.(2018•南岸区模拟)如图,BG ∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.20.(2018•门头沟区一模)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.(2018•淄博)已知:如图,△ABC 是任意一个三角形,求证:∠A+∠B+∠C=180°.参考答案与试题解析一.选择题(共10小题)1.解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.2.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:∵∠C=90°,∠A=35°,∴∠ABC=55°,由折叠可得,∠A=∠ABD=35°,∴∠DBC=∠ABC﹣∠ABD=55°﹣35°=20°.故选:C.5.解:给图中标上∠1、∠2,如图所示.∵∠1+45°+90°=180°,∴∠1=45°,∵∠1=∠2+30°,∴∠2=15°.又∵∠2+∠α=180°,∴∠α=165°.故选:A.6.解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=∠ABC,∠ECD=∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.7.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.8.解:∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=,∴∠M=180°﹣20°﹣50°﹣80°=30°,故选:C.9.解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°,故选:A.10.解:∵∠A=56°,∠C=88°,∴∠ABC=180°﹣56°﹣88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=84°,∴∠EDB=180°﹣18°﹣88°=74°.故选:B.二.填空题(共8小题)11.解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.12.解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°13.解:∵CD平分∠ACE,∠DCA=65°,∴∠ACE=2∠DCA=130°,又∵∠A=70°,∴∠B=130°﹣70°=60°,故答案为:60°.14.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.15.解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.16.解:∵AE是△ABC的角平分线,∴∠CAE=∠BAC=×128°=64°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣36°=54°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故答案为:10.17.解:如图所示:∵∠ABC,∠ACB的角平分线交于点P,∴∠ABP=∠PBC,∠ACP=∠PCB,∵∠BPC=110°,∴∠PBC+∠PCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°﹣140°=40°.故答案为:40.18.解:∵∠B=35°,∠BCA=75°,∴∠BAC=70°,∵由作法可知,AD是∠BAC的平分线,∴∠CAD=∠BAC=35°,∵由作法可知,EF是线段BC的垂直平分线,∴∠BCF=∠B=35°,∵∠ACF=∠ACB﹣∠BCF=40°,∴∠α=∠CAD+∠ACF=75°,故答案为:75.三.解答题(共3小题)19.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.。

湘教版八年级数学下册《1.2直角三角形的判定》同步测试题含答案

湘教版八年级数学下册《1.2直角三角形的判定》同步测试题含答案

湘教版八年级数学下册《1.2直角三角形的判定》同步测试题含答案第1课时勾股定理A组·基础达标逐点击破知识点勾股定理1.已知a,b,c分别为△ABC的三边,a,b,c的对应角分别为∠A,∠B,∠C.下列说法错误的是()A.若∠C=90∘,则a2+b2=c2B.若∠B=90∘,则a2+c2=b2C.若∠A=90∘,则b2+c2=a2D.总有a2+b2=c22.如图,在Rt△ABC中∠C=90∘,AC=3,BC=4,则AB=()A.5 B.6 C.7 D.83.如图,在Rt△ABC的三边上,向外作三个正方形,其中两个的面积为S3=169,S2=144,则另一个的面积S1为()A.50 B.30 C.25 D.1004.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=13,BC=24,则AD的长为()A.5 B.6 C.8 D.105.如图①中b=__;如图②中,c=__.6.在Rt△ABC中∠C=90∘,且∠A,∠B,∠C的对应边分别为a,b,c.(1)已知c=25,b=15,求a的长;(2)已知a=7,b=24,求c的长;(3)已知a:b=1:3,且c=10,求a,b的长.7.【数学文化】中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示的“弦图”.在Rt△ABC中∠ACB=90∘,AC=b,BC=a,AB=c.求证:a2+b2=c2.易错点考虑不周全导致错误8.若直角三角形的三边长分别为2,4,x,则x的值为()A.3 B.2√5C.2√3D.2√5或2√3B组·能力提升强化突破9.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.92πC.94πD.3π10.【数学文化】如图,图①是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图①中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图②,则图②中大正方形的面积为()A.24 B.36 C.40 D.4411.如图,在Rt△ABC中AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.√10−√2B.√6−√2C.2√2−2D.2√2−√612.如图,在Rt△ABC中∠C=90∘,AC=8,BC=4,折叠△ABC,使点A与点B重合,折痕DE与AB交于点D,与AC交于点E,则CE的长为____.13.如图,在△ABC中∠B=45∘,∠C=30∘,AB=4.(1)求AC与BC的长;(2)求△ABC的面积.C组·核心素养拓展素养渗透14.【几何直观】如图,在Rt△ABC中∠ACB=90∘,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求边BC的长;(2)当△ABP为直角三角形时,求t的值.参考答案及解析第1课时勾股定理课堂导学例题引路【思路分析】已知∠C=90∘,则c是斜边,根据勾股定理计算即可.例1 (1)【规范解答】∵∠C=90∘,c=25,a=20∴b=√c2−a2=15.(2)【规范解答】∵∠C=90∘,a=6√2,b=2√6∴c=√a2+b2=4√6.(3)【规范解答】∵a:b=1:2∴设a=x,则b=2x.∵∠C=90∘,c=10∴a2+b2=c2即x2+(2x)2=102解得x=2√5(负值已舍去).∴a=2√5,b=4√5.【思路分析】在直角三角形中,以两直角边为边的正方形的面积和等于以斜边为边的正方形的面积.【规范解答】由勾股定理得S正方形F =S正方形A+S正方形B=32+42=25同理,S正方形G =S正方形C+S正方形D=22+32=13∴S正方形E =S正方形F+S正方形G=38.例2 38A组·基础达标逐点击破知识点勾股定理1.D 2.A 3.C 4.A5.12;306.(1)解:∵∠C=90∘,c=25,b=15∴a=√c2−b2=√252−152=20.(2)∵∠C=90∘,a=7,b=24∴c=√a2+b2=√72+242=25.(3)∵a:b=1:3,∴设a=x,则b=3x.∵∠C=90∘,c=10∴a2+b2=c2即x2+(3x)2=102.解得x=√10(负值已舍去).∴a=√10,b=3√10.7.证明:∵大正方形的面积为c2,直角三角形的面积为12ab,小正方形的面积为(b−a)2∴c2=4×12ab+(b−a)2=2ab+a2−2ab+b2=a2+b2.∴a2+b2=c2.易错点考虑不周全导致错误8.DB组·能力提升强化突破9.C10.D[解析]如答图,设直角三角形的两直角边为a,b,斜边为c.第10题答图∵图①中大正方形的面积是24∴a2+b2=c2=24∵小正方形的面积是4∴(b−a)2=a2+b2−2ab=4∴ab=10ab=24+2×10=44.∴图②中大正方形的面积为c2+4×12故选D.11.B[解析]如答图,过点C作CH⊥AB于点H.第11题答图∵AC=BC=2,∠ACB=90∘,CH⊥AB∴AB=√AC2+BC2=2√2AH=BH=CH=√2∵CD=AB=2√2∴DH=√CD2−CH2=√8−2=√6∴DB=√6−√2.故选B.12.3[解析]由折叠的性质,得AE=BE,设CE=x,则AE=BE=8−x,由勾股定理,得BC2+CE2= BE2,∴42+x2=(8−x)2解得x=3.∴CE的长为3.13.(1)解:如答图,过点A作AD⊥BC于点D.∵∠B=45∘∴∠BAD=45∘.∴AD=BD.∵BD2+AD2=AB2∴2BD2=42.∴BD=AD=2√2.∵∠C=30∘∴AD=12AC.∴AC=4√2.∴CD=√AC2−AD2=2√6.∴BC=BD+CD=2√2+2√6.第13题答图(2)S△ABC=12BC⋅AD=12×(2√2+2√6)×2√2=4+4√3.C组·核心素养拓展素养渗透14.(1)解:在Rt△ABC中,由勾股定理,得BC=√AB2−AC2=√52−32=4(cm).(2)由题意,得BP=tcm,分以下两种情况:①当∠APB=90∘时,如答图①所示.第14题答图①则点P与点C重合∴BP=BC=4cm ∴t=4÷1=4;②当∠BAP=90∘时,如答图②所示.第14题答图②则CP=(t−4)cm,∠ACP=90∘.在Rt△ACP中,由勾股定理,得AP2=AC2+CP2在Rt△ABP中,由勾股定理,得AP2=BP2−AB2∴AC2+CP2=BP2−AB2.即32+(t−4)2=t2−52,解得t=254综上所述,当△ABP为直角三角形时,t的值为4或25.4。

与三角形有关的角过关训练

与三角形有关的角过关训练

与三角形有关的角过关训练一、选择题:(每小题3分,共21分)1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角7.在△ABC中,∠A=12∠B=13∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题:(每小题3分,共15分)1.三角形中最大的内角不能小于_______度,最小的内角不能大于______度.2. 如图(1),∠A+∠B+∠C+∠D+∠E+∠F=______;如图(2),∠A+∠B+∠C+∠D+∠E+∠F=______.3.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.4.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.5.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.6.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.7.如图所示,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为________.三、基础训练:(每小题15分,共30分)1.如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=12(∠C-∠B).2.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.四、提高训练:(共15分)如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.五、探索发现:(共15分)如图所示,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.六、中考题与竞赛题:(共4分)(2001·天津)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°, 则∠EDF=________度.多边形的内角和过关训练填空1,十边形的内角和为度,正八边形的每个内角为度.2,已知一个多边形的内角和为1080°,则它的边数为.3,若一个多边形,则它是十边形。

八年级数学《11.2_与三角形有关的角》衔接中考练习测试

八年级数学《11.2_与三角形有关的角》衔接中考练习测试

5·3全练《11.2 与三角形有关的角》衔接中考三年模拟全练1.(2020四川自贡富顺三中期中,4,★☆☆)将一副三角板按如图所示的方式放置,若AE∥BC,则∠BAD=()A.90°B.85°C.75°D.65°2.(2020福建三明宁化月考,9,★☆☆)如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=66°,则∠ACB的度数是()A.33°B.28°C.52°D.48°3.(2020湖南长沙雨花雅礼实验中学月考,7,★☆☆)在下列条件中,不能确定△ABC是直角三角形的是()A.∠A=12∠B=13∠CB.∠A=2∠B-3∠CC.∠A=∠B=12∠CD.∠A=2∠B=2∠C4.(2020山东东营垦利期中,13,★☆☆)如图,△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC.过点D作DE⊥AB于点E,则∠ADE=__________.5.(2020广东实验中学期中,14,★★☆)如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=30°,∠AEB=80°,则∠CAD的度数为________.6.(2020吉林四平伊通期末,22,★★☆)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的平分线,它们相交于点O,∠AOB=125°,求∠CAD的度数.五年中考全练7.(2019内蒙古赤峰中考,13,★☆☆)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°D.85°8.(2019四川眉山中考,5,★☆女)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()A.50°B.60°C.70°D.80°9.(2019山东枣庄中考,3,★☆☆)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠ 的度数是()A.45°B.60°C.75°D.85°10.(2019黑龙江大庆中考,8,★★)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()B.30°C.45°D.60°11.(2019浙江杭州中考,7,★★☆)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°12.(2018四川巴中中考,16,★★☆)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=_________.13.(2018湖北宜昌中考,18,★★☆)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.核心素养全练14.(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,探究∠BHC 与∠A的数量关系;(2)如图②,△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并说明∠BHC与∠A的数量关系与(1)中的结论是否一致.15.问题情景:如图①,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=_________度,∠PBC+∠PCB=_________度,∠ABP+∠ACP=_________度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系;(3)类比延伸:如图②,改变直角三角板PMN的位置,使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.参考答案1.答案:C解析:∵AE∥BC,∴∠ADB=∠DAE=45°,∵∠B=60°,∴∠BAD=l80°-∠B-∠ADB=180°-60°-45°=75°,故选C.2.答案:D解析:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=66°,又∵AD 和BE是△ABC的角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×66°=132°,∴∠ACB=180°-132°=48°,故选D.3.答案:B解析:A由∠A=12∠B=13C,可以推出∠A=30°,∠B=60°,∠C=90°,所以本选项能确定.C.由∠A=∠B=12∠C,可以推出∠C=90°,∠A=∠B=45°,所以本选项能确定.D.由∠A=2∠B=2∠C,可以推出∠A=90°,∠B=∠C=45°,所以本选项能确定.故选B.4.答案:60°解析:∵∠ABC=50°,∠ACB=70°,∴∠BAC=60°,又∵AD平分∠BAC,∴∠BAD=30°,又∵DE⊥AB,∴∠AED=90°,∴在R△ADE中,∠ADE=60°.5.答案:40°解析:∵BE平分∠ABC,∴∠ABE=∠EBC=30°,∵∠AEB=∠EBC+∠C,∴∠C=80°-30°=50°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-50°=40°.6.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的平分线,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.7.答案:B解析:∵DE⊥AB,∠A=35°,∴∠AFE=∠CFD=90°-∠A=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选B.8.答案:C解析:∵∠B=30°,∠ADC=70°,∴∠BAD=∠ADC-∠B=70°-30°=40°.∵AD平分∠BAC,∴∠BAC=2∠BAD=80°,∴∠C=180°-∠B-∠BAC=180°-30°-80°=70°,故选C.9.答案:C解析:如图,∵∠ACD=90°,∠F=45°,∴∠CGF=∠DGB=45°,则∠ =∠D+∠DGB=30°+45°=75°,故选C.10.答案:B解析:∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是∠ACM的平分线,∴ECM=12∠ACM,则∠BEC=∠ECM-∠EBM=12(∠ACM-∠ABC)=12∠A=30°,故选B.11.答案:D解析:由题意知∠A+∠B+∠C=180①,不妨设∠A=∠C-∠B②,把②代入①,得2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选D.12.答案:40°解析:∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°-∠A,∴∠BOC=180°-12(180°-∠A)=90°+12∠A,∵∠BOC=110°,∴90°+12∠A=110°,∴∠A=40°.13.解:(1)∵在R△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE平分∠CBD,∴∠CBE=12∠CBD=65°.(2)∵∠BCE=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.14.解:(1)∵高BD、CE相交于点H,∴∠BEH=∠ADH=90°,在Rt△ABD中,∵∠ABD+∠A=90°,∴∠ABD=90°-∠A,∵∠BHC是Rt△BEH的外角,∴∠BHC=90°+∠ABD=180°-∠A,∴∠BHC+∠A=180°.(2)如图所示.结论一致,∠BHC+∠BAC=180°.理由:∵高BD、CE所在的直线相交于点H,∴∠ADH=∠AEH=90°,在四边形ADHE中,∵∠AEH+∠ADH+∠DAE+∠EHD=360°,∴∠EHD+∠DAE=180°,∵∠BAC=∠DAE,∴∠BHC+∠BAC=180°.15.解:(1)130:90:40.(2)∵90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°-∠A.(3)不成立.结论:∠ACP-∠ABP=90°-∠A.具体过程如下:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠MPN=90°,∴∠PBC+∠PCB=90°,∴(∠ABC+∠ACB)-(∠PBC+∠PCB)=180°-∠A-90°,即∠ABC+∠ACP+∠PCB-∠ABP-∠ABC-∠PCB=90°-∠A,∴∠ACP-∠ABP=90°-∠A.。

湘教版八年级数学下册《1.1直角三角形的性质和判定》同步测试题及答案

湘教版八年级数学下册《1.1直角三角形的性质和判定》同步测试题及答案

湘教版八年级数学下册《1.1直角三角形的性质和判定》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________第1课时直角三角形中两锐角互余及斜边上中线的性质A组·基础达标逐点击破知识点1 直角三角形的两个锐角互余1.在△ABC中∠ACB=90∘,∠A=15∘,则∠B的度数为()A.15∘B.30∘C.75∘D.85∘2.如图,AD是Rt△ABC的斜边BC上的高,则图中与∠B互余的角有()A.1个B.2个C.3个D.4个知识点2 有两个角互余的三角形是直角三角形3.在△ABC中,已知∠A=50∘,∠B=40∘,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定4.如图,E是△ABC中AC上的一个点,过点E作ED⊥AB,垂足为点D.若∠1=∠2,则△ABC是直角三角形吗?为什么?知识点3 直角三角形斜边上的中线等于斜边的一半5.如图,公路AC,BC互相垂直,M为公路AB的中点,为测量湖泊两侧C,M两点间的距离,工人师傅测得AB的长为5km,则M,C两点间的距离为()第5题图A.2.5km B.3km C.4.5km D.5km6.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20∘,则∠BDC的度数为________.第6题图B组·能力提升强化突破7.满足下列条件的△ABC中,不是直角三角形的是()A.∠C=∠A+∠B B.∠A=90∘C.∠A+∠B=90∘D.∠A:∠B:∠C=3:4:58.如图,在Rt△ABC中,D是AC的中点∠BDC=60∘,AC=6,则BC的长是()第8题图A.3 B.6 C.√3D.3√39.如图,在△ABC中∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的平分线相交于点E,F为边AC的中点CD=CF,则∠ACD+∠CED=()第9题图A.125∘B.145∘C.175∘D.190∘10.如图,在△ABC中,点D在边BC上AB=AD,E,F分别是AC,BD的中点EF=3,则AC的长为____.11.如图,在△ABC中AD⊥BC,∠1=∠B.求证:△ABC是直角三角形.12.如图,在Rt△ABC中AB=AC,∠A=90∘,O为BC的中点.(1)写出点O到△ABC的三个顶点A,B,C的距离的数量关系;(2)如果点M,N分别在线段AB,AC上移动,移动中保持AN=BM.请判断△OMN的形状,并证明你的结论.C组·核心素养拓展素养渗透13.【几何直观,推理能力】如图,在△ABC中AD⊥BC于点D,M,N分别是AB,AC的中点,连接DM,DN.(1)若AB+AC=10,求四边形AMDN的周长.(2)连接MN,观察并猜想,线段AD与线段MN有何位置关系?并证明你的猜想.参考答案及解析第1课时直角三角形中两锐角互余及斜边上中线的性质课堂导学例题引路例1 【规范解答】∵∠BAC=90∘∴∠ABF+∠AFB=90∘.∵AD⊥BC∴∠EBD+∠BED=90∘.∵FB平分∠ABC∴∠ABF=∠EBD.∴∠BED=∠AFE.∵∠BED=∠AEF∴∠AEF=∠AFE.∴AE=AF.例2 【规范解答】如答图,连接DM,DN.例2答图∵BN,CM分别是△ABC的两条高∴BN⊥AC,CM⊥AB ∴∠BMC=∠CNB=90∘.∵D是BC的中点∴DM=12BC,DN=12BC∴DM=DN.又∵E为MN的中点∴DE⊥MN.A组·基础达标逐点击破知识点1 直角三角形的两个锐角互余1.C 2.B知识点2 有两个角互余的三角形是直角三角形3.B4.解:△ABC是直角三角形.理由如下:∵ED⊥AB∴∠ADE=90∘∴∠A+∠1=90∘.∵∠1=∠2∴∠A+∠2=90∘∴∠C=90∘∴△ABC是直角三角形.知识点3 直角三角形斜边上的中线等于斜边的一半5.A6.40∘B组·能力提升强化突破7.D 8.A 9.C10.611.证明:∵AD⊥BC∴∠1+∠C=90∘.∵∠1=∠B∴∠B+∠C=90∘.∴∠BAC=90∘.∴△ABC是直角三角形. 12.(1)解:如答图,连接AO.在Rt△ABC中∵∠BAC=90∘O为BC的中点∴OA=12BC=OB=OC即OA=OB=OC.第12题答图(2)△OMN是等腰直角三角形.证明如下:∵AC=AB∠BAC=90∘∴∠NAO=12∠CAB=∠B=45∘AO⊥BC.又∵AN=BM OA=OB∴△AON≌△BOM(SAS)∴ON=OM∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM ∴∠NOM=∠AOB=90∘.∴△OMN是等腰直角三角形.C组·核心素养拓展素养渗透13.(1)解:∵AD⊥BC∴△ABD和△ADC都是直角三角形.∵M,N分别是AB,AC的中点∴AM=DM=12AB DN=AN=12AC∴AM+DM+DN+AN=2AM+2AN=AB+AC=10∴四边形AMDN的周长为10. (2)猜想:MN⊥AD.证明:∵AM=DM∴点M在AD的垂直平分线上同理得,点N在AD的垂直平分线上∴MN为AD的垂直平分线∴MN⊥AD.。

难点详解沪教版七年级数学第二学期第十四章三角形同步测试练习题(含详解)

沪教版七年级数学第二学期第十四章三角形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°2、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°3、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,10∠的度数为()4、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3A.80︒B.70︒C.45︒D.305、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°6、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC =5,则五边形DECHF的周长为()A.8 B.10 C.11 D.127、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.10 B.15 C.17 D.198、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角9、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,1310、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7第Ⅱ卷(非选择题 70分)1、如图,AB ,CD 相交于点O ,AD CB =,请你补充一个条件,使得ADB CBD △≌△,你补充的条件是______.2、如图,在Rt ABC 中,90,12cm,6cm C AC BC ∠=︒==,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的长为_________.3、如图,线段AF AE ⊥,垂足为点A ,线段GD 分别交AF 、AE 于点C ,B ,连结GF ,ED .则D G AFG AED ∠∠∠∠+++的度数为______.4、如图,一把直尺的一边缘经过直角三角形ABC 的直角顶点C ,交斜AB 边于点D ;直尺的另一边缘分别交AB 、AC 于点E 、F ,若30B ∠=︒,50AEF ∠=︒,则DCB ∠=___________度.5、在平面直角坐标系xOy 中,()2,0A ,()0,4C -,AB AC =,90BAC ∠=︒,则点B 的坐标为__________.1、探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图②,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.2、如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅.(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.3、如图,ABC 和ADE 是顶角相等的等腰三角形,BC ,DE 分别是这两个等腰三角形的底边.求证BD CE =.4、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.5、已知:如图,∠ABC =∠DCB ,∠1=∠2.求证AB =DC .6、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,AB CF=,CEA B F∠=∠+∠.(1)求证:EAB F∠=∠;(2)若10BC=,求BE的长.7、“三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P 旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB=13∠AOB.8、如图,灯塔B在灯塔A的正东方向,且75kmAB=.灯塔C在灯塔A的北偏东20°方向,灯塔C 在灯塔B的北偏西50°方向.(1)求ACB ∠的度数;(2)一轮船从B 地出发向北偏西50°方向匀速行驶,5h 后到达C 地,求轮船的速度.9、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.10、已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°.(1)求证:△ADE ≌△ABC ;(2)求证:AE =CE .-参考答案-一、单选题1、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.2、C【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C.【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.3、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.4、A【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】⨯︒=︒,解:3180540⨯︒=︒,360180∴︒-︒-︒=︒,540180180180∴∠+∠+∠=︒,123180∠+∠=︒,12100380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.5、B【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.6、B【分析】证明△AFH ≌△CHG (AAS ),得出AF =CH .由题意可知BE =FH ,则得出五边形DECHF 的周长=AB +BC ,则可得出答案.【详解】解:∵△GFH 为等边三角形,∴FH =GH ,∠FHG =60°,∴∠AHF +∠GHC =120°,∵△ABC 为等边三角形,∴AB =BC =AC =5,∠ACB =∠A =60°,∵∠AHF =180°-∠FHG -∠GHC =120°-∠GHC ,∠HGC =180°-∠C -∠GHC =120°-∠GHC ,∴∠AHF =∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFH ≌△CHG (AAS ),∴AF =CH .∵△BDE 和△FGH 是两个全等的等边三角形,∴BE =FH ,∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF ,=(BD +DF +AF )+(CE +BE ),=AB +BC =10.故选:B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.7、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.8、D【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.9、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.10、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.二、填空题1、AB CD =(答案不唯一)【分析】在ADB △与CBD 中,已经有条件:,,AD CB DB BD 所以补充,AB CD =可以利用SSS 证明两个三角形全等.【详解】解:在ADB △与CBD 中,,,AD CB DB BD所以补充:,AB CD =().ADB CBD SSS △≌△∴故答案为:AB CD =【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键. 2、6cm 或12cm【分析】先根据题意得到∠BCA =∠PAQ =90°,则以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,只有△ACB ≌△QAP 和△ACB ≌△PAQ 两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX 是AC 的垂线,∴∠BCA =∠PAQ =90°,∴以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,只有△ACB ≌△QAP 和△ACB ≌△PAQ 两种情况,当△ACB ≌△QAP ,∴6cm AP BC ==;当△ACB ≌△PAQ ,∴12cm AP AC ==,故答案为:6cm 或12cm .【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.3、270°【分析】由题意易得90ACB ABC ∠+∠=︒,然后根据三角形内角和定理可进行求解.【详解】解:∵AF AE ⊥,∴90A ∠=︒,∴90ACB ABC ∠+∠=︒,∵180,180D DBE AED ABC ACB A ∠∠∠∠∠++=︒++∠=︒,且ABC DBE ∠=∠,∴D AED ACB A ∠∠∠+=+∠,同理可得:G AFG ABC A ∠∠∠+=+∠,∴2270D G AFG AED A ABC ACB ∠∠∠∠+++=∠+∠+∠=︒,故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.4、20【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB 即可.【详解】解:∵EF ∥CD ,∴150AEF ∠=∠=︒,∵∠1是△DCB 的外角,∴DCB ∠=∠1-∠B =50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识. 5、(6),-2【分析】按照在x 轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明1Rt OAC Rt EB A ∆∆≌和2Rt OAC DB A ∆∆≌成立,然后根据对应边相等,即可求出两种情况对应的点B 的坐标.【详解】解:如下图所示:由()2,0A ,()0,4C -可知:2OA =,4OC =.当B 点在x 轴下方时,过点B 1向x 轴作垂线,垂足为E .90BAC ∠=︒,190OAC EAB ∴∠+∠=︒90OAC OCA ∠+∠=︒1OCA EAB ∴∠=∠在Rt OAC ∆与1Rt EB A ∆中:111AOC B EA OCA EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩1()Rt OAC Rt EB A AAS ∴∆∆≌12EB OA ∴==,4EA OC ==6OE OA EA ∴=+=1B ∴点坐标为(6),-2当B 点在x 轴上方时,过点B 2向x 轴作垂线,垂足为D .由题意可知:2290B AC B AD OAC ∠=∠+∠=︒90OAC OCA ∠+∠=︒2B AD OAC ∴∠=∠在Rt OAC ∆与2Rt DB A ∆中222OAC B AD AOC B DA AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩2()Rt OAC DB A AAS ∴∆∆≌22DB OA ∴==,4AD OC ==2OD AD OA ∴=-=∴点2B 坐标为(22)-,故答案为:(6),-2或(22)-,. 【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.三、解答题1、(1)30°;(2)∠BAD =2∠CDE ,理由见解析;(3)∠BAD =2∠CDE .【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD =2∠CDE .【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系2、(1)见解析;(2)105︒【分析】(1)根据平行线的性质可得A D ∠=∠,根据线段的和差关系可得AC DB =,进而根据SAS 即证明AEC DFB ≅;(2)根据三角形内角和定理以及补角的意义求得∠E ,进而根据(1)的结论即可求得∠F .【详解】(1)证明:AE DF ∥∴A D ∠=∠, AB CD =∴AB BC BC CD +=+即AC BD = 又AE DF =,∴AEC DFB ≅(2)解:40A ∠=︒,145ECD ∠=︒,18035ECA ECD ∴∠=︒-∠=︒180105E A ECA ∴∠=︒-∠-∠=︒AEC DFB ≅F E ∴∠=∠105=︒【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.3、见解析【分析】由ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠知AB AC =、AD AE =、BAD CAE ∠=∠,证ABD ACE ∆≅∆即可得证.【详解】解:ABC ∆和ADE ∆是顶角相等的等腰三角形,得出BAC DAE ∠=∠,AB AC ∴=,AD AE =,BAD CAE ∠=∠,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩, ()ABD ACE SAS ∴∆≅∆,BD CE ∴=.【点睛】本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.4、(1)120°(2)①图形见解析;②AC =【分析】(1)根据60A ∠=︒进而判断出点E 在边AB 上,得出△ADE ≌△ABC (SAS ),进而得出∠AED =∠ACB =90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∠CAE=30°,∴∠CAF=12AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.5、见解析【分析】由“ASA ”可证△ABO ≌△DCO ,可得结论.【详解】证明:如图,记,AC BD 的交点为,O∵∠ABC =∠DCB ,∠1=∠2,又∵∠OBC =∠ABC −∠1,∠OCB =∠DCB −∠2,∴∠OBC =∠OCB ,∴OB =OC ,在△ABO 和△DCO 中,12OB OC AOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA ),∴AB =DC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.6、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠.(2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ABE △≌FCE △.∴BE CE =.∵10BC =,∴5BE =.【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.7、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.8、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC =70°,∠ABC =40°,根据三角形的内角和定理即可求得∠ACB ;(2)根据等腰三角形的判定可得BC=AB=75km ,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC =70°,∠ABC =40°,∴∠ACB =180°-∠BAC -∠ABC =180°-70°-40°=70°;(2)∵∠BAC =∠ACB =70°,∴BC=AB=75km ,∴轮船的速度为75÷5=15(km/h ).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.9、85°【分析】由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,【详解】解:∵AD是BC边上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∠ACB=35°.∴∠ECB=12∵∠AEC是△BEC的外角,50∠=︒,B∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.10、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.。

湘教版八年级数学下册含30°角的直角三角形的性质及其应用同步测试题

湘教版八年级数学下册测试题测试题湘教版初中数学1.1 直角三角形的性质和判定(Ι)第2课时含30°角的直角三角形的性质及其应用要点感知1在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的__________.预习练习1-1 已知直角三角形中30°角所对的直角边为2 cm,则斜边的长为( )A.2 cmB.4 cmC.6 cmD.8 cm要点感知2在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于__________.预习练习2-1在Rt△ABC中,∠C=90°,BC=1,AB=2,∠B的度数为( )A.30°B.45°C.60°D.75°知识点 1 在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半1.△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边BC=4 cm,最长边AB的长是( )A.5 cmB.6 cmC.7 cmD.8 cm2.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A.3.5B.4.2C.5.8D.7第2题图第4题图3.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2 cm,则AB的长度是( )A.2 cmB.4 cmC.8 cmD.16 cm4.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是__________.5.在△ABC中,已知∠A=12∠B=13∠C,它的最长边是8 cm,求它的最短边的长.知识点2 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°6.在直角三角形中,最长边为10 cm,最短边为5 cm,则这个三角形中最小的内角为__________度.7.在△ABC中,如果∠A+∠B=∠C,且AC=12AB,那么∠B=__________.8.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是( )A.30°B.60°C.30°或150°D.不能确定9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长.知识点3 含30°锐角的直角三角形的应用10.如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时40海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行2小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?11.在Rt△ABC中,∠C=90°,∠B=30°,则( )A.AB=2ACB.AC=2ABC.AB=ACD.AB=3AC12.等腰三角形的顶角是一个底角的4倍,如果腰长为10 cm,那么底边上的高为( )A.10 cmB.5 cmC.6 cmD.8 cm13.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,点B恰好落在AB 的中点E处,则∠A等于( )A.25°B.30°C.45°D.60°14.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,且BD∶DC=2∶1,则∠B满足( )A.0°<∠B<15°B.∠B=15°C.15°<∠B<30°D.∠B=30°第14题图第16题图=__________.15.在△ABC中,已知AB=4,BC=10,∠B=30°,那么S△ABC16.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.17.如图,△ABC中,∠C=90°,∠A=30°,周长为3+33,AC=3,求BC的长.18.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.19.等腰三角形一腰上的高等于这个三角形一条边长度的一半,则其顶角为( )A.30°B.30°或150°C.120°或150°D.30°或120°或150°20.已知如图,在△ABC中,AB=AC,AD⊥AC,CD=2,BD=1,求∠C的度数.参考答案要点感知1一半预习练习1-1 B要点感知2 30°预习练习2-1 C1.D2.D3.C4.25.设∠A=x,则∠B=2x,∠C=3x,∵x+2x+3x=180°,∴x=30°.∴∠C=90°. ∵AB=8 cm,∴BC=4 cm.故最短的边的长是4 cm.6.307.30°8.C9.在Rt△AEC中,∵2CE=AC,∴∠1=∠2=30°.∵AD=BD=4,∴∠B=∠2=30°.∴∠ACD=180°-30°×3=90°.∴CD=12AD=2.10.由题意知∠CAD=30°,∠CBD=60°,∴∠ACB=30°. 在△BCD中,∠CBD=60°,∴∠BCD=30°.∴AB=BC=2BD.∵船从B到D走了2小时,船速为每小时40海里,∴BD=80海里.∴AB=BC=160海里.∴AD=160+80=240(海里).因此船从A到D一共走了240海里.11.A 12.B 13.B 14.D 15.10 16.1217.Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC.∴解得,即BC18.证明:∵∠ACB=90°,M为AB中点,∴CM=12AB=BM.∵∠ACB=90°,∠A=30°,∴CB=12AB=BM.∴CM=CB.∵D为MB的中点,∴CD⊥BM,即CD⊥AB.19.D20.取CD的中点E,连接AE, ∵AD⊥AC,∴∠CAD=90°. ∵E是CD的中点,CD=2,∴AE=12CD=DE=CE=12×2=1.∵BD=1,∴BE=CD.∵AB=AC,∴∠B=∠C.又∵AB=AC,∴△ABE≌△ACD(SAS).∴AD=AE=1=12 CD.又∵∠CAD=90°,∴∠C=30°.掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。

2020-2021学年北师大版七年级数学下册第四章4.1认识三角形 同步测试

北师大版七年级数学下册第四章4.1认识三角形同步测试(原卷版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.113.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC 6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm28.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△二.填空题11.如图,AB△CD,CE与AB交于点A,BE△CE,垂足为E.若△C=37°,则△B= .12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.13.在三角形的三条高中,位于三角形外的可能条数是条.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有个.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.北师大版七年级数学下册第四章4.1认识三角形同步测试(解析版)一.选择题1.下列关于三角形分类不正确的是(整个大方框表示全体三角形)()A.B.C.D.【分析】给出知识树,分析其中的错误,这就要求平时学习扎实认真,概念掌握的准确.【解答】解:根据选项,可知根据角和边来对三角形分别进行分类.故选:C.【点评】此题考查三角形问题,很基础的一道考查数学概念的题目,在考查知识的同时.也考查了学生对待学习的态度,是一道好题.2.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是()A.3B.5C.7D.11【分析】设第三边的长为x,再由三角形的三边关系即可得出结论.【解答】解:设第三边的长为x,△三角形两边的长分别是3和5,△5﹣3<x<5+3,即2<x<8.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.【点评】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.4.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.【点评】本题主要考查了三角形的角平分线、中线和高,注意不同形状的三角形的高的位置.5.若AD是△ABC的中线,则下列结论正确的是()A.AD△BC B.BD=CD C.△BAD=△CAD D.AD=BC【分析】根据三角形的中线的定义即可判断.【解答】解:△AD是△ABC的中线,△BD=DC,故选:B.【点评】本题考查三角形的中线的定义,解题的关键是熟练掌握基本知识,属于中考基础题.6.现有两根笔直的木棍,它们的长度是20cm和30cm,若不改变木棍的长度,要做一个三角形的木框,则第三根木棍的长度可能为()A.10cm B.20cm C.50cm D.60cm【分析】先设第三根木棒的长为lcm,再根据三角形的三边关系求出l的取值范围,找出符合条件的l的值即可.【解答】解:设第三根木棒的长为lcm,△两根笔直的木棍,它们的长度分别是20cm和30cm,△30cm﹣20cm<l<30cm+20cm,即10cm<l<50cm.△四个选项中只有B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.7.如图,已知AD是△ABC的边BC上的中线,CE是△ADC的边AD上的中线,若△ABD的面积为16cm2,则△CDE的面积为()A.32 cm2B.16cm2C.8cm2D.4cm2【分析】根据三角形的中线把三角形分成面积相等的两部分,进而解答即可.【解答】解:△AD是△ABC的边BC上的中线,△ABD的面积为16cm2,△△ADC的面积为16cm2,△CE是△ADC的边AD上的中线,△△CDE的面积为8cm2,故选:C.【点评】本题主要考查了三角形面积的求法和三角形的中线,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.8.如图,在△ABC中,D为BC上一点,△1=△2,△3=△4,△BAC=105°,则△DAC的度数为()A.80°B.82°C.84°D.86°【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【解答】解:△△BAC=105°,△△2+△3=75°△,△△1=△2,△3=△4,△△4=△3=△1+△2=2△2△,把△代入△得:3△2=75°,△△2=25°,△△DAC=105°﹣25°=80°.故选:A.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理是解题的关键.9.如图,△ABC中,△A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时△C′DB=74°,则原三角形的△C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得△1=△2,△2=△3,△CDB=△C′DB=74°,则△1=△2=△3,即△ABC=3△3,根据三角形内角和定理得△3+△C=106°,在△ABC 中,利用三角形内角和定理得△A+△ABC+△C=180°,则20°+2△3+106°=180°,可计算出△3=27°,即可得出结果.【解答】解如图,△△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,△△1=△2,△2=△3,△CDB=△C′DB=74°,△△1=△2=△3,△△ABC=3△3,在△BCD中,△3+△C+△CDB=180°,△△3+△C=180°﹣74°=106°,在△ABC中,△△A+△ABC+△C=180°,△20°+2△3+(△3+△C)=180°,即20°+2△3+106°=180°,△△3=27°,△△ABC=3△3=81°,△C=106°﹣27°=79°,故选:D.【点评】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出△ABC和△CBD的倍数关系是解决问题的关键.10.如图,△ABC的角平分线CD、BE相交于F,△A=90°,EG△BC,且CG△EG于G,下列结论:△△CEG=2△DCB;△△ADC=△GCD;△CA平分△BCG;△△DFB=△CGE.其中正确的结论是()A.△△B.△△△C.△△△D.△△△△【分析】△正确.利用平行线的性质证明即可.△正确.首先证明△ECG=△ABC,再利用三角形的外角的性质解决问题即可.△错误.假设结论成立,推出不符合题意即可.△正确.证明△DFB=45°即可解决问题.【解答】解:△EG△BC,△△CEG=△BCA,△CD平分△ACB,△△BCA=2△DCB,△△CEG=2△DCB,故△正确,△CG△EG,△△G=90°,△△GCE+△CEG=90°,△△A=90°,△△BCA+△ABC=90°,△△CEG=△ACB,△△ECG=△ABC,△△ADC=△ABC+△DCB,△GCD=△ECG+△ACD,△ACD=△DCB,△△ADC=△GCD,故△正确,假设AC平分△BCG,则△ECG=△ECB=△CEG,△△ECG=△CEG=45°,显然不符合题意,故△错误,△△DFB=△FCB+△FBC=(△ACB+△ABC)=45°,△CGE=45°,△△DFB=△CGE,故△正确,故选:B.【点评】本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题11.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B= .11.答案:53°解析:【解答】△AB△CD,△△C=△BAE=37°,△BE△CE,△△BAE=90°,△△B=90°-△BAE=90°-37°=53°.【点评】先根据平行线的性质得出∠BAE的度数,再由直角三角形的性质即可得出结论.12.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形21个.【分析】根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,即第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21.注意规律:后面的图形比前面的多4个.【解答】解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n =6时,原式=21,故答案为:21.【点评】注意正确发现规律,根据规律进行计算.13.在三角形的三条高中,位于三角形外的可能条数是0或2条.【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外.由此即可确定三角形的三条高中,在三角形外部的最多有多少条.【解答】解:△当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内.△三角形的三条高中,在三角形外部的最多有2条.故答案为:0或2.【点评】此题主要考查了三角形的高,关键是掌握三角形高的定义和画法.14.如图,△ABC的中线BD、CE相交于点O,OF△BC,且BC=4cm,OF=2cm,则四边形ADOE的面积是4cm2.【分析】根据三角形的面积=底×高÷2,求出△BOC的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD、△ACE的面积均是△ABC的面积的一半,据此判断出四边形ADOE的面积等于△BOC的面积,据此解答即可.【解答】解:△BD、CE均是△ABC的中线,△S△BCD=S△ACE=S△ABC,△S四边形ADOE+S△COD=S△BOC+S△COD,△S四边形ADOE=S△BOC=4×2÷2=4cm2.故答案为:4cm2.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2.15.一个三角形的周长为偶数,其中两条边长分别为6和2019,则满足上述条件的三角形有5个.【分析】根据三角形的三边关系求得第三边的取值范围,再根据三角形的周长是偶数,且已知的两边和是奇数,则三角形的第三边应该是奇数,从而求解.【解答】解:根据三角形的三边关系,得三角形的第三边大于2013而小于2025.根据题意,得三角形的第三边应该是奇数,则三角形的第三边可以为:2015,2017,2019,2021,2023共5个.故答案为:5.【点评】此题考查了三角形的三边关系,同时能够根据周长和已知的边判断第三边应满足的条件.16.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1,△A1BC和△A1CD的平分线交于点A2,得△A2,…,△A2017BC和△A2017CD的平分线交于点A2018,则△A2018=度.【分析】利用角平分线的性质、三角形外角性质,易证△A1=△A,进而可求△A1,由于△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018即可求得.【解答】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2018=△A=()°,故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出△A1=△A,并能找出规律.三.解答题17.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.【分析】(1)设AE=xcm,根据三角形BDE与四边形ACDE的周长相等列方程,解方程即可;(2)找出图中所有的线段,再根据所有线段长度的和是53cm,求出2BC+DE,得到答案.【解答】解:(1)△三角形BDE与四边形ACDE的周长相等,△BD+DE+BE=AC+AE+CD+DE,△BD=DC,△BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,△AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,△2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,△BC+DE=(cm).【点评】本题考查的是三角形的周长、四边形的周长,正确作出图中所有线段是解题的关键.18.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,△CAB =50°,△C=60°,求△DAE和△BOA的度数.【分析】先利用三角形内角和定理可求△ABC,在直角三角形ACD中,易求△DAC;再根据角平分线定义可求△CBF、△EAF,可得△DAE的度数;然后利用三角形外角性质,可先求△AFB,再次利用三角形外角性质,容易求出△BOA.【解答】解:△△CAB=50°,△C=60°△△ABC=180°﹣50°﹣60°=70°,又△AD是高,△△ADC=90°,△△DAC=180°﹣90°﹣△C=30°,△AE、BF是角平分线,△△CBF=△ABF=35°,△EAF=25°,△△DAE=△DAC﹣△EAF=5°,△AFB=△C+△CBF=60°+35°=95°,△△BOA=△EAF+△AFB=25°+95°=120°,△△DAC=30°,△BOA=120°.故△DAE=5°,△BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出△EAF、△CBF,再运用三角形外角性质求出△AFB.19.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.【分析】利用三角形三边关系定理,先确定第三边的范围,进而解答即可.【解答】解:△在△ABC中,AB=3,AC=7,△第三边BC的取值范围是:4<BC<10,△符合条件的偶数是6或8,△当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.△△ABC的周长为16或18.【点评】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.20.若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|20.答案:见解答过程.解析:【解答】根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.△|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b +c+a-b=3c+a-b.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算.21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.21.答案:100°.【解答】△AD是△ABC的角平分线,△BAC=60°,△△DAC=△BAD=30°.△CE 解析:是△ABC的高,△BCE=40°,△△B=50°,△△ADB=180°-△B-△BAD=180°-30°-50°=100°.【分析】根据AD是△ABC的角平分线,△BAC=60°,得出△BAD=30°.再利用CE是△ABC 的高,△BCE=40°,得出△B的度数,进而得出△ADB的度数.22.(1)如图1,则△A、△B、△C、△D之间的数量关系为△A+△B=△C+△D.(2)如图2,AP、CP分别平分△BAD、△BCD.若△B=36°,△D=14°,求△P 的度数;(3)如图3,CP、AG分别平分△BCE、△F AD,AG反向延长线交CP于点P,请猜想△P、△B、△D之间的数量关系.并说明理由.【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得△BAP=△DAP,△BCP=△DCP,结合(1)的结论可得2△P=△B+△D,再代入计算可求解;(3)根据角平分线的定义可得△ECP=△PCB,△F AG=△GAD,结合三角形的内角和定理可得△P+△GAD=△B+△PCB,△P+(180°﹣△GAD)=△D+(180°﹣△ECP),进而可求解.【解答】解:(1)△△AOB+△A+△B=△COD+△C+△D=180°,△AOB=△COD,△△A+△B=△C+△D,故答案为△A+△B=△C+△D;(2)△AP、CP分别平分△BAD、△BCD,△△BAP=△DAP,△BCP=△DCP,由(1)可得:△BAP+△B=△BCP+△P,△DAP+△P=△DCP+△D,△△B﹣△P=△P﹣△D,即2△P=△B+△D,△△B=36°,△D=14°,△△P=25°;(3)2△P=△B+△D.理由:△CP、AG分别平分△BCE、△F AD,△△ECP=△PCB,△F AG=△GAD,△△P AB=△F AG,△△GAD=△P AB,△△P+△P AB=△B+△PCB,△△P+△GAD=△B+△PCB,△△P+△P AD=△D+△PCD,△△P+(180°﹣△GAD)=△D+(180°﹣△ECP),△2△P=△B+△D.【点评】本题主要考查三角形的内角和定理,角平分线的定义,及角的计算,灵活运用等式的性质进行角的计算是解题的关键.。

北师大版七年级数学下册第四章三角形同步测试题

北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:7.1与三角形有关的线段~7.2与三角形有关的角同步测试题C
(人教新课标七年级下)
一、选择题
1.三角形的三个外角之比为2:3:4,则与之相应的三个内角之比为( )
A.2:3:4 B.4:3:2 C.5:3:1 D.1:3:5
2.如图4,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的
根据是( )
A.两点之间直线段最短 B.矩形的稳定性
C.矩形四个角都是直角 D.三角形的稳定性

3.如图5,1∠,2∠,3∠,4∠恒满足的关系式是( )
A.1234∠∠∠∠ B.1243∠∠∠∠
C.1423∠∠∠∠ D.1423∠∠∠∠
4.如图6,123456∠∠∠∠∠∠等于( )

5.如图7,在ABC△中,D是AB上的一点,E是AC上一点,BECD,相交于F,
70A∠,20ACD∠,28ABE∠
,则CFE∠的度数为( )

A.62 B.68 C.78 D.90
6.如图2,以BC为公共边的三角形的个数是( )
A.2 B.3 C.4 D.5
7.若三条线段中3a,5b,c为奇数,那么由abc,,为边组成的三角形共有( )
A.1个 B.3个 C.无数多个 D.无法确定
8.如果线段abc,,能组成三角形,那么它们的长度比可能是( )
A.1:2:4 B.1:3:4 C.3:4:7 D.2:3:4
9.不一定能构成三角形的一组线段的长度为( )

A.3,7,5 B.3x,4x,50xx

C.5,5,010aa D.2a,2b,
10.已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或
大小不同的三角形的个数是( )
A.5 B.7 C.8 D.10
二、填空题

11.如图1,ABC∠的平分线交ACB∠的平分线于l,若60A∠,则
BIC∠
_____.

12.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.
13.三角形两个外角的和等于第三个内角的4倍,则第三个内角等于_____.
14.如图2,ABCDE∠∠∠∠∠_____.

15.如图3,1234∠∠∠∠_____.
16.两根木棒的长分别为7cm和10cm.要选择第三根木棒,将它们钉成一个三角形框架,
那么,第三根木棒长x(cm)的范围是______.
17.如图1,1234∠∠∠∠______.

18.ABC△中,6a,8b,则周长P的取值范围是______.
19.abc,,是ABC△中A∠,B∠,C∠的对边,若4a,3b,14c,则

的取值范围是______.

20.若abc,,为ABC△的三边,则abcabc______0(填“>,=,<”).

三、解答题
21. 已知,如图8,点D是ABC△中AC边上的一点,点E是BC边延长线上一点,说
明:ADBCDE∠∠.

22. 已知,如图9,ABC△中,ABC∠的平分线与ACE∠的平分线交于D点,若
80A∠
,求D∠的度数.

23. 如图10,已知折线ABCDE,且360BCD∠∠∠.说明:ABCD∥.
24.已知:如图3,ABCD∥,45B∠,78BED∠,求D∠的度数.
25.已知,如图4,ABCD∥,EHAB⊥,垂足为H,若150∠,则E∠为多少度?

26.已知,如图5,在ABC△中,O是高AD和BE的交点,观察图形,试猜想C∠和
DOE∠
之间具有怎样的数量关系,并论证你的猜想.

答案
一、选择题
1.C 2.D 3.D 4.B 5.A6.C 7.B 8.D 9.D 10.B
二 、填空题

11.120 12.1,3 13.60 14.180 15.360

16.317x 17.280 18.1628p 19.214 20.<
21.略.
22.40.
23.提示:连结BD或作BC的延长线.
24.33 25.40 26.180CDOE∠∠.证明略.

相关文档
最新文档