《概率统计》公式符号汇总表

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学中的一门重要分支,用于研究随机事件的发生概率和规律性。

下面是概率论中的一些常用公式和定理,供参考:1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的情况数,n(S)表示样本空间中所有事件发生的情况数。

2.加法定理:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B发生的概率。

3.乘法定理:P(A∩B)=P(B,A)×P(A)其中,P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。

4.互斥事件的概率:若事件A和事件B互斥(即不能同时发生),则P(A∪B)=P(A)+P(B) 5.条件概率:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率。

6.贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率;P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。

7.全概率公式:P(A)=∑[P(A∩B_i)]其中,事件B_1,B_2,...,B_n互斥且构成样本空间,P(B_i)不为0,P(A∩B_i)表示事件A和事件B_i同时发生的概率。

8.期望值:E(X)=∑[x_i×P(X=x_i)]其中,X为随机变量,x_i为随机变量X的取值,P(X=x_i)为随机变量X取值为x_i的概率。

9.方差:Var(X) = E[(X - E(X))^2]其中,X为随机变量。

10.协方差:Cov(X, Y) = E[(X - E(X)) × (Y - E(Y))]其中,X和Y为两个随机变量。

11.独立事件的概率:若事件A和事件B独立,即P(A∩B)=P(A)×P(B)12.独立随机变量的期望值:E(XY)=E(X)×E(Y)其中,X和Y为独立随机变量。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学中研究随机事件的理论,它用于描述事件发生的可能性,并通过概率的计算和分析来预测、评估和决策。

下面给出一些概率论中常用的公式,帮助你更好地理解和运用概率论。

1.概率定义公式:P(A)=N(A)/N,表示事件A发生的概率,N(A)代表事件A发生的次数,N代表试验的总次数。

2.互补事件公式:P(A')=1-P(A),表示事件A的补事件发生的概率。

3.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),表示事件A或B发生的概率。

4.独立事件公式:P(A∩B)=P(A)*P(B),表示事件A和事件B同时发生的概率,当事件A和事件B相互独立时成立。

5.条件概率公式:P(A,B)=P(A∩B)/P(B),表示事件B已经发生时事件A发生的概率。

6.乘法公式:P(A∩B)=P(A,B)*P(B),也可以写作P(A∩B)=P(B,A)*P(A),表示事件A和事件B同时发生的概率。

7.全概率公式:P(A)=ΣP(A,Bᵢ)*P(Bᵢ),表示事件A发生的概率,Bᵢ代表一组互不相容且构成样本空间的事件。

8.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A),表示在事件A发生的条件下,事件B发生的概率。

9.随机变量的概率公式:P(X=x)≥0,表示随机变量X取值为x的概率非负。

10.随机变量期望公式:E(X)=ΣxP(X=x)*x,表示随机变量X的期望或均值。

11.随机变量方差公式:Var(X) = E[(X - µ)²],表示随机变量X的方差,其中µ为X的期望。

12.二项分布公式:P(X=k)=C(n,k)*p^k*q^(n-k),表示n次独立重复实验中,事件发生k次的概率,其中,C(n,k)为组合数,p为事件发生的概率,q为事件不发生的概率。

13.泊松分布公式:P(X=k)=e^(-λ)*(λ^k)/k!,表示单位时间或空间中,事件发生了k次的概率,λ为事件发生率。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。

在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。

下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。

概率统计公式大全

概率统计公式大全

概率统计公式大全第1章随机事件及其概率P(A) =P(B 1)P(A| B 1) P(B 2)P(A| B 2)P(B n )P(A|B n )。

我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发 生或A 不发生;n次试验是重复进行的,即A 发生的 概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否公式2°则有nA二B ii -4(16 设事件B 1, 1。

B 1, P(Bi)>0,—, B 2,…, B 2 •… 2 •…B n及A 满足Bn两两互不相贝叶斯 nA B i,且 P(A)公式 (用于 求后验P(B i /A)nP(B i )P (A/Bi),i=1 , 2, •…n o、P(B j)P(A/B j)此公式即为贝叶斯公式。

驴i), (“1, 率 o P( B i/ A), 后验概率 o 的概率规律,并作出了由果溯因”的 推断。

2,…,ni =1 2(17)伯努利第二章随机变量及其分布P k二 1 (1) P k_o ,kT2, (2) k.( 1) 离散型随机变量的 分布X对于连续型随机变量 , F(x) = f(x)dxa4)分布 函数设X 为随机变量,x 是任意实数,则函 数F(x) =P(X沁)称为随机变量X 的分布函数,本质上是一个累积函数。

P(a XEb) =F(b)—F(a)可以得到X 落入区 间(a,b ]的概率。

分布函数F(x)表示随机变量 落入区间(-X, x ]的概率。

分布函数具有如下性质:1° 2°岂 F (x)乞 1, -二::x ::二; F(x)是单调不减的函数,即-X2时, 有34° 5°F(X 1)二 F (X 2);F(-::)二 Jim F(x) = 0 , F(二)二 JimF(x)二 1 ; 即F(x)是右连续的;F(x 0HF(x), P(X = x) = F(x) _ F(x _0)。

概率统计公式大全

概率统计公式大全
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系:

P(1 )

P( 2
)

P( n
)

1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
P(A)= P(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )

m n

A所包含的基本事件数 基本事件总数
(9) 几何概型
当 B A 时,P(A-B)=P(A)-P(B)
当 A=Ω 时,P( B )=1- P(B)
(12) 条件概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
“由果溯因”的推断。
(17)
我们作了 n 次试验,且满足
标准文案
实用文档
伯努利概 型
每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
否是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或 者 P( )。
泊松分布是二项分布的极限分布(np=λ ,n→∞)。

概率论数理统计公式整理

概率论数理统计公式整理

概率论数理统计公式整理一、概率论公式1.定义公式:-事件概率的定义:若E为随机试验的一个事件,S为样本空间,则事件E发生的概率可以表示为P(E)=n(E)/n(S),其中n(E)表示事件E中元素的个数,n(S)表示样本空间S中元素的总数。

2.概率计算公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A,B为两个事件。

-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A,B为两个事件,且P(B)≠0。

-乘法公式:P(A∩B)=P(A)P(B,A),其中A,B为两个事件。

3.全概率公式与贝叶斯公式:-全概率公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(A)=ΣP(A,Bi)P(Bi),其中i=1,2,...,n。

-贝叶斯公式:设B1,B2,...,Bn为样本空间S的一组互不相容的事件,并且它们构成了对S的一个完全划分,即Bi∩Bj=∅(i≠j),且B1∪B2∪...∪Bn=S,则对于任意事件A,有P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中i=1,2,...,n。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布:P(X=x)=p(x),其中x为随机变量X的取值,p(x)为概率质量函数。

- 连续型随机变量的概率密度函数: f(x) ≥ 0,且∫f(x)dx = 12.随机变量的数学期望:- 离散型随机变量的数学期望: E(X) = Σxip(xi),其中xi为随机变量X的取值,p(xi)为X取值为xi的概率。

- 连续型随机变量的数学期望: E(X) = ∫xf(x)dx。

3.方差和标准差:- 离散型随机变量的方差: Var(X) = E[(X - E(X))^2] = Σ(xi - E(X))^2p(xi)。

概率统计实用公式整理专为研究者和实践者准备的指南

概率统计实用公式整理专为研究者和实践者准备的指南

概率统计实用公式整理专为研究者和实践者准备的指南概率统计是数学中一门重要的学科,作为一种应用广泛的工具,被广泛应用于各个领域的研究和实践中。

在进行概率统计的计算和分析过程中,掌握一些实用的公式非常重要。

本文将整理一些常用的概率统计公式,旨在为广大研究者和实践者提供一个便捷的指南。

一、基本概率公式在概率统计的计算中,一些基本的概率公式是必不可少的。

下面是几个常用的基本概率公式:1. 乘法定理:P(A∩B) = P(A) × P(B|A)2. 加法定理:P(A∪B) = P(A) + P(B) − P(A∩B)3. 条件概率公式:P(A|B) = P(A∩B) / P(B)4. 全概率公式:P(B) = ∑[i=1, n] P(Ai) × P(B|Ai)二、离散分布公式在离散概率分布中,一些常见的分布公式可以用来描述随机变量的特征。

以下是几个常用的离散分布公式:1. 二项分布公式:P(X=k) = C(n,k) × p^k × (1-p)^(n-k)2. 泊松分布公式:P(X=k) = (e^(-λ) × λ^k) / k!3. 几何分布公式:P(X=k) = (1-p)^(k-1) × p三、连续分布公式连续概率分布描述的是在某一范围内随机变量取值的概率。

以下是几个常用的连续分布公式:1. 正态分布公式:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))2. 指数分布公式:f(x) = λ * e^(-λx)3. 均匀分布公式:f(x) = 1 / (b-a),其中a ≤ x ≤ b四、描述统计公式描述统计是对数据进行整理和总结的过程,以下是一些常用的描述统计公式:1. 均值公式:μ = (x1 + x2 + ... + xn) / n2. 方差公式:σ^2 = [(x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2] / n3. 标准差公式:σ = √(σ^2)五、假设检验公式假设检验是概率统计中用来推断总体特征的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率统计》公式、符号汇总表及各章要点 (共3页)
第一章
均独立。

与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( )
()()( (1)⋅=⇔=
)
()
()()( )()()()()( )3()
(1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ⋅=
⋅++⋅=-=-⊆-=-⋅=⋅=-+=ΛY
第二、三章
一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑=
j
ij i p P ,⎰+∞

-=dy y x f x f X ),()(
(2)独立关系:J I IJ P P P Y X =⇔独立与 或)()()(y f x f y x f Y X =,
),,(11n X X Λ与),,(21n Y Y Λ独立),,(11n X X f Λ⇒与),,(21n Y Y g Λ独立
(3)随机变量函数的分布(离散型用列表法)
一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法
二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布- ⎰

+∞

-+∞

--=-=
dy y y z f dx x z x f z f Z ),(),()(
M 、N 的分布---------连续型用分布函数法 第四章
(1)期望定义:离散:∑=
i
i
i p
x X E )(
连续:⎰

⎰+∞∞-+∞

-+∞

-==dxdy y x xf dx x xf X E ),()()(
方差定义:)()(]))([()(2
2
2
X E X E X E X E X D -=-=
离散:∑-=i
i i
p X E x
X D 2))(()(
连续:⎰
+∞

--=
dx x f X E x X D X )())(()(2
协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--= 相关系数定义:)
()(),(Y D X D Y X COV XY =
ρ
K 阶原点矩定义:)( K k X E ∆μ K 阶中心矩定义:]))([( K k X E X E -∆σ (2)性质:
C C E =)( ;)()(X CE CX E = ;)()()(Y E X E Y X E ±=±;)()( )(Y E X E Y X XY E 独立与 0)(=C
D ;)()(2X D C CX D = ;
)()( 2)(Y D X D Y X Y X COV Y D X D Y X D +±+=±独立与),()()(
)(),()()(,Y bdD Y X COV bc ad X acD dY cX bY aX COV +++=++)(
1≤XY ρ ; {}11=+=⇔=b aX Y p XY ρ
X 与Y 独立 0=⇒XY ρ 即X 与Y 线性无关,但反之不然 。

⎰∑+∞

-==dx
x f x g X g E p x g X g E i
i i )()())(( ; )())((


∑∑+∞∞-+∞

-==dxdy y x f y x g Y X g E p y x g Y X g E j
i
ij j i ),(),()),(( ; ),()),((
第五章
(1)设μ=)(X E ,2
)(σ=X D ,则:{}221ε
σεμ-≥≤-X p ,亦即:{}22εσεμ≤≥-X p
(2)设n X X ,,1Λ独立同分布则)(n X −→−
P
)()()(i n X E X E = ; n
n A −→−P
)(A p (3)若X ~),(p n B 则:当n 足够大时
npq
np X - 近似服从 )1,0(N ;
(4) 设n X X ,,1Λ独立同分布,并设μ=)(i X E ,2
)(σ=i X D
则:当n 足够大时 n
X n σ
μ
-)( 近似服从 )1,0(N
第六章
(1)设n X X ,,1Λ是来自总体X 的样本,μ=)(X E ,2
)(σ=X D 样本均值:∑==n
i i n X n X 1)
(1 ,μ=)()(n X E ,n
X D n 2)()(σ= 样本方差:][11)(111
2)(212
)(2
∑∑==--=--=n i n i n i n i X n X n X X n S ,22)(σ=S E
)(n X −→−
P μ ,2B −→−P 2σ ,2S −→−P 2σ 样本K 阶原点矩∑==n i k i k X n A 1
1−→−P
总体K 阶原点矩)( k k X E =μ
(2)2
212n X X ++=Λχ (i X 是来自)1,0(N 的简单样本)
n
Y X t =
(X ~)1,0(N ,Y ~)(2
n χ,X 与Y 独立)
2
1//n Y n X F =
(X ~)(12n χ,Y ~)(22
n χ,X 与Y 独立) (3)设n X X ,,1Λ是来自),(2
σμN 的简单样本
则 :n X n σμ
-)( ~ )1,0(N ,n
S X n μ-)(~ )1(-n t ,2
2)1(σS n -~)1(2
-n χ 第七章
参数估计的问题:),(θx F X 的形式为已知,θ未知待估 参数θ的置信度为1—α的置信区间概念
参数估计方法:(1)矩估计
(2)最大似然估计
似然函数:离散:{}{}n x X P x X P L ===Λ1)(θ
连续:)()()(1n X X x f x f L Λ=θ
(3)单正态总体μ、2
σ的区间估计(见课本P 137页表7—1)
点估计评选标准:无偏性,有效性,一致性 。

( )(n X 、2S 分别是μ、2
σ的无偏估计量 ) 第八章
参数假设检验的问题:),(θx F X 的形式为已知,θ未知待检 假设检验的 I 类(弃真)错误 、∏类(取伪)错误的概念 显著性水平为α的显著性检验概念
单正态总体μ、2
σ显著性检验方法:(见课本P 151页表8—2,P 154页表8—3) *七个常用分布(见课本P 82页表4—1 补充超几何分布) 正态分布),(2
σμN 的性质: (1)
σ
μ
-X ~ )1,0(N , b aX +~),(2
2σμa b a N + ,3σ原则
(2)i X ~ ),(2
i i N σμ,i X 之间相互独立, 则:
i n
i i X
c ∑=1
~ ),(
21
2
1
i
n
i i
i
n i i
c c N σ
μ∑∑==。

相关文档
最新文档