虚拟地理环境中时态信息可视化表达方法研究
如何在虚拟现实技术中实现真实的气候和天气模拟效果

如何在虚拟现实技术中实现真实的气候和天气模拟效果虚拟现实技术(Virtual Reality,简称VR)作为一种先进的交互式技术,已经在各个领域取得了令人瞩目的进展。
然而,在实现真实的虚拟现实体验过程中,模拟真实的气候和天气效果是至关重要的一环。
本文将就如何在虚拟现实技术中实现真实的气候和天气模拟效果展开讨论。
在虚拟现实技术中实现真实的气候和天气模拟效果,首先需要建立一个复杂而逼真的气候系统模型。
这个模型应该能够模拟出各种气候现象,包括温度、湿度、风力、降雨、雪等。
为了达到真实的模拟效果,模型需要考虑到气候系统中的多个因素,并采用先进的物理算法进行计算。
这些算法应基于真实的气象数据和地理信息数据,并将其与虚拟现实场景进行融合。
其次,为了实现真实的气候和天气模拟效果,虚拟现实系统需要准确获取和展示气候信息。
一个可行的方式是通过气象传感器收集真实世界中的气象数据,并将这些数据传输到虚拟现实系统中。
传感器能够测量温度、湿度、风速等气象参数,并将其转换为数字信号传输到系统中。
虚拟现实系统可以根据这些数据动态生成相应的虚拟天气效果,例如温度的变化、风的吹拂、雨的下落等,使用户感受到真实的气候环境。
此外,光线和音效在模拟真实气候和天气中也起着重要的作用。
通过调整虚拟场景中的光线照射效果,可以模拟出阳光、阴影等天气现象。
同时,根据不同的天气情况,如阵雨、雷雨等,引入相应的声音效果能够提升用户的沉浸感。
这种多感官的融合将为用户创造出更加真实的气候和天气模拟效果。
另外,交互体验是虚拟现实中必不可少的部分。
为了使用户能够在虚拟现实中感受到真实的气候和天气模拟效果,交互设备的精度和灵敏度需要得到提高。
例如,用户可以通过手势识别设备调整虚拟场景中的天气参数,或者通过语音识别技术与虚拟环境中的天气系统进行交互。
这样,用户将能够更加自由地控制气候和天气效果,获得更加真实的体验。
最后,为了实现真实的气候和天气模拟效果,虚拟现实系统需要有强大的计算和图形处理能力。
基于WebGIS的地理空间数据分析与可视化技术研究

基于WebGIS的地理空间数据分析与可视化技术研究WebGIS(Web Geographic Information System)是一种基于Web平台的地理信息系统,是利用互联网技术,将地理信息与网络技术相结合,实现地理数据的存储、查询、分析和可视化展示的一种技术手段。
本文将对基于WebGIS的地理空间数据分析与可视化技术进行研究和探讨。
一、地理空间数据分析技术研究:地理空间数据分析是利用地理信息系统,对地理空间数据进行挖掘、分析和模型构建的过程。
基于WebGIS的地理空间数据分析技术研究主要包括以下几个方面:1. 空间数据挖掘:空间数据挖掘是从大量的地理空间数据中发现隐藏在其中的有价值的知识和模式的过程。
如何有效地对地理空间数据进行分类、聚类、关联规则挖掘等,是地理空间数据分析的重要研究方向。
2. 空间数据模型和分析方法:建立合适的空间数据模型和分析方法,是进行地理空间数据分析的基础。
例如,空间网络模型、空间插值方法、空间多目标决策模型等都是研究的热点。
3. 面向WebGIS的空间数据分析算法:在WebGIS环境下,由于数据量大、实时性要求高等特点,需要研究面向WebGIS的高效算法。
例如,基于流数据的空间数据挖掘算法、面向WebGIS的实时空间查询算法等。
二、地理空间数据可视化技术研究:地理空间数据可视化是将地理信息以图形化的方式展示出来,让使用者更直观地理解和分析地理空间数据的过程。
基于WebGIS的地理空间数据可视化技术研究主要包括以下几个方面:1. 地图设计与制图技术:地图设计与制图技术是地理空间数据可视化的基础。
通过研究如何设计合理的地图符号、优化地图颜色、制作专题地图等技术,可以提高地理空间数据的可视化效果和传达信息的能力。
2. 三维地理可视化技术:三维地理可视化技术可以将地理空间数据以立体的方式呈现,增强用户的空间感知能力。
例如,基于WebGL等技术的三维地理可视化技术,可以实现地球模型的交互式浏览和动态可视化效果。
恢复性虚拟自然环境研究进展——基于CiteSpace_可视化分析

㊀第20卷㊀第4期2022年8月中㊀国㊀城㊀市㊀林㊀业JournalofChineseUrbanForestryVol 20㊀No 4Aug 2022恢复性虚拟自然环境研究进展∗基于CiteSpace可视化分析尹程程㊀李同予㊀翟长青㊀薛滨夏㊀安㊀欣哈尔滨工业大学建筑学院寒地城乡人居环境科学与技术工业和信息化部重点实验室㊀哈尔滨㊀150000㊀收稿日期:2022-04-23∗基金项目:黑龙江省自然科学基金面上项目(LH2020E052)ꎻ互动媒体设计与装备服务创新文化和旅游部重点实验室开放㊀㊀㊀㊀㊀㊀课题(20201)ꎻ互动媒体设备与装备服务创新文化和旅游部重点实验室开放课题(20206)㊀第一作者:尹程程(1998-)ꎬ女ꎬ硕士ꎬ研究方向为健康促进环境设计ꎮE-mail:923158337@qq com㊀通信作者:薛滨夏(1966-)ꎬ男ꎬ博士ꎬ副教授ꎬ研究方向为健康促进环境设计㊁园艺疗法ꎮE-mail:binxia68@126 com摘要:虚拟自然环境助益人类身心健康恢复已在诸多研究中得到证实ꎮ为了加深对恢复性虚拟自然环境所产生疗愈效益及其评估方法的了解ꎬ也为后续研究提供参考与新思路ꎬ文章以WOS(Webofscience)为数据库ꎬ获取2010 2022年恢复性虚拟自然环境研究领域共95篇英文文献ꎬ采用citespace可视化呈现ꎬ分析其研究国家与地区㊁发文作者与机构㊁关键词聚类㊁核心文献研究内容与方法ꎬ总结研究热点趋势ꎮ结果显示:恢复性虚拟自然环境研究于2018年受到广泛关注ꎬ主要研究集中在欧美高校ꎬ机构合作网络分散且合作程度低ꎻ热点研究领域有 探索心理生理恢复 减轻病人疼痛感 疗愈效益 心率变异性生物反馈 绿色运动 改善患者预后效果 环境感知 等ꎮ基于分析结果ꎬ从强化多理论研究应用㊁建立多维度恢复效果评估体系ꎬ以及加强作者间㊁机构间合作联系3方面提出研究展望ꎮ关键词:虚拟现实ꎬ恢复性环境ꎬCiteSpaceꎬ研究热点与趋势DOI:10.12169/zgcsly.2022.04.23.0001ResearchProgressinRestorativeVirtualNaturalEnvironment:VisualAnalysisBasedonCiteSpaceYinChengcheng㊀LiTongyu㊀ZhaiChangqing㊀XueBinxia㊀AnXin(SchoolofArchitectureꎬHarbinInstituteofTechnologyꎻKeyLaboratoryofColdRegionUrbanandRuralHumanSettlementEnvironmentScienceandTechnologyꎬMinistryofIndustryandInformationTechnologyꎬHarbin150000ꎬChina)Abstract:Ithasbeenprovedinmanystudiesthatvirtualnaturalenvironmentisconducivetohumanphysicalandmentalhealthrecovery.ThepaperusesWOS(WebofScience)asthedatabasetoretrieve95Englishpapersonrestorativevirtualnaturalenvironmentpublishedinrecent13yearsꎬandthenadoptsCitespacevisualizationtoanalyzetheresearchscaleꎬcountriesandregionsꎬauthorsandinstitutionsꎬkeywordclusteringꎬcorecontentandmethodsforliteratureresearchꎬandsummarizetheresearchhotspotsandtrends.Theresultsshowthattheresearchonrestorativevirtualnaturalenvironmentattractedwideattentionin2018ꎻEuropeanandAmericanuniversitiesarethemainforceintheresearchꎬandthecooperationnetworkisloosewithlesscollaborationꎻtheresearchhotspotsinclude exploringpsychophysiologicalrecovery ꎬ alleviatingpatients senseofpain ꎬ therapeuticbenefit ꎬ heartratevariabilitybiofeedback ꎬ greenexercise ꎬ improvingpatients prognosiseffect and environmentalperception .Basedontheresearchresultsꎬthepaperprospectsthefutureresearchfromthe3aspectsofmulti ̄theoryresearchandapplicationꎬestablishmentofmulti ̄dimensionevaluationsystemforrestoration㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第20卷effectandboostingthestrongcooperationandliaisonsbetweenauthorsandinstitutions.Keywords:virtualrealityꎬrestorativeenvironmentꎬCiteSpaceꎬresearchhotspotandtrend㊀㊀«2021世界卫生统计报告»指出:人类身心疾病发病率升高ꎬ愤怒㊁焦虑㊁抑郁等消极情绪会导致肥胖㊁糖尿病㊁心血管疾病㊁内分泌-免疫系统等多种疾病ꎮ身心健康问题已成为当代人类快节奏生活下需面临的巨大挑战ꎮ环境心理学者Kaplan[1]与Ulrich[2]专注于恢复性环境对心理生理复愈效益的研究ꎬ分别提出 注意力恢复理论 与 压力缓解理论 ꎮ恢复性自然环境是指对人身心健康具有恢复促进作用的自然环境ꎬ对人类健康的积极贡献已在许多研究中得到检验[3]ꎮ由于城市化导致自然生境减少ꎬ恢复性自然环境成为了城市中的稀缺资源ꎬ难以在日常生活中充分接触ꎬ人们迫切希望于日常生活中也能拥有身处自然般的身心体验ꎬ因此ꎬ虚拟现实技术为人们自然复愈提供了机会ꎮ近年来信息㊁传感㊁网络和人工智能等技术发展迅速ꎬ带动了智能康复技术发展ꎬ国内外已开展诸多利用智能技术进行临床康复干预与评估的研究应用[4]ꎬ虚拟现实技术作为人类健康治疗的一种替代手段ꎬ被用来引发特定情绪状态㊁调节呼吸㊁改善心率变异性水平㊁减少疼痛焦虑ꎬ提高专注力[5]ꎮ虚拟现实的沉浸感㊁交互性和构想性为用户提供身临其境的仿真视景ꎬ运用虚拟现实技术搭建人与自然间的桥梁ꎬ人们能便利地亲近体验自然ꎬ使虚拟自然环境疗愈成为缓解各类身心疾病的有效方法ꎬ是恢复性虚拟自然环境研究的目的与意义所在ꎮ本研究数据来源于Webofscience核心合集数据库ꎬ检索时间为2010 2022年ꎬ采用 主题 AND 文献类型 AND 语种 基本检索模式ꎬ主题词为恢复性自然环境(RestorativeEnvironmentORNatureORForestORGardenORGreen)㊁虚拟现实(VirtualRealityORVR)和康复(RecoveryORHealthORFitnessORHealingORBenefit)ꎬ使用AND检索式进行交叉组合检索ꎬ语种为 English ꎬ最后获取2010 2022年的文献共335篇ꎬ去除重复得到目标文献95篇ꎮ采用Citespace5 8 R3进行发文量㊁研究国家地区㊁发文作者及机构可视化分析ꎬ探究国际上此领域研究的国家㊁集中区域与研究强度ꎬ以及权威学者与合作网络ꎮ通过关键词聚类共现与时间线图谱展现文章研究重点ꎬ从时间维度体现关键词演变情况及发展趋势ꎻ通过高中心性关键词(BetweenCentrality)度量关键词节点重要程度ꎮ1研究规模1 1发文量如图1所示:恢复性虚拟自然环境领域研究始于2010年初ꎬ至2017年文章数量均较少ꎻ2018 2020年文章数量增加ꎬ尤其在2020年全球疫情暴发背景下ꎬ此领域开始引起学者重视[6-7]ꎻ2021年发文量稍有减少ꎬ但不足以说明热度退却ꎻ2022年第一季度内有11篇文章发表ꎮ图1㊀2010 2022年虚拟现实恢复性环境发文量变化1 2研究国家与地区研究国家共现图谱(图2)表明ꎬ研究强度较大的国家依次为英格兰㊁美国㊁中国㊁德国㊁图2㊀研究国家共现图谱841㊀第4期㊀尹程程㊀李同予㊀翟长青ꎬ等:恢复性虚拟自然环境研究进展㊀㊀意大利㊁加拿大㊁瑞典ꎮ研究国家时序图谱(图3)表明ꎬ依次开展研究的国家为加拿大㊁瑞典㊁英格兰㊁德国㊁美国㊁中国ꎮ图3㊀研究国家时序图谱1 3发文作者与研究机构如图4所示ꎬ节点较大的前4名作者为White㊁Browning㊁Chirico㊁Gaggioliꎮ目前作者间主要形成两个合作网络ꎬ分别以White㊁Browning为中心ꎬ前者进行虚拟自然环境减轻病患治疗痛苦体验方向研究[8]ꎬ后者进行虚拟自然环境唤醒积极情绪方向研究[9]ꎮ图4㊀发文作者共现图谱由图5可知ꎬ影响力较大的研究机构依次是埃克塞特大学㊁哈佛大学公共卫生学院㊁哈佛艺术研究生院㊁伯明翰大学㊁瑞典卡罗琳学院ꎮ目前研究机构间以爱沙尼亚生命科学大学和英属哥伦比亚大学为中心形成最大合作辐射网络ꎬ第二大合作网络以瑞典卡罗琳学院为中心ꎮ哈佛大学公共卫生学院㊁哈佛艺术研究生院研究强度分别位列全球第二㊁三名ꎬ联合波士顿癌症研究所形成美国本土最大合作网络ꎮ图5㊀发文机构网络共现图谱2研究热点2 1关键词分析由表1可知:环境㊁焦虑㊁压力恢复㊁森林㊁健康等词为近年热点词汇ꎻ中心性最高关键词为环境ꎬ包括景观㊁森林㊁绿地等自然环境ꎬ此外还涉及焦虑㊁压力㊁健康等心理生理相关词汇ꎮ表1㊀高中心性关键词前10总览编号㊀㊀关键词中心性初次出现年份关键词频次1environment(环境)0 532010182anxiety(焦虑)0 30201463recovery(恢复)0 252015134stressrecovery(压力恢复)0 222014165exposure(暴露)0 172017176perception(儿童)0 14201657forest(森林)0 12201848benefit(益处)0 112010149health(健康)0 1120171310landscape(景观)0 11201862 2关键词聚类分析如图6所示ꎬ文献规模最大为#0探索心理生理恢复ꎬ聚类轮廓值最高为#1减轻病人疼痛感ꎬ聚类#3心率变异性生物反馈和聚类#7环境感知为最新研究热点ꎮ筛选文献高被引频次的6个聚类ꎬ总结13篇核心文献研究内容与研究方法ꎬ其中被引频次最高的4篇文献为:Valtchanov等[10]最早提出虚拟自然具有复愈效果ꎻTashjian等[11]首次测量了虚拟自然对住院患者疼痛感受的影响ꎻGold等[12]发现虚拟自然体验可减少儿童抽血时的痛苦ꎻAnderson等[13]提出虚拟自然可为宇航员㊁潜水员等长期封闭人员放松(表2)ꎮ941㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第20卷图6㊀关键词聚类时间线图谱表2㊀6个聚类核心文献研究概况㊀聚类被引频次㊀作者㊀㊀研究内容㊀㊀㊀㊀研究方法探索心理生理恢复108Valtchanov等[10]虚拟自然环境恢复效果三种方式测量恢复效果:zippers㊁心率皮电㊁心算测验61Anderson等[13]使用虚拟现实呈现沉浸式自然场景皮电和心率变异性测量心理生理唤醒ꎻ问卷测量积极消极情绪和场景质量48Yu等[14]虚拟现实森林和城市环境对生理心理反应影响腕环检测心率变异性ꎻ试纸测唾液淀粉酶活性ꎻ血压计测血压ꎻ问卷测量情绪状态减轻病人疼痛感71Gold等[12]医疗领域迎来了虚拟现实技术应用的黄金时代注意力儿科143名患者㊁护理员㊁采血员分为VR组与对照组ꎬ完成术前术后疼痛㊁焦虑㊁满意度测量17Small等[15]虚拟恢复性环境疗法作为烧伤换药疼痛控制的辅助对25名严重烧伤的患者使用动态3D视听觉刺激ꎬ从痛苦刺激中转移疗愈效益36Tabrizian等[16]通过沉浸式虚拟环境探索城市绿地围护结构的可感知修复潜力观看公园广场不同空间与植被渗透度的虚拟全景图ꎬ对恢复与安全知觉进行评级20Gao等[17]不同虚拟现实环境下心理生理恢复与个体偏好研究探索6种不同VR环境注意力与情绪恢复差异ꎬ发现偏好影响情绪恢复心率变异性生物反馈22Yin等[18]室内亲生物环境对压力和焦虑恢复的影响测试VR亲生物环境和其他环境中的心率变异性恢复速度ꎬ前者比其他高出1 5%17Rockstroh等[19]虚拟现实在心率变异性生物反馈的应用将VR自然治疗㊁传统治疗与未治疗进行对照ꎬVR自然可以提供高质量的生物反馈体验绿色运动47Calogiuri等[20]在模拟自然中运动的环境感知㊁身体参与和情感反应在VR自然中进行绿色运动能够产生与在真实自然环境中类似的心理生理反应29Huang等[21]树木ꎬ草坪ꎬ建筑等不同类型环境对减压的影响探究三个具有不同绿色植被类型的VR环境恢复潜力环境感知11Mattila等[22]在虚拟现实森林环境中恢复体验VR森林环境ꎬ测量感知恢复性效果㊁活力和情绪9Tanja ̄Dijkstra等[8]虚拟自然改善病人牙科治疗体验和记忆对比三组牙科患者(自然环境VR㊁城市环境VR㊁标准治疗)治疗体验3研究热点领域3 1营造健康人居环境的虚拟自然1)提升办公空间疗愈能力ꎮYin等[18]使用虚拟现实技术模拟自然环境融入办公空间对办公人员可产生 镇静 效果ꎬ对血压㊁皮肤电导变化以及短期记忆都有积极影响ꎮYin等[23]评估不同虚拟自然元素对办公人员压力焦虑恢复影响差异ꎬ发现有虚拟绿植㊁木材㊁日光的窗景有助于恢复压力ꎬ改善焦虑ꎮ2)增强校园环境恢复效力ꎮ将虚拟自然作为学生与自然互动教育的补充ꎬ可在认知恢复和增强心理状态方面提供益处ꎮO Meara等[24]发现受考试焦虑影响的学生不断增多ꎬ通过提供虚拟现实绿色环境暴露有效削弱了学生考试焦虑ꎬ改善考试体验ꎬ提高成绩ꎮFleury等[25]发现在虚拟自然环境下工科学校设计专业学生的创造力会有所提升ꎬ他们的草图构思与方案设计更具创新性ꎮ3)改善生活居住环境品质ꎮ合理运用虚拟自然视听觉元素营造舒适宜居的室内环境ꎬ对长期051㊀第4期㊀尹程程㊀李同予㊀翟长青ꎬ等:恢复性虚拟自然环境研究进展㊀㊀在室内的人群健康有重要意义ꎮChung等[26]利用智能手机和便携VR眼镜ꎬ克服时空限制ꎬ居民可在360ʎ虚拟自然环境下恢复定向注意力ꎬ应对精神疲劳ꎮRiva等[7]发现每周居家虚拟自然花园体验可以缓解居民焦虑㊁增加幸福感㊁加强社会联系ꎬ减轻疫情下的心理负担ꎮYeom等[6]验证了室内虚拟绿墙在减轻居民压力方面的有效性ꎬ面积适中的小型绿墙会让居民感到更放松ꎮ4)指导城市景观规划设计ꎮ虚拟自然环境研究有助于环境心理学和公共卫生领域研究人员理解自然复愈的心理生理机制ꎬ辅助公共空间规划和人居环境自然化决策ꎬ增强居民在休息娱乐和社会交往方面幸福感与健康ꎮHuang等[27]研究发现绿草如茵㊁树木成林的虚拟城市环境更能支持压力恢复ꎮBaran等[28]使用虚拟环境探索居民对社区公园自然景观的安全感知ꎬ使城市规划者和公园管理者更好地理解城市绿地的空间特征如何影响人们的安全感知ꎬ进而影响使用模式以及城市公园提供的社会和心理效益的实现ꎮ3 2改善病患身心体验的虚拟自然1)减轻病人疼痛感ꎮ自然沉浸通过分散病患注意力达到生理上的病痛舒缓ꎬ将其用于伤口护理㊁化疗㊁牙科治疗等医疗程序中ꎬ病患高度沉浸并产生多模式视听感官体验ꎬ达到减轻疼痛的效果ꎮ相比其他虚拟元素ꎬ自然元素(自然窗景㊁流水㊁风景画)在医疗环境中最常见[29-30]:病房天花板布置模拟自然天空场景㊁墙上设置增强现实的自然壁画㊁候诊室放映虚拟水族馆影像等ꎬ烧伤患者在虚拟环境疗法后所感受到的疼痛刺激也极大减少[31-35]ꎮ虚拟自然环境充分调动有限的定向注意力资源ꎬ不需使患者更多地集中注意力ꎬ减轻疼痛与焦虑的效果更胜一筹ꎮ2)调节患者情绪状态ꎮ虚拟自然沉浸的情绪调节作用是通过影响患者心理活动来实现的ꎮTanja ̄Dijkstra等[8]使用虚拟自然改善牙科患者治疗体验ꎬ减少患者对牙齿疾病治疗的恐惧与焦虑情绪ꎮGerber等[36]为心脏外科病人呈现沉浸自然场景ꎬ减轻病人认知障碍ꎬ使病人得到明显放松与减压ꎮUwajeh等[37]运用VR营建康复花园帮助阿尔茨海默病人和痴呆症患者降低血压ꎬ改善压力焦虑水平ꎬ减少负面情绪ꎮScates等[38]给接受静脉注射的癌症中心患者观看虚拟自然视频ꎬ患者放松㊁平和感显著增加ꎮ3)提高治疗效益ꎮVeling等[39]运用沉浸自然环境对焦虑症㊁精神病㊁抑郁症和双向情感障碍患者进行心理健康干预ꎬ发现虚拟自然是一种高效的自我放松方式ꎬ可提高精神疾病治疗效益ꎮAppel等[40]发现虚拟自然是一种安全㊁廉价㊁非药理学的治疗方法ꎬ能显著提高感知及行动障碍的老年人抑郁㊁焦虑㊁认知困难等病症的治疗效果ꎮ3 3虚拟自然助力绿色运动绿色运动是将接触绿色自然与体力活动结合ꎬ比单纯进行体育锻炼能给人带来更大健康益处ꎬ与无自然元素的室内或城市环境中进行体育活动相比ꎬ绿色运动可明显减少压力疲劳㊁削弱愤怒悲伤等消极情绪[41]ꎮ许多城市居民无法定期进行绿色运动ꎬ虚拟自然可使参与者在室内运动也产生与在大自然中运动同样的健康效益ꎬ通过触发注意力恢复机制ꎬ降低人们感知体力消耗水平ꎬ诱导运动者进行更剧烈的身体活动ꎬ提高运动强度[42-43]ꎮ目前研发了许多虚拟现实绿色运动软件系统ꎬ如SteamVR平台已经做到室内外运动视野兼备的效果ꎬ用户可以选择自己喜欢的虚拟自然场景(海边㊁优美公路㊁雪山㊁丛林)ꎬ使用体感交互设备进行冲浪㊁摩托车骑行㊁滑雪㊁野外探索等运动ꎬ这些运动若未经专业训练在真实自然中很难独自完成ꎬ但通过VR设备就可轻松实现ꎬ有助增强参与者锻炼意愿ꎬ增加锻炼行为[44]ꎮ3 4虚拟自然结合智能康复技术1)脑机接口-虚拟现实系统ꎮ脑机接口(Brain ̄computerinterface)是利用中枢神经产生的信号ꎬ不依赖外周神经肌肉ꎬ在大脑与外部设备之间建立直接交流和控制通道[45]ꎮ将BCI与VR组合设计成互补工具系统(BCI-VR系统)在康复领域拥有广阔前景:VR提供丰富的康复环境和真实体验ꎬBCI能够实时监测用户心理状态ꎬ实现多种情绪(愉悦㊁悲伤㊁平静㊁愤怒㊁害怕)判别分析ꎬ以便动态调整VR环境内容ꎬ为用户提供良好疗愈体验ꎮ例如为行动障碍者或健康用户提供虚拟恢复性环境ꎬ可通过BCI采集并分析从用户传感器获得的需求信号ꎬ将其转换为151㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第20卷命令转发给VR设备ꎬ及时向用户提供所需的虚拟自然㊁博物馆㊁艺术文化创作场所等环境的参观体验[46]ꎬ并且借助BCI探测的脑电图信号ꎬ检测用户的视觉注意力ꎬ以便其自如地进行360度虚拟环境环顾体验[47]ꎮ使用神经科学反馈手段客观定量研究用户感知ꎬ通过数据收集用户反馈的方法会更直观地为设计师提供环境优化设计策略ꎮLi等[48]生成几种虚拟现实地下空间环境ꎬ使用脑机接口获取被试脑电图和脉搏血氧仪读数ꎬ结果显示在充满绿色植物的虚拟场景中ꎬ人们的认知表现能力及感受到的环境舒适度最高ꎮ2)心率变异性生物反馈ꎮ心率变异性是指相邻心跳间显示出一定波动ꎬ随着呼吸㊁血压㊁情绪改变而起伏变化ꎬ受个体自主神经控制ꎬ是描述自主神经活动强弱的重要指标ꎮ心率变异性生物反馈可通过呼吸放松训练增强ꎬ并改善用户情绪ꎬ可以减轻压力和恢复自主神经系统平衡[19]ꎮ然而传统反馈形式存在使受试者生畏ꎬ产生应激反应ꎬ视觉吸引力不够导致无法专注等弊端[49]ꎬ研究人员以沉浸式装置提高受试者的参与感ꎬ将虚拟自然环境作为生物反馈发生背景ꎬ如自然声音[50]㊁舒缓的环境光[51]㊁声光组合[52]ꎬ智能手机动画游戏[53]ꎬ突破传统训练画面单调无趣的缺点ꎬ让受试者处于放松自信状态ꎬ缓冲负面影响ꎬ释放压力ꎬ调节自我ꎬ控制情绪与行为ꎮ可应用于缓解学生考试焦虑㊁学习压力ꎻ康复中心病人身心疾病辅助治疗ꎻ公安㊁武警㊁军队等心理训练ꎬ专业人才选拔ꎻ运动员㊁飞行员压力释放ꎬ精力专注ꎮ4研究展望恢复性虚拟自然环境研究方兴未艾ꎬ未来研究还应深入挖掘以下3个方面:1)强化多理论研究应用ꎮ目前研究均基于注意力恢复和减压理论ꎬ与其他理论结合应用有限ꎮ例如 亲生物假说 和 瞭望-庇护理论 分别从生物进化和居住地选择角度阐明了人对于自然存在审美㊁理智㊁认知和精神的依赖ꎬ反映人的行为心理与自然环境的互动关系[54-55]ꎻHartig[56]于2021年提出 关系恢复理论 与 集体恢复理论 ꎬEgner等[57]于2020年提出 条件反射恢复理论 ꎮ上述理论均可作为虚拟自然环境空间布局设计的理论支撑ꎬ指导我们从自然中汲取经验ꎬ通过对自然的提取㊁模拟和重现等手段创造支持人类疾病恢复与健康生活的虚拟自然环境ꎮ2)建立多维度恢复效果评估体系ꎮ目前研究大多从身心健康维度出发对恢复效果测量进行指导ꎬ而不对其他恢复关联维度进行研究ꎬ如社会维度ꎬ集体恢复理论则强调乐于助人性㊁同理心㊁利他主义㊁亲社会性等方面恢复效果[58-60]ꎻ生态心理学[61]从生态维度出发关注亲生态行为㊁自然关注度㊁自然连通性等恢复效果ꎮ社会维度和生态维度代表了个人对社会关系㊁自然关系的感知和行为ꎬ多维度恢复测评则可帮助研究设计出能够促进社会凝聚力㊁亲社会行为㊁环境可持续㊁绿色消费的虚拟自然环境ꎮ3)加强作者间㊁机构间合作联系ꎮ目前发文作者与研究机构均表现出较强的独立性ꎬ受国家与地域分布影响较大ꎬ短时间难以建立合作关系ꎮ高校等研究机构合作网络的提升空间大ꎬ若能在现有机构网络基础上形成网络间合作纽带ꎬ研究面将覆盖更广泛ꎬ更有利于研究深入拓展ꎮ参考文献[1]KAPLANS.Therestorativebenefitsofnature:towardanintegrativeframework[J].JournalofEnvironmentalPsychologyꎬ1995ꎬ15(3):169-182.[2]ULRICHRSꎬSIMONSRFꎬLOSITOBDꎬetal.Stressrecoveryduringexposuretonaturalandurbanenvironments[J].JournalofEnvironmentalPsychologyꎬ1991ꎬ11(3):201-230. [3]刘畅ꎬ李树华.多学科视角下的恢复性自然环境研究综述[J].中国园林ꎬ2020ꎬ36(1):55-59.[4]黄国志.健康中国建设背景下智能康复实施路径[J].康复学报ꎬ2021ꎬ31(5):351-357ꎬ364.[5]NUKARINENTꎬRANTALAJꎬKORPELAKꎬetal.Measuresandmodalitiesinrestorativevirtualnaturalenvironments:anintegrativenarrativereview[J].ComputersinHumanBehaviorꎬ2022ꎬ126:107008.[6]YEOMSꎬKIMHꎬHONGT.Psychologicalandphysiologicaleffectsofagreenwallonoccupants:across ̄overstudyinvirtualreality[J].BuildingandEnvironmentꎬ2021ꎬ204:108134.[7]RIVAGꎬBERNARDELLILꎬBROWNINGMHEMꎬetal.COVIDfeelgood:aneasyself ̄helpvirtualrealityprotocoltoovercomethepsychologicalburdenofcoronavirus[J].FrontiersinPsychiatryꎬ2020ꎬ11:563319.251㊀第4期㊀尹程程㊀李同予㊀翟长青ꎬ等:恢复性虚拟自然环境研究进展㊀㊀[8]TANJA ̄DIJKSTRAKꎬPAHLSꎬWHITEMPꎬetal.Canvirtualnatureimprovepatientexperiencesandmemoriesofdentaltreatment?Astudyprotocolforarandomizedcontrolledtrial[J].Trialsꎬ2014ꎬ15(1):1-9.[9]BROWNINGMHEMꎬMIMNAUGHKJꎬVANRIPERCJꎬetal.Cansimulatednaturesupportmentalhealth?Comparingshortꎬsingle ̄dosesof360 ̄degreenaturevideosinvirtualrealitywiththeoutdoors[J].FrontiersinPsychologyꎬ2020ꎬ10:2667.[10]VALTCHANOVDꎬBARTONKRꎬELLARDC.Restorativeeffectsofvirtualnaturesettings[J].CyberpsychologyBehaviorandSocialNetworkingꎬ2010ꎬ13(5):503-512.[11]TASHJIANVCꎬMOSADEGHISꎬHOWARDARꎬetal.Virtualrealityformanagementofpaininhospitalizedpatients:resultsofacontrolledtrial[J].JMIRmentalhealthꎬ2017ꎬ4(1):e7387. [12]GOLDJIꎬMAHRERNE.Isvirtualrealityreadyforprimetimeinthemedicalspace?Arandomizedcontroltrialofpediatricvirtualrealityforacuteproceduralpainmanagement[J].Journalofpediatricpsychologyꎬ2018ꎬ43(3):266-275.[13]ANDERSONAPꎬMAYERMDꎬFELLOWSAMꎬetal.Relaxationwithimmersivenaturalscenespresentedusingvirtualreality[J].Aerospacemedicineandhumanperformanceꎬ2017ꎬ88(6):520-526. [14]YUCPꎬLEEHYꎬLUOXY.Theeffectofvirtualrealityforestandurbanenvironmentsonphysiologicalandpsychologicalresponses[J].UrbanForestryandUrbanGreeningꎬ2018ꎬ35:106-114. [15]SMALLCꎬSTONERꎬPILSBURYJꎬetal.Virtualrestorativeenvironmenttherapyasanadjuncttopaincontrolduringburndressingchanges:studyprotocolforarandomisedcontrolledtrial[J].Trialsꎬ2015ꎬ16(1):1-7.[16]TABRIZIANPꎬBARANPKꎬSMITHWRꎬetal.Exploringperceivedrestorationpotentialofurbangreenenclosurethroughimmersivevirtualenvironments[J].JournalofEnvironmentalPsychologyꎬ2018ꎬ55:99-109.[17]GAOTꎬZHANGTꎬZHULꎬetal.Exploringpsychophysiologicalrestorationandindividualpreferenceinthedifferentenvironmentsbasedonvirtualreality[J].InternationalJournalofEnvironmentalResearchandPublicHealthꎬ2019ꎬ16(17):3102.[18]YINJꎬARFAEINꎬMACNAUGHTONPꎬetal.Effectsofbiophilicindoorenvironmentonstressandanxietyrecovery:abetween ̄subjectsexperimentinvirtualreality[J].EnvironmentInternationalꎬ2020ꎬ136:105427.[19]ROCKSTROHCꎬBLUMJꎬGÖRITZAS.Virtualrealityintheapplicationofheartratevariabilitybiofeedback[J].InternationalJournalofHuman ̄ComputerStudiesꎬ2019ꎬ130:209-220. [20]CALOGIURIGꎬLITLESKARESꎬFAGERHEIMKAꎬetal.Experiencingnaturethroughimmersivevirtualenvironments:Environmentalperceptionsꎬphysicalengagementꎬandaffectiveresponsesduringasimulatednaturewalk[J].Frontiersinpsychologyꎬ2018ꎬ8:2321.[21]HUANGQYꎬYANGMYꎬJANEHꎬetal.Treesꎬgrassꎬorconcrete?Theeffectsofdifferenttypesofenvironmentsonstressreduction[J].LandscapeandUrbanPlanningꎬ2020ꎬ193:103654.[22]MATTILAOꎬKORHONENAꎬPÖYRYEꎬetal.Restorationinavirtualrealityforestenvironment[J].ComputersinHumanBehaviorꎬ2020ꎬ107:106295.[23]YinJꎬZhuSHꎬMacNaughtonPꎬetal.Physiologicalandcognitiveperformanceofexposuretobiophilicindoorenvironment[J].BuildingandEnvironmentꎬ2018ꎬ132:255-262.[24]O MEARAAꎬCASSARINOMꎬBOLGERAꎬetal.Virtualrealitynatureexposureandtestanxiety[J].MultimodalTechnologiesandInteractionꎬ2020ꎬ4(4):75.[25]FLEURYSꎬBLANCHARDPꎬRICHIRS.Astudyoftheeffectsofanaturalvirtualenvironmentoncreativityduringaproductdesignactivity[J].ThinkingSkillsandCreativityꎬ2021ꎬ40:100828.[26]CHUNGKꎬLEEDꎬPARKJY.Involuntaryattentionrestorationduringexposuretomobile ̄based360virtualnatureinhealthyadultswithdifferentlevelsofrestorativeexperience:event ̄relatedpotentialstudy[J].JournalofMedicalInternetResearchꎬ2018ꎬ20(11):e11152.[27]HUANGQYꎬYANGMYꎬJANEHꎬetal.Treesꎬgrassꎬorconcrete?Theeffectsofdifferenttypesofenvironmentsonstressreduction[J].LandscapeandUrbanPlanningꎬ2020ꎬ193:103654.[28]BARANPKꎬTABRIZIANPꎬZHAIYJꎬetal.Anexploratorystudyofperceivedsafetyinaneighborhoodparkusingimmersivevirtualenvironments[J].UrbanForestryandUrbanGreeningꎬ2018ꎬ35:72-81.[29]ULRICHRS.Effectsofinteriordesignonwellness:theoryandrecentscientificresearch[C]//JournalofHealthCareInteriorDesign:ProceedingsfromtheSymposiumonHealthCareInteriorDesign.SymposiumonHealthCareInteriorDesign.1991ꎬ3:97-109. [30]NANDAUꎬZHUXꎬJANSENBH.Imageandemotion:fromoutcomestobrainbehavior[J].HealthEnvironmentsResearchandDesignJournalꎬ2012ꎬ5(4):40-59.[31]PATIDꎬFREIERPꎬO BOYLEMꎬetal.Theimpactofsimulatednatureonpatientoutcomes:Astudyofphotographicskycompositions[J].HealthEnvironmentsResearchandDesignJournalꎬ2016ꎬ9(2):36-51.[32]PEARSONMꎬGAINESKꎬPATIDꎬetal.Thephysiologicalimpactofwindowmuralsonpediatricpatients[J].HealthEnvironmentsResearchandDesignJournalꎬ2019ꎬ12(2):116-129. [33]BARKERSBꎬRASMUSSENKGꎬBESTAM.Effectofaquariumsonelectroconvulsivetherapypatients[J].Anthrozoösꎬ2003ꎬ16(3):229-240.[34]PATIDꎬNANDAU.Influenceofpositivedistractionsonchildrenintwoclinicwaitingareas[J].HealthEnvironmentsResearch351㊀㊀㊀㊀中㊀国㊀城㊀市㊀林㊀业㊀第20卷andDesignJournalꎬ2011ꎬ4(3):124-140.[35]GERBERSMꎬJEITZINERMMꎬKNOBELSEJꎬetal.Perceptionandperformanceonavirtualrealitycognitivestimulationforuseintheintensivecareunit:anon ̄randomizedtrialincriticallyillpatients[J].FrontiersinMedicineꎬ2019ꎬ6:287.[36]GERBERSMꎬJEITZINERMMꎬKNOBELSEJꎬetal.Perceptionandperformanceonavirtualrealitycognitivestimulationforuseintheintensivecareunit:anon ̄randomizedtrialincriticallyillpatients[J].FrontiersinMedicineꎬ2019ꎬ6:287.[37]UWAJEHPCꎬIYENDOTOꎬPOLAYM.TherapeuticgardensasadesignapproachforoptimisingthehealingenvironmentofpatientswithAlzheimer sdiseaseandotherdementias:anarrativereview[J].Exploreꎬ2019ꎬ15(5):352-362. [38]SCATESDꎬDICKINSONJIꎬSULLIVANKꎬetal.Usingnature ̄inspiredvirtualrealityasadistractiontoreducestressandpainamongcancerpatients[J].EnvironmentandBehaviorꎬ2020ꎬ52(8):895-918.[39]VelingWꎬLestestuiverBꎬJongmaMꎬetal.Virtualrealityrelaxationforpatientswithapsychiatricdisorder:crossoverrandomizedcontrolledtrial[J].JournalofmedicalInternetResearchꎬ2021ꎬ23(1):e17233.[40]APPELLꎬAPPELEꎬBOGLEROꎬetal.Olderadultswithcognitiveand/orphysicalimpairmentscanbenefitfromimmersivevirtualrealityexperiences:afeasibilitystudy[J].FrontiersinMedicineꎬ2020ꎬ6:329.[41]BOWLERDEꎬBUYUNG ̄ALILMꎬKNIGHTTMꎬetal.Asystematicreviewofevidencefortheaddedbenefitstohealthofexposuretonaturalenvironments[J].BMCPublicHealthꎬ2010ꎬ10(1):456.[42]FOCHTBC.Briefwalksinoutdoorandlaboratoryenvironments:effectsonaffectiveresponsesꎬenjoymentꎬandintentionstowalkforexercise[J].ResearchQuarterlyforExerciseandSportꎬ2009ꎬ80(3):611-620.[43]CALOGIURIGꎬPATILGGꎬAAMODTG.Isgreenexerciseforall?AdescriptivestudyofgreenexercisehabitsandpromotingfactorsinadultNorwegians[J].InternationalJournalofEnvironmentalResearchandPublicHealthꎬ2016ꎬ13(11):1165. [44]CALOGIURIGꎬNORDTUGHꎬWEYDAHLA.Thepotentialofusingexerciseinnatureasaninterventiontoenhanceexercisebehavior:Resultsfromapilotstudy[J].PerceptualandMotorSkills:ExerciseandSportꎬ2015ꎬ121(2):1-21.[45]BARINAGAM.Turningthoughtsintoactions[J].Scienceꎬ1999ꎬ286(5441):888-890.[46]KOHLIVꎬTRIPATHIUꎬCHAMOLAVꎬetal.AreviewonVirtualRealityandAugmentedRealityuse ̄casesofBrainComputerInterfacebasedapplicationsforsmartcities[J].MicroprocessorsandMicrosystemsꎬ2022ꎬ88:104392.[47]BOSDPOꎬDUVINAGEMꎬOKTAYOꎬetal.Lookingaroundwithyourbraininavirtualworld[C]//2011IEEESymposiumonComputationalIntelligenceꎬCognitiveAlgorithmsꎬMindꎬandBrain(CCMB)ꎬ2011.[48]LIJJꎬWUWꎬJINYCꎬetal.ResearchonenvironmentalcomfortandcognitiveperformancebasedonEEG+VR+LECevaluationmethodinundergroundspace[J].BuildingandEnvironmentꎬ2021ꎬ198:107886.[49]BOITENFAꎬFRIJDANHꎬWIENTJESCJE.Emotionsandrespiratorypatterns:reviewandcriticalanalysis[J].InternationalJournalofPsychophysiologyꎬ1994ꎬ17(2):103-128. [50]YUBꎬFUNKMꎬHUJꎬetal.Unwind:amusicalbiofeedbackforrelaxationassistance[J].BehaviourandInformationTechnologyꎬ2018ꎬ37(8):800-814.[51]YUBꎬHUJꎬFUNKMꎬetal.DeLight:biofeedbackthroughambientlightforstressinterventionandrelaxationassistance[J].PersonalandUbiquitousComputingꎬ2018ꎬ22(4):787-805.[52]YUBꎬHUJꎬFUNKMꎬetal.RESonance:lightweightꎬroom ̄scaleaudio ̄visualbiofeedbackforimmersiverelaxationtraining[J].IEEEAccessꎬ2018ꎬ6:38336-38347.[53]DILLONAꎬKELLYMꎬROBERTSONIHꎬetal.Smartphoneapplicationsutilizingbiofeedbackcanaidstressreduction[J].FrontiersinPsychologyꎬ2016ꎬ7:832.[54]KELLERTSRꎬWILSONEO.Thebiophiliahypothesis[M].IslandPrꎬ1993.[55]AppletonJ.Theexperienceoflandscape[M].Chichester:Wileyꎬ1996.[56]HARTIGT.Restorationinnature:beyondtheconventionalnarrative[M]//NatureandPsychology.SpringerꎬChamꎬ2021:89-151.[57]EGNERLEꎬSSÜTTERLINSꎬCALOGIURIG.Proposingaframeworkfortherestorativeeffectsofnaturethroughconditioning:conditionedrestorationtheory[J].InternationalJournalofEnvironmentalResearchandPublicHealthꎬ2020ꎬ17(18):6792.[58]LAWRENCEEJꎬSHAWPꎬBAKERDꎬetal.Measuringempathy:reliabilityandvalidityoftheEmpathyQuotient[J].PsychologicalMedicineꎬ2004ꎬ34(5):911-920.[59]RUSHTONJPꎬCHRISJOHNRDꎬFEKKENGC.Thealtruisticpersonalityandtheself ̄reportaltruismscale[J].PersonalityandIndividualDifferencesꎬ1981ꎬ2(4):293-302.[60]CAPRARAGVꎬSTECAPꎬZELLIAꎬetal.Anewscaleformeasuringadults prosocialness[J].EuropeanJournalofPsychologicalAssessmentꎬ2005ꎬ21(2):77-89.[61]PLESAP.Atheoreticalfoundationforecopsychology:lookingatecofeministepistemology[J].NewIdeasinPsychologyꎬ2019ꎬ52:18-25.451。
黄吴蒙-面向虚拟地球的海面动态可视化方法

5
实验与讨论
2 面向虚拟地球的海面格网组织
N(90,0)
影像 海域分布
B
max
,Lmin
B
max
,Lmax
第i层
B
W(0,-180)
min
,Lmax
分层分块
B
min
,Lmin
E(0,180)
风场
海水深度
S(-90,0) (a)虚拟地球 (b)空间数据库
第j层 (c)海面网格金字塔
[1]明德烈, 徐秋程, 李向春. 面向全球应用的海洋仿真系统的实现研究[J]. [2]Yang X, Pi X, Zeng L, et al. GPU-based real-time simulation and rendering of unbounded ocean surface[C].
5 实验与结论
纬度
������������������, ������������������, ������ + ������������, ������ + ������������, ������ + ������������
(a)当前海域的位移纹理
(b)某一时刻的海面格网
构建当前海域的位移纹理 在着色器中根据格网点的经纬度坐标 和帧率采样位移纹理得到偏移值 III. 将偏移值叠加在格网点原来的坐标上 I. II.
5 实验与结论
本文方法海面远景效果
相邻格网之间 不存在缝隙问 题 不同尺度格网 过渡平滑 海陆分界清晰
5 实验与结论
本文方法海面近景效果 投影网格法海面近景效果
实现较为精细的海 陆分界
海水覆盖陆地的问题 较难解决
虚拟地理环境(0705z1)

虚拟地理环境(0705Z1)Virtual Geographical Environments(一)学科简介虚拟地理环境(Virtual Geographical Environments, VGE)是地理空间信息可视化发展的最后集成系统,它以虚拟现实理念/虚拟现实技术为核心,基于地理信息、遥感信息、以及网络信息与移动空间信息,研究现实地理环境和赛博空间(Cyberspace)的现象与规律,是地理环境在计算机空间的映射。
虚拟地理环境的研究,涉及到计算机图形学/仿真/虚拟现实技术、地球表层系统的地理环境、地理/遥感信息技术与科学、赛博空间与虚拟社区等,并且与虚拟现实、虚拟、虚/实关系、心理学、符号学、美学、信息论等社会、心理与哲学领域有着密切的关系,目前,VGE 系统正被应用到传统GIS 的诸多应用领域之中,如城市设计和规划、城市地下空间管理、环境监测、交通管理、地表建模、旅游等方面,为分析和解决这些领域中的问题提供了新的方式和手段,同时又拓展了新的应用,如数字黄河、虚拟旅游、虚拟校园、教学培训、虚拟企业等领域。
作为新一代地理信息技术手段,VGE 具有广阔的发展前景,该学科的研究生也具有广阔的就业前景。
(二)培养目标本学科培养的研究生,应符合国家对研究生培养的总体要求,同时应达到:1.了解学科发展的现状和动态,具有较扎实的科学可视化、虚拟现实、遥感、地理信息系统等虚拟地理环境学科的基础理论和基本应用技能;2.有对本人所从事研究方向的前沿阵地进行探索的潜在能力;3.培养适应与胜任城市、规划、环境、土地和林业等相关的领域内从事科研、教学、管理与科技开发工作的复合型人才(三)培养方式培养方式以导师负责为主,以导师组、学科团队、行业专家联合指导为辅。
(四)学习年限学术型硕士研究生的学制为3年。
提前完成所有培养环节和论文工作者,可申请提前答辩,但最多只能提前1年;因特殊情况需延长学习年限者,由研究生本人提出申请,经导师和相关部门批准,可适当延期,但学习年限最长不超过5年。
大数据分析中的时空数据挖掘与可视化技术研究

大数据分析中的时空数据挖掘与可视化技术研究随着互联网的普及和技术的发展,大数据的时代已经到来。
大数据的产生和积累为我们提供了前所未有的机会,同时也带来了巨大的挑战。
其中一个重要的挑战是如何分析和挖掘大数据中的时空信息,以及如何将分析结果以可视化的方式呈现出来。
本文将重点探讨大数据分析中的时空数据挖掘与可视化技术研究。
时空数据挖掘是指从大数据中提取和发现有关时间和位置信息的方法和技术。
时空数据可以是时间序列数据、地理空间数据或时态地理数据。
时空数据挖掘可以帮助我们发现数据中蕴含的时间和空间规律,并从中获取有价值的信息。
时空数据挖掘在很多领域有着广泛的应用,比如交通运输、气象预测、金融风险分析等。
在大数据分析中,时空数据挖掘技术可以帮助我们识别出潜在的时间和空间聚类模式,发现异常事件和趋势变化,预测未来的时间和空间发展趋势等。
为了实现这些目标,我们需要使用适当的算法和模型来处理大数据中的时空信息。
常见的时空数据挖掘算法包括聚类、分类、关联规则挖掘、预测等。
这些算法可以帮助我们从大量的数据中提取和总结有关时间和空间的知识。
除了时空数据挖掘,可视化技术也是大数据分析中必不可少的一环。
可视化技术可以将复杂的大数据分析结果以图形化的方式呈现出来,使得我们更容易理解和解释这些结果。
时空数据可视化可以帮助我们直观地展示时空模式、时态演化等信息。
通过交互式的可视化工具,我们可以对大数据进行探索和分析,发现其中的潜在关联和规律。
常见的时空数据可视化方法包括时序图、地图、热力图等。
这些方法可以有效地展示时空数据的特征和变化趋势。
在大数据分析中,时空数据挖掘与可视化技术是相互关联且相互依赖的。
时空数据挖掘提供了大量的时空信息,而可视化技术可以帮助我们更好地理解和解释这些信息。
通过结合时空数据挖掘和可视化技术,我们可以更好地发现数据中的隐藏规律和趋势,为决策提供科学依据。
然而,时空数据挖掘与可视化技术的研究还面临一些挑战。
如何进行地理信息的可视化和展示

如何进行地理信息的可视化和展示地理信息的可视化和展示是现代科技发展的产物,它为我们提供了一种直观、有效的方式来理解和分析地理数据。
在本文中,我将探讨如何进行地理信息的可视化和展示,在不涉及政治的情况下,将这一主题以深入的方式讲述出来。
第一部分:地理信息的重要性地理信息是指与地理位置有关的数据集合,包括地图、空间数据、卫星影像等等。
它在各个领域都有广泛应用,如城市规划、环境监测、农业发展等。
通过将地理信息可视化和展示出来,我们可以更好地了解地理空间关系、发现潜在问题,并制定相应的解决方案。
第二部分:地理信息的可视化工具在进行地理信息可视化之前,我们需要选择合适的工具。
近年来,随着技术的发展,有许多强大的地理信息可视化工具出现。
其中最常用的工具包括地理信息系统(GIS)软件、数据可视化软件和编程语言。
地理信息系统软件是专门用于处理和分析地理数据的工具,如ArcGIS、QGIS 等。
它们可以进行图层叠加、属性查询、空间分析等操作,帮助用户快速生成地图和分析结果。
此外,还可以根据需求进行定制化开发,以满足各种需求。
数据可视化软件是用于将数据转化为可视化形式的工具,如Tableau、Power BI等。
通过这些软件,用户可以将地理数据转化为图表、图形和地图等形式,更直观地展示数据特征和空间关系。
同时,这些软件还提供交互式功能,使用户能够主动探索和发现隐藏在数据中的信息。
编程语言也是进行地理信息可视化的重要工具,如Python、R等。
这些语言具有强大的数据处理和可视化功能,用户可以通过编写脚本,自由地控制图形和图表的样式和布局。
此外,还可以利用各类开源库和工具,进行更高级的数据分析和可视化。
第三部分:地理信息的可视化技巧进行地理信息的可视化和展示,并不仅仅是将地理数据转化为图像,还需要注意一些技巧和方法,以提升可视化效果。
首先,选择合适的地图投影和比例尺。
地图投影和比例尺在地理信息的可视化过程中是至关重要的,直接影响到地理空间关系的表达准确性。
可视化的研究方法

可视化的研究方法
可视化的研究方法指的是使用可视化工具和技术对数据和信息进行处理、分析、表达和交流的方法。
这种方法可以帮助研究人员更好地理解和发现数据中的模式和趋势,从而得出更深入的结论。
以下是常用的可视化研究方法:
1. 数据可视化:将数据以图表、图像、地图等形式呈现出来,帮助研究人员更好地理解数据中的分布、关联和趋势。
2. 可视分析:通过交互式的可视化界面,将数据的分析和探索与可视化技术相结合,帮助研究人员快速发现数据中的模式和关系。
3. 可视化建模:使用可视化工具和技术对数据进行建模和模拟,帮助研究人员更好地理解和预测数据的行为和变化。
4. 可视化交互:通过交互式的可视化界面,让研究人员和数据之间进行更为自然和直观的交互,从而深入探索数据中的信息和关系。
5. 可视化文本分析:将自然语言文本以可视化的方式呈现出来,帮助研究人员更好地理解文本中的关键概念、主题和情感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27卷第1期2004年2月现 代 测 绘Modern Surveying and MappingVol.27,No.1Feb.2004虚拟地理环境中时态信息可视化表达方法研究谷风云1,2,崔希民1,谢传节2,刘清旺1,姜永阐3(1中国矿业大学资源与安全工程学院,北京100083;2中国科学院地理科学与资源研究所,北京100101;3山东科技大学地球科学与信息工程学院,山东泰安271019)摘 要 介绍虚拟地理环境的基本含义,虚拟现实和可视化技术,探讨了线、面地理对象的时态信息表达方法。
在此基础上,以近、现代黄河三角洲为例,给出了在虚拟地理环境中三角洲海岸线的变迁和三角洲地形地貌动态显示的方法。
关键词 虚拟地理环境 虚拟现实 可视化 时态信息中图分类号:P208 文献标识码:A 文章编号:1672-4097(2004)01-0011-031 虚拟地理环境的基本含义虚拟现实技术的产生和发展无疑为加强地理科学理论研究提供了强大的手段和方法上的支持。
虚拟现实技术、计算机网络技术与地学相结合可以产生虚拟地理环境。
虚拟地理环境(V GE)可定义为包括作为主体的化身人类社会以及围绕该主体存在的一切客观环境,包括计算机、网络、传感器等硬件环境,软件环境,数据环境,虚拟图形境象环境,虚拟经济环境和虚拟社会,政治和文化环境[1]。
虚拟地理环境是现实世界的一种概括,是区域环境和社会经济环境的虚拟模型,强调身临其境之感,但又追求超越现实的理解,不仅可以真实的反映出现实世界,更可以重建过去和预测未来。
2 虚拟现实技术和可视化技术简介计算机图形技术和人机接口技术的发展,由原来的单纯的文字信息向声音、图像信息转变,并且由原来利用鼠标、键盘的交互转变为通过高级的人机接口设备沉浸到由计算机生成的多维信息空间,这种高级的人机接口设备即是虚拟现实技术。
当前信息技术的迅速发展,特别是多媒体技术、可视化技术、网络技术以及虚拟现实系统的更新,使虚拟现实系统发展成为数字化多维信息空间的技术支撑平台。
到目前为止,虚拟现实技术已经应用到教育、工程、商业和娱乐等各个领域。
正如其他新型科学技术一样,虚拟现实技术也是许多相关学科领域交叉、集成的产物。
它的研究内容涉及到人工智能、计算机科学、电子学、传感器、计算机图形学、智能控制、心理学等[2]。
虽然该领域的技术潜力巨大,应用前景广阔,但是仍然存在许多尚未解决的理论问题和技术问题。
目前虚拟现实技术所取得的成就大部分还是集中在扩展计算机的接口能力上。
科学计算可视化作为一个新兴的学科,其理论和技术对地学信息可视表达、分析的研究与实践产生了很大的影响。
地学专家通过对可视化在地学研究中的地位和作用的讨论,从不同的角度提出了一些与可视化研究相关的新概念,如地图可视化、地理可视化、GIS可视化、探析地图学(exploratory cartography)等(Kraak1999a;MacEachren1997; Neves1997;龚建华1999)。
在这些研究中强调了可视化在人们与地学信息交流、认知分析和可视地学思维中的作用。
3 时态信息表达方法概述时间问题是地理学中的一个基本研究问题。
对应于时间维上不同的时刻或时间段,地理对象的属性(包括空间属性)有可能发生变化。
研究时态信息的表达方法,离不开对时态数据模型的研究。
其中有代表性的几种GIS时态数据模型为:“snapshot”模型、时态对象模型、基于事件的事空数据模型、“triad”模型和“bitemproal”数据模型[3]。
但是任何一种模型都无法反映现实世界的所有方面,在GIS中的面向对象的数据结构中,通常把空间数据抽象为点、线、面三种简单的地物类型,作为三种简单对象。
3.1 线地理对象时态信息表达方法对于线地理对象而言,在表达时间维信息的时候引入一个点的位置函数,与此同时引入时间域中的两个概念:时刻和时间间隔。
点的位置函数定义如下t raj(ν)={locν(t)|t∈def(locν)}该函数为分段线性函数。
因此,对于每一点的运动轨迹都有一点集{p1,p2…p n}与其相对应,从而可以通过两个相邻点p i,p i+1的位置线性内插来得到。
如果顶点ν在t i时刻在位置p i,在t i+1时刻在位置p i+1,因此点v运动的方向为:p i+1-p i,运动的路程可由时间线性插值得到:p i+p i+1-p it i+1-t i(t-t i)该式也适用于对象在p i和p i+1之间的匀速运动。
综上所述,我们可以看出locν是由一系列的带有时间属性的点所确定的。
在这个点集当中,可能存在坐标相同的点,但是不存在两个点具有同一时间属性值的情况。
在这个集合中,一些点标志着方向的变化,一些仅仅是速率的变化,另外一些是两者兼而有之。
在构建了线对象以后,随着时间的变化,可能会出现一点生长成为一条或多条线,或者一条或多条线退化成为一个点或者消失的情况。
3.2 三维地理对象时态信息的表达当采用3D三角网来表达三维空间数据时,首先,借用在上述(1)中所引入的点的位置函数来描述三角形中顶点的运动。
对于任一三角形T在其有效的时间间隔I内,可描述为:conν(locν1(t),locν2(t),locν3(t)),t∈I。
我们称之为运动三角形。
对应于时刻t1和t2,地理对象可分别用三角形集合{T ri1}和{T ri2}来表示。
在这两个特定的时刻,三角形集合可以是已知的,如果想要得到中间时刻三角形的集合就涉及到时间维的插值问题,而关键帧插值是最常用的一种方法。
关键帧插值是动画制作中常用的一种技术,利用关键帧技术制作动画时并不需要逐帧绘制,只需从这些静止画面中选出少数几帧加以绘制。
被选出的画面一般都出现在动作变化的转折点处,对这段连续动作起着关键的控制作用,因此称为关键帧(Key Frame)。
绘制出关键帧之后,再根据关键帧插画出中间画面,就完成了动画的制作。
在每个时间段内,相对于不同的离散化因素同一对象具有不同的空间表达方式。
在大多数的动画制作中,为了避免对象运动速度突然改变所带来的负面影响,往往采用样条曲线来得到对象运动的平滑轨迹。
由于地学变化过程很少存在平滑过渡的现象,就没有必要使用这种方法。
相反,却需要一种简单的线性内插的方法,并且需要增加时间段来提高对象建模的可用性。
[4]随着时间的推移,对象表面的离散化因素会发生改变。
第一种情况是在某一时间段内三角形T 会被由两个或多个三角形所组成的集合M所代替;第二种情况是边界处增加了新的三角形s′如图Fig1,在t1时刻三角形s′并不存在,而是在t1+ε时刻才开始存在的,如果倒推到时刻t1,三角形s′在边界处为一退化了的三角形。
Fig1 Insert Operation Of a new time2dependent simplex 第三种情况是三角形s″的消失,它是第二种情况的逆过程,如图Fig2。
在这种情况下,可能会引起拓扑的变化,一个运动的顶点ν在时刻t i运动到无边界的线上,而后进入三角形s区域内部,从而三角形s被两个新的三角形所代替。
Fig2 Delete Operation of a new time2dependent simplex3.3 数据的可视化表达为了充分利用已采集的数据,一种常用的方式就是把它们表达在地图上。
地图的设计制作应根据数据的特性和数据项之间的关系来进行。
在图形上描述动态现象有两种方式:一种是利用静态地图和地图序列,另外一种是利用制图动画。
对于第一种方式而言,虽然时间的变化不能直接在二维的纸制地图上表达出来,但是可以通过在单个图形上利用箭头或者是带有时间标记的线来描述地理现象随时间的演变过程。
地图序列从一幅图到另一幅图的变化给人一种时间流逝的印象[5]。
但是,在描述复杂的动态现象时,仅仅用静态的图片来表达数据显而易见是不够的。
对此Bertin在他的著作中曾提出这样一个建议:设计图形时应该考虑到它的可变换性,并且给出了一些在纸制地图上创建动态图形的技术。
当今计算机已经大为普及,用计算机屏幕作为显示图形的媒介为我们提供了更多的机会来对图形进行交互式操作。
为了实现对图形的交互式操作,需要有一个良21现 代 测 绘 第27卷好的可视化设计方法。
1967年Bertin 引入了7个视觉变量(graphic variables ):位置(location )、尺寸(size )、灰度的值(value )、纹理(texture/grain )、颜色(color )、方向(orientation )和形状(shape )。
而每一种数据可视化表达方法都是基于以上变量中的一个或多个[6]。
根据这些变量的视觉属性,不同的数据需要用不同的变量来表达,与数量有关的数据可以通过尺寸来表达,有序质量数据可以通过值或者纹理密度来表达,无序质量数据可以用形状,颜色或者纹理来表达。
在所有变量中,位置变量最具表达性,可以对任何一种数据类型进行编码。
然而,以地图形式表达的数据对视觉变量的选择有一些严格的限制条件。
对象的描述必需能反应出它们的实际地理位置、轮廓和尺寸。
地图语言要求在编码属性数据时应该使其在某一点或者是地物轮廓的内部,因此,最具表达性的位置变量不能用来编码属性数据。
尺寸、形状和方位这些变量在应用的时候应该和背景具有良好的对比度和可见度,它们的尺寸不应该太小而且颜色也应该为亮色。
因此,在图形制作中仅选取尺寸、灰度值、颜色和形状这四个视觉变量。
以近、现代黄河三角洲的发育为例,在虚拟地理环境中描述黄河三角洲海岸线的变迁和三角洲地形地貌的演变。
可按如下方法进行研究:综合早期地质资料,结合近期的多时相、多源遥感数据,利用近、现代黄河三角洲工程钻孔数据,结合近、现代黄河三角洲尾闾流路变迁资料和各个时期的海岸线,以及各时期测绘及地质调查资料,提取历史时期三角洲地区海岸线和地貌环境变化的重要信息。
如果要在虚拟地理环境中动态显示出自1885年至今的海岸线变迁,就要对时间维进行插值,具体方法如3.1中所述。
对三角洲地形地貌资料进行合理的插值处理,并在此基础上完成各时期D TM 的构建,其具体的三角网构建方法如3.2中所述,并将遥感影像叠加其上,以达到各历史时期地形地貌的逼真显示。
海岸线和地形地貌数据可视化表达方法具体见3.3中所述。
VC ++环境下,利用Open G L 技术完成黄河三角洲海岸线变迁和地形地貌演变的动态显示。
4 结 论可视化和虚拟现实为研究者提供了直观地处理研究结果的技术方法,越来越被公认为是科学研究过程的重要组成部分。
它在计算机空间(Cyberspace )中为研究者开辟了一个具有沉浸感的虚拟环境,实现了三维空间和时态数据的可视化,并使研究者既能够在虚拟环境中交互地操控研究对象,更可以在仿真模拟等科学计算过程中实时地得到正在处理的动态过程的反馈,国内外在这一领域的研究方兴未艾。