化工热力学详细答案

合集下载

化工热力学答案

化工热力学答案

∴P

RT a 0.5 V b T V V b
8 . 3 1 4 323.15 6 2.9 5 5 1 0 1 2 . 4 8 3.222 323 . 1 5 1 2 .4 6 1 0
0.5 5 5 12
=19.04M Pa (3) 普遍化关系式
B1 0.139
BPc B0 B1 0.2426 0.25 0.05194 0.2296 RTc
Z 1 BP PV BP P 1 c r RT RT RTc Tr
→V=1.885×10-3m3/mol
∴n=2.83m3/1.885×10-3m3/mol=1501mol 对于状态Ⅱ:摩尔体积 V=0.142 m3/1501mol=9.458×10-5m3/mol (2) Vander Waals 方程 T=448.6K
0 B2 0.083
0.422 0.422 0.083 0.3417 1.6 1.6 Tr 2 303 304.2 0.172 0.172 0.139 0.03588 4.2 4.2 Tr 2 303 304.2
1 B2 0.139
B22
又 Tcij
(1)理想气体方程 V=RT/P=8.314×510/2.5×106=1.696×10-3m3/mol 误差:
1.696 1.4807 100% 14.54% 1.4807
(2)Pitzer 普遍化关系式 对比参数: Tr
T Tc 510 425.2 1.199
Pr P Pc 2 . 5 3 . 8
Tr T Tc 477 405.6 1.176 Pr P Pc 2.03 11.28 0.18 —普维法

化工热力学(第三版)课后答案完整版_朱自强

化工热力学(第三版)课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章绪言一、是否题封闭体系的体积为一常数。

(错)1.2. 封闭体系中有两个相,。

在尚未达到平衡时,, 两个相都是均相敞开体系;达到平衡时,则,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4.理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5.封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相T2等,初态和终态的温度分别为「和T2,则该过程的 U C V dT ;同样,对于初、终态TiT2压力相等的过程有 H C p dT。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)T1、填空题1.状态函数的特点是:_________ 。

2.封闭体系中,温度是 T的imol理想气体从(P, V)等温可逆地膨胀到(P,V f),则所做的功为W rev RT ln V i V f (以 V表示)或W rev RT In P f P i (以 P表示)o3.封闭体系中的1mol理想气体(已知C jg ),按下列途径由T、P1和V1可逆地变化至P2,贝yA 等容过程的V= 0 , Q= C^ R -P2 1 T1 , U=c jg R -P2 1 T1 , H=P1 P1C Pg 1T1。

B等温过程的W RTln旦,Q=RTln旦, U= _________________ ,H= ____________ P L________ P L第2章P-V-T关系和状态方程、是否题1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

)由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子 Z<1。

化工热力学课后答案完整版

化工热力学课后答案完整版

.第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400 ℃、 4.053MPa 下甲烷气体的摩尔体积。

( 1 )理想气体方程;( 2 ) RK 方程;( 3)PR 方程;( 4 )维里截断式( 2-7)。

其中 B 用 Pitzer 的普遍化关联法计算。

[解 ] ( 1 )根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314(400273.15) 1.381 103m3mol 1p 4.053106(2)用 RK 方程求摩尔体积将RK 方程稍加变形,可写为V RT a(V b)b(E1)p T 0.5 pV (V b)其中0.42748R2T c2.5ap c0.08664 RT cbp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.42748 8.3142 190.62.5 3.2217m 6 Pa mol -2 K 0.54.60106b0.086648.314190.6 2.9846 10 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式( E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.053106.3.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.38110 32.984610 5 2.124610 51.3896331 10m mol第二次迭代得 V2为V2 1.381103 2.98461053.2217(1.389610 3 2.984610 5)673.15 0.5 4.05310 61.389610 3(1.389610 3 2.984610 5)1.38110 32.984610 5 2.112010 51.389710 3 m3 mol1V1和 V2已经相差很小,可终止迭代。

化工热力学课后题答案

化工热力学课后题答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

化工热力学答案_冯新_宣爱国_课后总习题答案详解

化工热力学答案_冯新_宣爱国_课后总习题答案详解

习题四一、是否题M M。

4-1 对于理想溶液的某一容量性质M,则i i解:否4-2 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为30 cm3。

解:否4-3温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、Gibbs 自由能的值不变。

解:否4-4对于二元混合物系统,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。

解:是4-5在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。

解:是4-6理想气体混合物就是一种理想溶液。

解:是4-7对于理想溶液,所有的混合过程性质变化均为零。

解:否4-8对于理想溶液所有的超额性质均为零。

解:否4-9 理想溶液中所有组分的活度系数为零。

解:否4-10 系统混合过程的性质变化与该系统相应的超额性质是相同的。

解:否4-11理想溶液在全浓度范围内,每个组分均遵守Lewis-Randall 定则。

解:否4-12 对理想溶液具有负偏差的系统中,各组分活度系数i γ均 大于1。

解:否4-13 Wilson 方程是工程设计中应用最广泛的描述活度系数的方程。

但它不适用于液液部分互溶系统。

解:是二、计算题4-14 在一定T 、p 下,二元混合物的焓为 2121x cx bx ax H ++= 其中,a =15000,b =20000,c = - 20000 单位均为-1J mol ⋅,求(1) 组分1与组分2在纯态时的焓值1H 、2H ;(2) 组分1与组分2在溶液中的偏摩尔焓1H 、2H 和无限稀释时的偏摩尔焓1∞H 、2∞H 。

解:(1)1111lim 15000J mol -→===⋅x H H a2121lim 20000J mol -→===⋅x H H b(2)按截距法公式计算组分1与组分2的偏摩尔焓,先求导:()()()12121111111d dd d d11d H ax bx cx x x x ax b x cx x x =++=+-+-⎡⎤⎣⎦12=-+-a b c cx将1d d Hx 代入到偏摩尔焓计算公式中,得()()()()()()11112121111111112122d 1d (1)211221H H H x x ax bx cx x x a b c cx ax b x cx x a b c cx x a b c cx a c x a cx =+-=+++--+-=+-+-+-+---+-=+-=+()()()()21121211111111121d 2d 112HH H x ax bx cx x x a b c cx x ax b x cx x x a b c cx b cx =-=++--+-=+-+---+-=+无限稀释时的偏摩尔焓1∞H 、2∞H 为:()()2-1112012-122111221lim lim 150002000035000J mol lim lim 200002000040000J molx x x x H H a cx H H b cx∞→→∞→→==+=+=⋅==+=+=⋅4-15 在25℃,1atm 以下,含组分1与组分2的二元溶液的焓可以由下式表示:121212905069H x x x x x x =++⋅+()式中H 单位为-1cal mol ⋅,1x 、2x 分别为组分1、2的摩尔分数,求 (1) 用1x 表示的偏摩尔焓1H 和2H 的表达式; (2) 组分1与2在纯状态时的1H 、2H ;(3) 组分1与2在无限稀释溶液的偏摩尔焓1∞H 、2∞H ;(4) ΔH 的表达式;(5) 1x =0.5 的溶液中的1H 和2H 值及溶液的H ∆值。

化工热力学课后答案朱自强

化工热力学课后答案朱自强

化工热力学课后答案朱自强2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

〔1〕 理想气体方程;〔2〕 RK 方程;〔3〕PR 方程;〔4〕 维里截断式〔2-7〕。

其中B 用Pitzer 的普遍化关联法运算。

[解] 〔1〕 依照理想气体状态方程,可求出甲烷气体在理想情形下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ 〔2〕 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ 〔E1〕其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式〔E1〕中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 差不多相差专门小,可终止迭代。

化工热力学详细答案

化工热力学详细答案

化⼯热⼒学详细答案化⼯热⼒学第⼆章作业解答2.1试⽤下述三种⽅法计算673K ,4.053MPa 下甲烷⽓体的摩尔体积,(1)⽤理想⽓体⽅程;(2)⽤R-K ⽅程;(3)⽤普遍化关系式解(1)⽤理想⽓体⽅程(2-4)V =RT P =68.3146734.05310=1.381×10-3m 3·mol -1 (2)⽤R-K ⽅程(2-6)从附录⼆查的甲烷的临界参数和偏⼼因⼦为Tc =190.6K ,Pc =4.600Mpa ,ω=0.008将Tc ,Pc 值代⼊式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==60.08678.314190.64.610=2.987×10-5 m 3·mol -1 将有关的已知值代⼊式(2-6)4.053×106= 58.3146732.98710V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得V =1.390×10-3 m 3·mol -1(注:⽤式2-22和式2-25迭代得Z 然后⽤PV=ZRT 求V 也可)(3)⽤普遍化关系式673 3.53190.6r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上⽅,故采⽤普遍化第⼆维⾥系数法。

由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138代⼊式(2-43)010.02690.0080.1380.0281BPc B B RTcω=+=+?= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr =+=+?= ???V =1.390×10-3 m 3·mol -12.2试分别⽤(1)Van der Waals,(2)R-K ,(3)S-R-K ⽅程计算273.15K 时将CO 2压缩到⽐体积为550.1cm 3·mol -1所需要的压⼒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工热力学详细答案————————————————————————————————作者:————————————————————————————————日期:化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4)V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为Tc =190.6K ,Pc =4.600Mpa ,ω=0.008将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6)4.053×106= 58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可)(3)用普遍化关系式673 3.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。

由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138代入式(2-43)010.02690.0080.1380.0281BPc B B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3 m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。

实验值为3.090MPa 。

解: 从附录二查得CO 2得临界参数和偏心因子为Tc =304.2K Pc =7.376MPa ω=0.225(1)Van der Waals 方程2RT a P V b V=-- 式中 222764c cR T a p =2227(8.314)(304.2)647.376⨯⨯=⨯=3.658×105 MPa ·cm 6·mol -2 8c c RT b p ==8.314304.287.376⨯⨯=42.86 cm 3·mol -1 则得 8.314273.15550.142.86P ⨯=--523.65810(550.1)⨯=3.268 Mpa 误差%=3.090 3.2683.090-×100%=-5.76% (2)R-K 方程0.5()RT a p V b T V V b =--+ 2 2.50.42748c cR T a p ==2 2.50.42748(8.314)(304.2)7.376⨯⨯ =6.466×106MPa ·cm 6·K 0.5·mol -20.0867c c RT b p ==0.08678.314304.27.376⨯⨯=29.71cm 3·mol -1 则得 8.314273.15550.129.71P ⨯=--60.5 6.46610(273.15)(550.1)(550.129.71)⨯⨯⨯+=3.137Mpa 误差%=3.090 3.1373.090-×100%=-1.52% (3)S-R-K 方程()()RT a T P V b V V b =--+ 式中 ()()()220.42748c c cR T a T a T T p αα== 20.5()1'(1-)T m Tr α⎡⎤=+⎣⎦ 22'0.480 1.5740.176 =0.480+1.5740.225-0.1760.2250.8252m ωω=+-⨯⨯=得 2273.15()10.82521- 1.088304.2T α⎧⎫⎡⎤⎛⎫=+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ ()2250.42748(8.314)(304.2) 1.088 4.033107.376a T ⨯⨯=⨯=⨯ MPa ·cm 6·mol -2 又 0.0867c c RTb p ==0.08678.314304.27.376⨯⨯=29.71cm 3·mol -1 将有关的值代入S-R-K 程,得8.314273.15550.129.71P ⨯=--54.03310550.1(550.129.71)⨯+=3.099 Mpa 误差%=3.090 3.0993.090-×100%=-0.291% 比较(1)、(2)与(3)结果,说明Van der waals 方程计算误差较大,S-R-K 方程的计算精度较R-K 方程高。

2.3试用下列各种方法计算水蒸气在10.3MPa 和643K 下的摩尔体积,并与水蒸气表查出的数据(V=0.0232m 3·kg -1)进行比较。

已知水的临界常数及偏心因子为:Tc=647.3K ,Pc=22.05MPa ,ω=0.344。

(a )理想气体方程;(b )R-K 方程;(c )普遍化关系式。

解: (a )理想气体方程V=RT/P=8.314×10-3×643/10.3=0.519 m 3·kmol -1=0.0288 m 3·kg -1 误差%=0.02320.0288100%0.0232-⨯=-24.1% (b )R-K 方程为便于迭代,采用下列形式的R-K 方程:1.5111a h Z h bRT h ⎛⎫=- ⎪-+⎝⎭--------(A) 式中 b bp h V ZRT== ---------(B) 2 2.50.42748R Tc a Pc ==32 2.50.42748(8.31410)(647.3)22.05-⨯⨯=14.29 MPa ·m 6·K 0.5kmol -2 0.08664RTc b Pc==30.086648.31410647.322.05-⨯⨯⨯=0.02115 m 3·kmol -11.5a bRT =3 1.514.290.02115(8.31410)(643)-⨯⨯⨯=4.984 b RT =30.021158.31410643-⨯⨯=3.956×10-3 MPa -1 将上述有关值分别代入式(A )和(B )得:1 4.98411h Z h h ⎛⎫=- ⎪-+⎝⎭--------(C) 33.9561010.3h Z -⨯⨯==0.04075Z--------(D) 利用式(C )和式(D )迭代求解得:Z=0.8154因此 ZRT V P==30.81548.3141064310.3-⨯⨯⨯=0.4232 m 3·kmol -1=0.02351 m 3·kg -1 误差%=0.02320.02351100%0.0232-⨯=-1.34% (c) 普遍化关系式6430.993647.3T Tr Tc === 10.30.46722.05P Pr Pc === 由于对比温度和对比压力所代表的点位于图2-9的曲线上方,故用普遍化第二维里系数关系式计算。

0 1.6 1.60.4220.4220.0830.0830.344(0.993)r B T =-=-=- 1 4.2 4.20.1720.1720.1390.1390.0382(0.993)r B T =-=-=- 由式(2-43)010.3440.3440.357c cBP B B RT =+=-+⨯=-ω(-0.0382) 将有关数据代入式(2.42)得:0.467111(0.357)0.8320.993c rc r BP P BP Z RT RT T ⎛⎫⎛⎫=+=+=+-⨯= ⎪⎪⎝⎭⎝⎭ 则 30.8328.314106430.43210.3ZRT V P -⨯⨯⨯===m 3·kmol -1=0.024 m 3·kg -1 误差%=0.02320.024100%0.0232-⨯=-3.45%2.4试分别用下述方法计算CO 2(1)和丙烷(2)以3.5:6.5的摩尔比混合的混合物在400K 和13.78MPa 下的摩尔体积。

(1) Redlich-Kwong 方程,采用Prausnitz 建议的混合规则(令k ij =0.1);(2) Pitzer 的普遍化压缩因子关系式。

解 (1)Redlich-Kwong 方程由附录二查得CO 2和丙烷的临界参数值,把这些值代入式(2-53)-式(2-57)以及0.0867cii ciRT b P =和2 2.50.4278cij ij ciR T a P =,得出如下结果: ij Tcij/K Pcij/MPa Vcij/(m 3·kmol -1) Zcij ωij bi/(m 3·kmol-1) aij/(MPa ·m 6·K 0.5kmol -2) 11 304.2 7.3760.0940 0.274 0.225 0.0297 6.470 22 369.8 4.2460.2030 0.281 0.152 0.0628 18.315 12 301.9 4.918 0.1416 0.278 0.185 --------9.519 混合物常数由式(2-58)和(2-59)求出:b m =y 1b 1+y 2b 2=0.35×0.0297+0.65×0.0628=0.0512 m 3·kmol -1a m =y 12a 11+2y 1y 2a 12+y 22a 22=0.352×6.470+2×0.35×0.65×9.519+0.652×18.315=12.862 MPa ·m 6·K 0.5kmol -2 先用R-K 方程的另一形式来计算Z 值1.5111a h Z h bRT h ⎛⎫=- ⎪-+⎝⎭--------(A) 式中 b bp h V ZRT== ---------(B) 1.5a bRT =3 1.512.8620.0512(8.31410)(400)-⨯⨯⨯=3.777 bp RT =30.051213.788.31410400-⨯⨯⨯=0.2122 将 1.5a bRT 和bp RT的值分别代入式(A )和(B )得: 1 3.77711h Z h h ⎛⎫=- ⎪-+⎝⎭--------(C) 0.2122h Z=--------(D) 联立式(C )和式(D )迭代求解得:Z=0.5688, h=0.3731 因此 ZRT V P==30.56888.3141040013.78-⨯⨯⨯=0.137 m 3·kmol -1(3) Pitzer 的普遍化压缩因子关系式求出混合物的虚拟临界常数:T cm =y 1T c11+y 2T c22=0.35×304.2+0.65×369.8=346.8KP cm =y 1P c11+y2P c22=0.35×7.376+0.65×4.246=5.342MpaT rm =400346.8=1.15 P rm =13.785.342=2.58 在此对比条件下,从图2-7和图2-8查得Z 0和Z 1值:Z 0=0.480, Z 1=0.025ω =()i y ∑i ω=y 1ω1+y 2ω2=0.35×0.225+0.65×0.152=0.173 由式(2-38)Z=Z 0+ωZ 1=0.480+0.173×0.025=0.484由此得V =ZRT P =30.4848.3141040013.78-⨯⨯⨯=0.117 m 3·kmol -1化工热力学第三章作业解答3.1试证明同一理想气体在T-S 图上,(1)任何二等压线在相同温度时有相同斜率;(2)任何二等容线在相同温度时有相同斜率。

相关文档
最新文档