集 合 专题训练

合集下载

集合专题突破

集合专题突破

凤凰涅槃训练集合专题综合突破一、小题突破1.设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个 B.11个 C.12个 D.13个2.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:①M={(x,y)|y=}②M={(x,y)|y=e x﹣2}③M={(x,y)|y=cosx}|④M={(x,y)|y=lnx}其中所有“Ω集合”的序号是()A.②③B.③④C.①②④D.①③④3.设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S=|x|f (x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若cardS,cardT分别为集合元素S,T的元素个数,则下列结论不可能的是()A.cardS=1,cardT=0 B.cardS=1,cardT=1C.cardS=2,cardT=2 D.cardS=2,cardT=34.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“和谐函数”,区间A为函数f(x)的一个“和谐区间”.给出下列4个函数:①f(x)=sin(x);②f(x)=2x2﹣1;③f(x)=|2x﹣1|;】④f(x)=ln(x+1).其中存在唯一“和谐区间”的“和谐函数”为()A.①②③B.②③④C.①③D.②③5.已知集合A={x∈R|<2x<8},B={x∈R|﹣1<x<m+1},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是()A.m≥2B.m≤2C.m>2 D.﹣2<m<26.用C(A)表示非空集合A中元素的个数,定义若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值构成集合S,则C(S)=()A.4 B.1 C.2 D.37.集合P具有性质“若x∈P,则”,就称集合P是伙伴关系的集合,集合A={﹣1,0,,,1,2,3,4}的所有非空子集中具有伙伴关系的集合的个数为()A.3 B.7 C.15 D.318.设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()[A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的9.现规定:A是一些点构成的集合,若连接点集A内任意两点的线段,当该线段上所有点仍在点集A内时,则称该点集A是连通集,下列点集是连通集的是()A.函数y=2x图象上的点构成的集合B.旋转体表面及其内部点构成的集合C.扇形边界及其内部点构成的集合D.正四面体表面及其内部点构成的集合10.设集合S={A0,A1,A2,A3,A4},在S上定义运算⊙为:A i⊙A j=A k,其中k=|i﹣j|,i,j=0,1,2,3,4.那么满足条件(A i⊙A j)⊙A2=A1(A i,A j∈S)的有序数对(i,j)共有(),A.12个 B.8个C.6个D.4个11.集合P={x|x=a+b,a∈N*,b∈N*}若x∈P,y∈P时,有x⊕y∈P,则运算⊕可能是()A.加法减法乘法B.加法乘法C.加法减法除法D.乘法除法12.设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得0<|x﹣x0|<a,称x0为集合X的聚点.用Z表示整数集,则在下列集合中:①;②{x|x∈R,x≠0};③;④整数集Z以0为聚点的集合有()A.②③B.①④C.①③D.①②④13.对于集合M、N,定义M﹣N={x|x∈M,且x∉N},M△N=(M﹣N)∪(N﹣M),设A={t|t=x2﹣3x,x∈R},B={x|y=lg(﹣x)},则A△B=()A.(﹣,0] B.[﹣,0)C.(﹣∞,﹣)∪[0,+∞)D.(﹣∞,﹣]∪(0,+∞)14.已知M={(x,y)|2x+3y=4320,x,y∈N},N={(x,y)|4x﹣3y=1,x,y∈N},则()。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。

那么下列关系正确的是()A。

A是B的子集B。

B是C的子集C。

A与B的交集等于CD。

B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。

因此,B是A的子集。

选项A正确。

点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。

2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。

M与N的交集为{4,6},N等于全集UB。

M与N的并集为{2,3,4,5,6,7},N等于全集UC。

(C并N)与M的并集等于全集UD。

(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。

因此选项D错误。

点评:此题考查了集合的并、交、补运算以及集合间的关系应用。

可以使用文氏图来帮助理解。

3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。

M并NB。

M交NC。

实数集RD。

(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。

而{x|x-1<x}等价于{x|x<1},因此选项C正确。

点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。

需要注意参数的取值范围以及数形结合思想的应用。

新高考数学复习考点知识提升专题训练1--- 集合的概念

新高考数学复习考点知识提升专题训练1--- 集合的概念

新高考数学复习考点知识提升专题训练(一) 集合的概念(一)基础落实1.下列判断正确的个数为( ) (1)所有的等腰三角形构成一个集合; (2)倒数等于它自身的实数构成一个集合; (3)质数的全体构成一个集合;(4)由2,3,4,3,6,2构成含有6个元素的集合; (5)平面上到点O 的距离等于1的点的全体. A .2 B .3 C .4D .5解析:选C 在(1)中,所有的等腰三角形构成一个集合,故(1)正确;在(2)中,若1a =a ,则a 2=1,∴a =±1,构成的集合为{1,-1},故(2)正确;在(3)中,质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故(3)正确;在(4)中,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故(4)错误;在(5)中,“平面上到点O 的距离等于1的点的全体”的对象是确定的,故(5)正确.2.下列说法不正确的是( ) A .0∈N * B .0∈N C .0.1∉ZD .2∈Q解析:选A N *为正整数集,则0∉N *,故A 不正确;N 为自然数集,则0∈N ,故B 正确;Z 为整数集,则0.1∉Z ,故C 正确;Q 为有理数集,则2∈Q ,故D 正确.3.(多选)表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集,下面正确的是( )A .(-1,2) B.⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =-1,y =2C.{}-1,2D.{}(-1,2)解析:选BD ∵⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0,∴⎩⎪⎨⎪⎧x =-1,y =2,∴列举法表示为{}(-1,2),故D 正确. 描述法表示为⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =-1,y =2或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ 2x +y =0,x -y +3=0, 故B 正确.∴选B 、D.4.已知集合A ={a -2,2a 2+5a,12},且-3∈A ,则a 等于( ) A .-1 B .-32C .-23D .-32或-1解析:选B 因为集合A ={a -2,2a 2+5a,12},且-3∈A ,所以当a -2=-3即a =-1时,A ={-3,-3,12},不满足集合中元素的互异性;当2a 2+5a =-3时,解得a =-32或a =-1(舍去),此时A =⎩⎨⎧⎭⎬⎫-72,-3,12,满足题意.综上,a =-32.5.(多选)设所有被4除余数为k (k =0,1,2,3)的整数组成的集合为A k ,即A k ={x |x =4n +k ,n ∈Z },则下列结论中正确的是( )A .2 020∈A 0B .a +b ∈A 3,则a ∈A 1,b ∈A 2C .-1∈A 3D .a ∈A k ,b ∈A k ,则a -b ∈A 0解析:选ACD 2 020=4×505+0,所以2 020∈A 0,故A 正确;若a +b ∈A 3,则a ∈A 1,b ∈A 2,或a ∈A 2,b ∈A 1或a ∈A 0,b ∈A 3或a ∈A 3,b ∈A 0,故B 不正确;-1=4×(-1)+3,所以-1∈A 3,故C 正确;a =4n +k ,b =4m +k ,m ,n ∈Z ,则a -b =4(n -m )+0,(n -m )∈Z ,故a -b ∈A 0,故D 正确.6.集合{x ∈N |x -3<2}用列举法表示是________.解析:由x -3<2得x <5,又x ∈N ,所以集合表示为{0,1,2,3,4}. 答案:{0,1,2,3,4}7.已知集合A ={-1,0,1},则集合B ={x +y |x ∈A ,y ∈A }中元素的个数是________. 解析:集合B ={x +y |x ∈A ,y ∈A }={-2,-1,0,1,2},则集合B 中元素的个数是5. 答案:58.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A ,B 相等,则实数a =______.解析:由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解方程组可得a =1,经检验此时A ={1,-2,0}, B ={1,-2,0},满足A =B ,所以a =1. 答案:19.设集合A ={-4,2a -1,a 2},B ={9,a -5,1-a },且A ,B 中有唯一的公共元素9,求实数a 的值.解:∵A ={-4,2a -1,a 2},B ={9,a -5,1-a },且A ,B 中有唯一的公共元素9, ∴2a -1=9或a 2=9.当2a -1=9时,a =5,此时A ={-4,9,25},B ={9,0,-4},A ,B 中还有公共元素-4,不符合题意;当a 2=9时,a =±3,若a =3,B ={9,-2,-2},集合B 不满足元素的互异性. 若a =-3,A ={-4,-7,9}, B ={9,-8,4},A ∩B ={9},∴a =-3. 综上可知,实数a 的值为-3. 10.根据要求写出下列集合.(1)已知-5∈{x |x 2-ax -5=0},用列举法表示集合{x |x 2-4x -a =0};(2)已知集合A =⎩⎨⎧⎭⎬⎫168-x ∈N x ∈N ,用列举法表示集合A ;(3)已知方程组⎩⎪⎨⎪⎧x -y +1=0,2x +y -4=0,分别用描述法、列举法表示该集合;(4)已知集合B ={(x ,y )|2x +y -5=0,x ∈N ,y ∈N },用列举法表示该集合; (5)用适当的方法表示坐标平面内坐标轴上的点集. 解:(1)∵-5∈{x |x 2-ax -5=0}, ∴(-5)2-a ×(-5)-5=0, 解得a =-4,∵x 2-4x +4=0的解为x =2,∴用列举法表示集合{x |x 2-4x -a =0}为{2}. (2)∵168-x ∈N ,则8-x 可取的值有1,2,4,8,16,∴x 的可能值有7,6,4,0,-8,∵x ∈N ,∴x 的取值为7,6,4,0, ∴168-x的值分别为2,4,8,16, ∴A ={2,4,8,16}.(3)∵方程组⎩⎪⎨⎪⎧ x -y +1=0,2x +y -4=0的解为⎩⎪⎨⎪⎧x =1,y =2,∴用描述法表示该集合为{(x ,y )|x =1,y =2},列举法表示该集合为{(1,2)}. (4)∵当x =0时,y =5;当x =1时,y =3; 当x =2时,y =1,∴用列举法表示该集合为{(0,5),(1,3),(2,1)}. (5)坐标轴上的点满足x =0或y =0,即xy =0, 则该集合可表示为{(x ,y )|xy =0}.(二)综合应用1.已知集合A ={a 2,0,-1},B ={a ,b,0},若A =B ,则(ab )2 021的值为( ) A .0 B .-1 C .1D .±1解析:选B 根据集合中元素的互异性可知a ≠0,b ≠0, 因为A =B ,所以-1=a 或-1=b ,当a =-1时,b =a 2=1,此时(ab )2 021=(-1)2 021=-1; 当b =-1时,则a 2=a ,因为a ≠0, 所以a =1,此时(ab )2 021=(-1)2 021=-1.综上可知,(ab )2 021=-1.2.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a ,b 同正时,|a |a +|b |b =a a +bb =1+1=2.当a ,b 同负时,|a |a +|b |b =-a a +-bb =-1-1=-2.当a ,b 异号时,|a |a +|b |b=0.∴|a |a +|b |b 的可能取值所组成的集合中元素共有3个. 答案:33.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B ={1,2,3,6},则A 中的元素与B 中的元素组成的集合为________.解析:由题意可知-2x =x 2+x ,解得x =0或x =-3. 而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A 中的元素与B 中的元素组成的集合为{-6,0,1,2,3,6}. 答案:{-6,0,1,2,3,6}4.若集合P ={x |ax 2+4x +4=0,x ∈R }中只含有1个元素,则实数a 的取值是________. 解析:当a =0时,方程为4x +4=0,解得x =-1,此时P ={-1},满足题意; 当a ≠0时,则Δ=42-4a ×4=0,解得a =1,此时P ={-2},满足题意,∴a =0或1. 答案:0或15.已知集合A ={x |x 2-ax +1>0}. (1)若1∉A,2∈A ,求实数a 的取值范围;(2)已知a ≠0,判断a +1a能否属于集合A ,并说明你的理由.解:(1)因为1∉A,2∈A ,所以⎩⎪⎨⎪⎧1-a +1≤0,4-2a +1>0,即⎩⎪⎨⎪⎧a ≥2,a <52,所以实数a 的取值范围是⎩⎨⎧⎭⎬⎫a | 2≤a <52.(2)假设a +1a 属于集合A ,则⎝⎛⎭⎫a +1a 2-a ⎝⎛⎭⎫a +1a +1>0, 整理得1a 2+2>0恒成立,所以a +1a 属于集合A .(三)创新发展已知集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },M ={x |x =6n +3,n ∈Z }. (1)若m ∈M ,则是否存在a ∈A ,b ∈B ,使m =a +b 成立?(2)对任意a ∈A ,b ∈B ,是否一定存在m ∈M ,使a +b =m ?证明你的结论. 解:(1)设m =6k +3=3k +1+3k +2(k ∈Z ), 令a =3k +1(k ∈Z ),b =3k +2(k ∈Z ),则m =a +b . 故若m ∈M ,则存在a ∈A ,b ∈B ,使m =a +b 成立. (2)设a =3k +1,b =3l +2,k ,l ∈Z , 则a +b =3(k +l )+3,k ,l ∈Z .当k +l =2p (p ∈Z )时,a +b =6p +3∈M ,此时存在m ∈M ,使a +b =m 成立;当k +l =2p +1(p ∈Z )时,a +b =6p +6∉M ,此时不存在m ∈M ,使a +b =m 成立.故对任意a ∈A ,b ∈B ,不一定存在m ∈M ,使a +b =m .。

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。

人教A版高中数学必修一 1.3 集合的运算能力专题训练题(附答案)

人教A版高中数学必修一 1.3 集合的运算能力专题训练题(附答案)

人教A版高中数学必修一 1.3 集合的运算能力专题训练题(附答案)一、单选题1.设全集M={1,2,3,4,5},N={2,5},则∁M N=()A. {1,2,3}B. {1,3,4}C. {1,4,5}D. {2,3,5}2.如图,U为全集,M,N是集合U的子集,则阴影部分所表示的集合是()A. M∩NB. ∁U(M∩N)C. (∁U M)∩ND. (∁U N)∩M3.若集合M={3,4,5,6,7,8},N={x|x2-5x+4≤0}则M∩N=()A. {3}B. {3,4}C. {3<x≤5}D. {3、4、5}4. A. B. C. D.5.已知全集U={小于10的正整数},集合M={3,4,5},P={1,3,6,9},则集合{2,7,8}=()A. M∪PB. (C U M)∩(C U P)C. M∩PD. (C U M)∪(C U P)6.设全集U=R,集合A={x|y=lgx},B={x|x2﹣3x>4},则A∩(∁U B)=()A. {x|0≤x≤4}B. {x|﹣1≤x≤4}C. {x|﹣1≤x≤0}D. {x|0<x≤4}7.已知全集U是实数集R.如图的韦恩图表示集合M={x|x>2}与N={x|1<x<3}关系,那么阴影部分所表示的集合可能为()A. {x|x<2}B. {x|1<x<2}C. {x|x>3}D. {x|x≤1}8.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A. [1,2)B. [﹣1,1]C. [﹣1,2)D. [﹣2,﹣1]二、多选题≥1},集合B={x|ax=1},且A∩B=B,则a的值可能为()9.已知集合为A={x∈Z|2−xx+3C. -1D. -2A. 0B. −1210.定义集合运算:A⊗B={z|z=(x+y)×(x−y),x∈A,y∈B},设A={√2,√3},B={1,√2},则()A. 当x=√2,y=√2时,z=1B. x可取两个值,y可取两个值,z=(x+y)×(x−y)对应4个式子C. A⊗B中有4个元素D. A⊗B的真子集有7个E. A⊗B中所有元素之和为411.已知集合A={x|x2+x−2=0},B={x|ax=1},若A∩B=B,则a=()A. −12B. 1C. 0D. 212.已知集合A={x|x2−x−6=0},B={x|mx−1=0},A∩B=B,则实数m取值为()A. 13B. −12C. −13D. 0三、填空题13.A={1,4,x},B={1,x2},且A∩B=B,则x=________.14.若集合A={x|﹣1≤2x+1≤3},B= {x|x−2x≤0},则A∪B=________.15.已知非空集合A={x∈R|x2<a2},B={x|1<x<3},若A∩B={x|1<x<2},则实数a的值为________.16.用集合的交和并表示图中阴影部分为________.四、解答题17.在①A ∪B=B,②A ∩B ≠∅,③B ⊆∁RA这三个条件中任选一个,补充在下面问题中,若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|(x+2)(x−a)<0,x∈R},B={x|x+2x−2≤0,x∈R},是否存在实数a,使得_________成立.注:如果选择多个条件分别解答,按第一个解答计分.18.已知函数f(x)=m−25x+1.(1)若函数f(x)是R上的奇函数,求m的值;(2)若函数f(x)的值域为D,且D⊆[-3,1],求m的取值范围.19.已知函数y=√x+2+√5−x的定义域是集合Q,集合P={x|a+1≤x≤2a+3},R是实数集. (1)若a=3,求(∁R P)∪(∁R Q);(2)若P∪Q=Q,求实数a的取值范围.20.已知函数f(x)=x2−4x+a+3,a∈R.(1)若函数y=f(x)的图像与x轴无交点,求a的取值范围;(2)若方程f(x)=0在区间[−1,1]上存在实根,求a的取值范围;(3)设函数g(x)=bx+5−2b,b∈R,当a=0时若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.21.已知函数f(x)=x−6x+1,且当x∈[0,2]时,函数g(x)=x2−mx+m.(1)判断并证明函数f(x)在区间(0,+∞)上的单调性;(2)若对任意x1∈[0,2],总存在x2∈[1,5],使得g(x1)=f(x2),求实数m的取值范围.22.设n为正整数,集合A={α|α=(t1,t2⋯t n),t k∈{0,1},k=1,2,⋯,n} ,对于集合A中的任意元素α= {x1,x2⋯x n}和β= {y1,y2⋯y n},记M(α,β)= 12[( x1+y1−|x1−y1|)+(x2+y2−|x2−y2|)+ +(x n+y n−|x n−y n|)] (Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足;对于B中的任意元素α,β,当a,β相同时,M( α,β)是奇数;当aβ不同时,M( α,β)是偶数,求集合B中元素个数的最大值(Ⅲ)给定不小于2的n,设B是A的子集,且满足;对于B中的任意两个不同的元素α,β,M( α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.答案一、单选题1. B2.D3. B4. A5. B6.D7. D8. D二、多选题9. A,B,C 10. B,D 11. A,B,C 12. A,B,D三、填空题13. -2,0,2 14. {x |﹣1≤x≤2} 15.±2 16. (A∩B)∪C四、解答题17. 解:由题意,B={x|x+2x−2≤0}=[−2,2),A={x|(x+2)(x−a)<0,x∈R}当a>−2时,A= (−2,a);当a=−2时,A=∅;当a<−2时,A=(a,−2);选择①:A∪B=B,则A⊆B,当a>−2时,(−2,a)⊆[−2,2),则a≤2,所以−2<a≤2;当a=−2时,A=∅,满足题意;当a<−2时,A=(a,−2),不满足题意;则实数a的取值范围是[−2,2].选择②:A∩B≠∅,当a>−2时,A=(−2,a),B=[−2,2),满足题意;当a=−2时,A=∅,不满足题意;当a<−2时,A=(a,−2),B=[−2,2),不满足题意;则实数a的取值范围是(−2,+∞). 选择③:B⊆∁R A,当a>−2时,A=(−2,a),∁R A=(−∞,−2]∪[a,+∞),而B=[−2,2),不满足题意;当a=−2时,A=∅,∁R A=R,而B=[−2,2),满足题意;当a<−2时,A=(a,−2),∁R A= (−∞,a]∪[−2,+∞),而B=[−2,2),满足题意;则实数a的取值范围是(−∞,−2].18. (1)解:∵f(x)是R上的奇函数,∴f(0)=0,∴m- 250+1=0,∴m=1,此时f(x)=1−25x+1=5x−15x+1=−5−x−15−x+1=f(−x)为奇函数,满足题意.(2)解:∵5x>0,∴5x+1>1,∴0<25x+1<2,∴-2<- 25x+1<0,∴m-2<m- 25x+1<m,∴D=(m-2,m),∵D⊆[-3,1],∴{m−2≥−3m≤1,∴-1≤m≤1,∴m的取值范围为[-1,1].19. (1)解:Q={x|−2≤x≤5}当a=3,P={x|4≤x≤9},故P∩Q={x|4≤x≤5},(∁R P)∪(∁R Q)=∁R(P∩Q)={x|x4或x5}(2)解:要P∪Q=Q,则要P⊆Q.(i)当a+1≤2a+3时,即a≥−2时,P≠∅,要使得P⊆Q.只需{a≥−2−2≤a+12a+3≤5,解得−2≤a≤1.(ii)当a+1>2a+3时,即a<−2时,P=∅.故P⊆Q.综合(i)(ii),实数a的取值范围为{a|a≤1}.20. (1)解:若函数 y =f(x) 的图象与 x 轴无关点,则方程 f(x)=0 的根的判别式 Δ<0 ,即 16−4(a +3)<0 ,解得 a >1 . 故 a 的取值范围为 {a|a >1} .(2)解:因为函数 f(x)=x 2−4x +a +3 的图象的对称轴是直线 x =2 ,所以 y =f(x) 在 [−1,1] 上是减函数.又 y =f(x) 在 [−1,1] 上存在零点,所以 {f(1)≤0f(−1)≥0 ,即 {a ≤0a +8≥0,解得 −8≤a ≤0 . 故 a 的取值范围为 {a|−8≤a ≤0} .(3)解:若对任意的 x 1∈[1,4] ,总存在 x 2∈[1,4] ,使得 f(x 1)=g(x 2) ,则函数 y =f(x) 在 [1,4] 上的函数值的取值集合是函数 y =g(x) 在 [1,4] 上的函数值的取值集合的子集.当 a =0 时,函数 f(x)=x 2−4x +3 图象的对称轴是直线 x =2 ,所以 y =f(x) 在 [1,4] 上的函数值的取值集合为 [−1,3] .①当 b =0 时, g(x)=5 ,不符合题意,舍去.②当 b >0 时, g(x) 在 [1,4] 上的值域为 [5−b,5+2b] ,只需 {5−b ≤−15+2b ≥3,解得 b ≥6 . ③当 b <0 时, g(x) 在 [1,4] 上的值域为 [5+2b,5−b] ,只需 {5+2b ≤−15−b ≥3,解得 b ≤−3 . 综上, b 的取值范围为 {b|b ≥6 或 b ≤−3} .21. (1)解:函数 f(x) 在 (0,+∞) 递增;证明: ∀x 1,x 2∈(0,+∞) ,且 x 1>x 2>0 ,则 f(x 1)−f(x 2)=x 1−6x 1+1−(x 2−6x 2+1)=(x 1−x 2)[1+6(x 1+1)(x 2+1)] ,因为 x 1−x 2>0,(x 1+1)(x 2+1)>0 ,所以 f(x 1)−f(x 2)>0 ,即 f(x 1)>f(x 2) ,所以 f(x) 在 (0,+∞) 递增(2)解:由已知可得: g(x) 的值域为 f(x) 值域的子集,由(1)知 f(x) 在 [1,5] 上递增,且 f(1)=−2,f(5)=4 ,故 f(x) 的值域为 [−2,4] ,于是原问题转化为 g(x) 在 [0,2] 上的值域 A ⊆[−2,4] ,①当 m 2≤0 即 m ≤0 时, g(x) 在 [0,2] 递增,又 g(0)=m , g(2)=4−m ,故 A =[m,4−m] ,∵ [m,4−m]⊆[−2,4] ,∴ {m ≥−24−m ≤4,解得: m =0 ; ②当 0<m 2≤1 即 0<m ≤2 时, g(x) 在 [0,m 2) 递减,在 (m 2,2] 递增, 故此时 A =[g(m 2),g(2)] ,欲使 A ⊆[−2,4] ,只需 {g(m 2)=−m 24+m ≥−2g(2)=4−m ≤4, 解不等式得: 0≤m ≤2+2√3 ,又 0<m ≤2 ,故此时 0<m ≤2 ;③当 1<m 2<2 即 2<m <4 时, g(x) 在 [0,m 2) 递减,在 (m 2,2] 递增,故此时 A =[g(m 2),g(0)] ,欲使 A ⊆[−2,4] ,只需 {g(m 2)=−m 24+m ≥−2g(0)=m ≤4,解不等式得:2−2√3≤m≤4,又2<m<4,故此时2<m<4;≥2即m≥4时,g(x)在[0,2]递减,于是A=[4−m,m],④当m2∵[4−m,m]⊆[−2,4],故{4−m≥−2m≤4,解得:m=4;综上:实数m的取值范围是[0,4].[(1−1)+2+(1−1)2]=122. 解:(Ⅰ)M(α, α)=2,M(α,β)=12(Ⅱ)当α,β相同时,M(α,β)=x1+x2+x3+x4为奇数,共8种,分别为(0,0,0,1)(0,0,1,0)(0,1,0,0)(1,0,0,0)(0,1,1,1)(1,1,0,1)(1,0,1,1)(1,1,1,0)当α,β不同时,每位次可以相同,可以不同,计算加和为本身,不同位次计算加和为0,∴M(α,β)为偶数,则有如下几种情形四个位次全不同;两个位次相同;两个位次不同,且相同位次同为0或同为1Ⅰ组可以最多4个,Ⅱ组可以同在最多4个,Ⅰ、Ⅱ组均有,则只能四个位次全不同,则最多2个综上所述,最多4个,(Ⅲ)由(Ⅱ)可知,若相同位次,计算加和为本身,只能是0,若不同位次,计算加和也为0,故每个元素最多为1个,其余为0,则B中元素最多n+1个,即(0,0,…,0)(0,1,0…,0)(0,0,1,…,0)(0,0,0…1)。

2015高中数学集合综合拔高训练二(有答案)

2015高中数学集合综合拔高训练二(有答案)

2015高中数学集合综合拔高训练二(有答案)一.选择题(共30小题)1.(2013•嘉兴模拟)已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存.由于存在x=2.(2013•西城区二模)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6﹣a∈A.则具有性3.(2013•南开区一模)已知A={(x,y)|x(x﹣1)≤y(1﹣y)},B={(x,y)|x2+y2≤a}若A⊆B,则实数a的取)[[)﹣≤,半径为,半径为4.(2013•肇庆二模)各项互不相等的有限正项数列{a n},集合A={a1,a2,…,a n,},集合B={(a i,a j)|a i∈A,.D5.(2013•枣庄一模)若曲线y=x2+1与=m有唯一的公共点,则实数m的取值集合中元素的个数为(),得m=6.(2013•肇庆一模)设集合M={A0,A1,A2,A3,A4,A5},在M上定义运算“⊗”为:A i⊗A j=A k,其中k为i+j7.(2013•菏泽二模)设全集U=R,,则如图中阴影部分表示的集合为()x9.(2013•惠州二模)已知全集R,集合E={x|b<x<},F={x|<x<a},M={x|b<x},若a>b>0,E={x|}F={x|M={x|F={x|={x|10.(2013•深圳二模)非空数集A={a1,a2,a3,…,a n}(n∈N*)中,所有元素的算术平均数记为E(A),即E(A)=.若非空数集B满足下列两个条件:①B⊆A;②E(B)=E(A),则称B为A的一个“保均值子集”.11.(2013•广州二模)某校高三(1)班50个学生选择选修模块课程,他们在A、B、C三个模块中进行选择,R至少需要选择l 个模块,具体模块选择的情况如下表:12.(2012•黑龙江)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数13.(2012•赣州模拟),则实数a取值范围为()时,有<不成立,即成立或无意义,解可得时,时,有<不成立,即成立或成立,解本题考查元素与集合关系的判断,注意不能遗漏2C D.或4x+1=0}={},;},a+b=15.(2012•泸州二模)设集合I={1,2,3,4,5,6},集合A、B⊆I,若A中含有3个元素,B中至少含有2个元16.(2012•通州区一模)定义集合{x|a≤x≤b}的“长度”是b﹣a.已知m,n∈R,集合M={x|m},N={x|n﹣},且集合M,N都是集合{x|1≤x≤2}的子集,那么集合M∩N的“长度”的最小值是().C D.的长度是,﹣集合的长度是,最小,为17.(2012•南充三模)设函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使===1﹣,﹣18.(2012•许昌二模)设U为全集,对集合X,Y,定义运算“*”,X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则19.(2012•福州模拟)若将有理数集Q分成两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为有理数集的一个分割.试判断,对于有理数集的任一分割(M,N),20.(2011•北京)设A(0,0),B(4,0),C(t+4,4),D(t,4)(t∈R).记N(t)为平行四边形ABCD内部(不21.(2011•安徽)设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅的集合S的个数是22.(2011•浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)还有一根只要*25.(2011•杭州二模)已知函数f(x)=x3﹣3x+1,x∈R,A={x|t≤x≤t+1},B={x||f(x)|≥1},集合A∩B只含有一个.C D.≤≤综合得:﹣≥27.(2011•怀化一模)如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=(),求的是函数的定义域,29.(2010•温州模拟)函数f(x)=,则集合{x|f[f (x)]=0}中元素的个数有(),,或,或30.(2010•河北区一模)设函数f(x)在R上单调递减,且对于任意实数m,n,总有f(m+n)=f(m)•f(n),设A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax﹣y+2)=1,a∈R},若A∩B=∅,则a的取值范围是≤≤≤d=解得:﹣.。

补集及综合应用专题训练

补集及综合应用专题训练

补集及综合应用专题训练一、选择题1.设全集U={1,2,3,4,5},A={1,3,5},B={2,4,5},则(∁U A)∩(∁U B)=()A.∅B.{4} C.{1,5} D.{2,5}2.若全集U={1,2,3,4,5},∁U P={4,5},则集合P可以是()A.{x∈N*||x|<4} B.{x∈N*|x<6}C.{x∈N*|x2≤16} D.{x∈N*|x3≤16}3.设集合U={-1,1,2,3},M={x|x2-5x+p=0},若∁U M={-1,1},则实数p的值为()A.-6 B.-4 C.4 D.64.已知U为全集,集合M,N是U的子集.若M∩N=N,则()A.(∁U M)⊇(∁U N) B.M⊆(∁U N) C.(∁U M)⊆(∁U N) D.M⊇(∁U N)5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1 B.2 C.3 D.4二、填空题6.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________.7.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________.8.全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合C={x|-1<x<2}=________(用A,B 或其补集表示).三、解答题9.设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M∁U P,求实数a的取值范围.10.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.能力提升11.设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁I M)∩N;(2)记集合A=(∁I M)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求实数a的取值范围.12.已知全集U={小于10的正整数},A⊆U,B⊆U,且(∁U A)∩B={1,8},A∩B={2,3},(∁U A)∩(∁U B)={4,6,9}.(1)求集合A与B;(2)求(∁R U)∪[∁Z(A∩B)](其中R为实数集,Z为整数集).补集及综合应用专题训练答案一、选择题1.设全集U={1,2,3,4,5},A={1,3,5},B={2,4,5},则(∁U A)∩(∁U B)=()A.∅B.{4} C.{1,5} D.{2,5}解析:选A∵∁U A={2,4},∁U B={1,3},∴(∁U A)∩(∁U B)=∅,故选A.2.若全集U={1,2,3,4,5},∁U P={4,5},则集合P可以是()A.{x∈N*||x|<4} B.{x∈N*|x<6}C.{x∈N*|x2≤16} D.{x∈N*|x3≤16}解析:选A由题意得P={1,2,3}.又因为选项A化简得{1,2,3},选项B化简得{1,2,3,4,5},选项C化简得{1,2,3,4},选项D化简得{1,2},故选A.3.设集合U={-1,1,2,3},M={x|x2-5x+p=0},若∁U M={-1,1},则实数p的值为()A.-6 B.-4 C.4 D.6解析:选D由已知可得M={2,3},则2,3是方程x2-5x+p=0的两根,则p=6,故选D.4.已知U为全集,集合M,N是U的子集.若M∩N=N,则()A.(∁U M)⊇(∁U N) B.M⊆(∁U N) C.(∁U M)⊆(∁U N) D.M⊇(∁U N)解析:选C∵M∩N=N,∴N⊆M,∴(∁U M)⊆(∁U N).5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1 B.2 C.3 D.4解析:选B A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.二、填空题6.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________.解析:∵U=R,B={x|x>1},∴∁U B={x|x≤1}.又∵A={x|x>0},∴A∩(∁U B)={x|x>0}∩{x|x≤1}={x|0<x≤1}.答案:{x|0<x≤1}7.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________. 解析:∵B ={x |1<x <2},∴∁R B ={x |x ≤1或x ≥2}.又∵A ∪(∁R B )=R ,A ={x |x <a }.观察∁R B 与A 在数轴上表示的区间,如图所示:可得当a ≥2时,A ∪(∁R B )=R.答案:{a |a ≥2}8.全集U =R ,A ={x |x <-3或x ≥2},B ={x |-1<x <5},则集合C ={x |-1<x <2}=________(用A ,B 或其补集表示).解析:如图所示,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ).答案:B ∩(∁U A )三、解答题9.设全集U =R ,M ={x |3a <x <2a +5},P ={x |-2≤x ≤1},若M ∁U P ,求实数a 的取值范围. 解:∁U P ={x |x <-2或x >1},∵M ∁U P ,∴分M =∅,M ≠∅,两种情况讨论.(1)M ≠∅时,如图可得⎩⎪⎨⎪⎧ 3a <2a +5,2a +5≤-2, 或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1,∴a ≤-72,或13≤a <5. (2)M =∅时,应有3a ≥2a +5⇒a ≥5.综上可知,a ≤-72,或a ≥13. 10.已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x <a }.(1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.解:(1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2,或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x <a },且A ∩C ≠∅,所以a >2, 所以a 的取值范围为{a |a >2}.能力提升11.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R},若B ∪A =A ,求实数a 的取值范围. 解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2, 解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}.12.已知全集U ={小于10的正整数},A ⊆U ,B ⊆U ,且(∁U A )∩B ={1,8},A ∩B ={2,3},(∁U A )∩(∁U B )={4,6,9}.(1)求集合A 与B ;(2)求(∁R U )∪[∁Z (A ∩B )](其中R 为实数集,Z 为整数集).解:由(∁U A )∩B ={1,8},知1∈B,8∈B ;由(∁U A )∩(∁U B )={4,6,9},知4,6,9∉A ,且4,6,9∉B ;由A∩B={2,3},知2,3是集合A与B的公共元素.因为U={1,2,3,4,5,6,7,8,9},所以5∈A,7∈A.画出Venn图,如图所示.(1)由图可知A={2,3,5,7},B={1,2,3,8}.(2)(∁R U)∪[∁Z(A∩B)]={x|x∈R,且x≠2,x≠3}.。

有机合成专题训练试题(含答案)

有机合成专题训练试题(含答案)

有机合成专题训练(2017级)1.某酯K是一种具有特殊香气的食用香料,广泛应用于食品和医疗中。

其合成路线如下:已知:RCH2COOH CH3CHCOOH(1)E的含氧官能团名称是。

(2)试剂X是(填化学式);②的反应类型是。

(3)D的电离方程式是。

(4)F的分子式为C6H6O,其结构简式是。

(5)W的相对分子质量为58,1 mol W完全燃烧可产生 mol CO2和 mol H2O,且W的分子中不含甲基,为链状结构。

⑤的化学方程式是。

(6)G有多种属于酯的同分异构体,请写出同时满足下列条件的所有同分异构体的结构简式:。

① 能发生银镜反应且能与饱和溴水反应生成白色沉淀② 苯环上只有两个取代基且苯环上的一硝基取代物只有两种2.光刻胶是一种应用广泛的光敏材料,其合成路线如下(部分试剂和产物略去):已知:Ⅰ.R 1C H OR 2CH HCHOR 1CH C R 2CHO +(R ,R’为烃基或氢)Ⅱ.R 1C O Cl R 2OHR 1C O OR 2HCl++(R ,R’为烃基)(1)A 分子中含氧官能团名称为 。

(2)羧酸X 的电离方程式为 。

(3)C 物质可发生的反应类型为 (填字母序号)。

a .加聚反应b . 酯化反应c . 还原反应d .缩聚反应(4)B 与Ag(NH 3)2OH 反应的化学方程式为 。

(5)乙炔和羧酸X 加成生成E ,E 的核磁共振氢谱为三组峰,且峰面积比为3:2:1,E 能发生水解反应,则E 的结构简式为 。

(6)与C 具有相同官能团且含有苯环的同分异构体有4种,其结构简式分别为CH CH 2COOH 、CH CH 2HOOC、 和 。

(7)D和G反应生成光刻胶的化学方程式为 。

3.高分子化合物G是作为锂电池中Li+迁移的介质,合成G的流程如下:已知:①②(1)B的含氧官能团名称是。

(2)A→B的反应类型是。

(3)C的结构简式是。

(4)D→E反应方程式是。

(5)G的结构简式是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合名校专题训练一、选择题1.已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A2.已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}3.已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)5.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)6.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}7.若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.318.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}二、填空题9.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.10.已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________. 11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.12.已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.13. 设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.[2,3] B.(-∞,-2)∪[3,+∞) C.(2,3)D.(0,+∞)14.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( ) A.{x |x ≥1} B.{x |1≤x <2} C.{x |0<x ≤1}D.{x |x ≤1}15.设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.16.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.集合名校专题训练答案一、选择题1.已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案D2.已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案D3.已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案C5.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B={x|x2-1<0}=(-1,1).因此A ∪B =(-1,+∞). 答案 C6.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( ) A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1} C.{x |0≤x ≤1}D.{x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1. 答案 (-∞,1]10.已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________.解析 由A ={1,2,3},B ={y |y =2x -1,x ∈A },∴B ={1,3,5},因此A ∩B ={1,3}. 答案 {1,3}11.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由x (x +1)>0,得x <-1或x >0, ∴B =(-∞,-1)∪(0,+∞), ∴A -B =[-1,0). 答案 [-1,0)12.已知集合A ={x |x 2-2 016x -2 017≤0},B ={x |x <m +1},若A ⊆B ,则实数m 的取值范围是________.解析 由x 2-2 016x -2 017≤0,得A =[-1,2 017], 又B ={x |x <m +1},且A ⊆B ,所以m +1>2 017,则m >2 016. 答案 (2 016,+∞)13.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.[2,3] B.(-∞,-2)∪[3,+∞) C.(2,3)D.(0,+∞)解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3),因此(∁R S )∩T =(2,3). 答案 C14.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是( ) A.{x |x ≥1} B.{x |1≤x <2} C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B15.设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.解析由14≤2x≤16,x∈N,∴x=0,1,2,3,4,即A={0,1,2,3,4}.又x2-3x>0,知B={x|x>3或x<0},∴A∩B={4},即A∩B中只有一个元素.答案116.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m+n=________.解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n)可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.所以m+n=0.答案0。

相关文档
最新文档