专题训练(五) 角平分线的六种运用
解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
2022年中考数学几何模型之角平分线的五种模型(讲+练)(解析版)

专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交A D ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴====- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩ ∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴B F =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,则,平分,,中,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.【解析】过点E于G,连接CF,如图所示:分别是,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠AC E 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°【答案】A4321DA【解析】∵∠ABC与∠AC E的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD是ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE 的长为()A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF=⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【答案】A【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABCABD ACDSSS=+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A.1B.2C.2.5D【答案】B【详解】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.4.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是______.【答案】30【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒ 在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25. 7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长. 【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ; (2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示). 【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ). 【详解】(1)如图1,当t =1时,点E (0,1), ∵AD ⊥BC , ∴∠EAO +∠BCO =90°, ∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBOAO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0). 故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC , ∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒;(3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P (0,3),C (t ,0),∴CG =FH =3,PG =OC =t , ∵∠QPC =90°,∴∠CPG +∠QPH =90°, ∵∠QPH +∠HQP =90°,∴∠CPG =∠HQP ,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).。
微专题(六) 与角平分线有关的四种基本模型 课件(共19张PPT) 2024年中考数学总复习专题突破

5
.所以
6
= 4 =
10
.
3
10
【答案】
3
图34
17
微专题(六) 与角平分线有关的四种基本模型
模型四 角平分线+轴对称
构造
复习讲义
全等三角形
6.如图6,在 △ 中, ∠ = 108∘ , = ,
图6
平分 ∠ ,交 于点 .求证: = + .
B. 2 + 3
C. 2 + 3
D.3
图2
12
微专题(六) 与角平分线有关的四种基本模型
模型二 角平分线+角平分线的垂线
复习讲义
构造
等腰三角形
3.如图3,在 △ 中, < , 平分
∠ , ⊥ 于点 ,连接 .若 △ 的
面积为4,求 △ 的面积.
复习讲义
学习至此,请完成微专题练习(六) (第267页)
10
微专题(六) 与角平分线有关的四种基本模型
复习讲义
微专题练习(六)
与角平分线有关的四种基本模型
模型一 角平分线+边的垂线
构造
双垂直
1.如图1, 平分 ∠ , ⊥ 于点 ,
△ = 8 , = 2 , = 4 ,则 的长是
= 8 ,所以 = 10 .所以 : : = : : = 3: 4: 5 .设
16
微专题(六) 与角平分线有关的四种基本模型
复习讲义
= = 3 ,则 = = 4 , = 5 .因为 = 10 ,所以
3 + 5 + 4 = 10 .所以 =
八年级数学上册 第十二章 全等三角形 专题训练(五)作辅助线构造三角形全等的常见技巧课件

(2)过点 A 作 AD⊥x 轴,垂足为 D,过点 C 作 CE⊥AD,垂足为 E.同(1) 可证△ACE≌△BAD,∴AE=BD,CE=AD.∵A(1,3),B(-1,0),∴BD =2,AD=3.∴CE=3,DE=AD-AE=1,∴C(4,1)
(3)过点 A 作 AD⊥x 轴,AE⊥ y 轴,垂足分别为 D, E.同(1)可证 △BAD≌△CAE,∴CE=BD,AE=AD.∵B(-4,0),C(0,-1),∴OB=4, OC=1,∴AE=OB-BD=OB-CE=OB-(OC+OE)=3-AE,∴AE=32 , ∴A(-32 ,32 )
∠CFP=∠DEP, 在△CFP 和△DEP 中,PF=PE,
∠1=∠2,
∴△CFP≌△DEP(ASA),∴PC=PD
第四页,共二十二页。
2.如图,在四边形ABCD中,BC>BA,AD=CD,若BD平分(píngfēn)∠ABC,求证:∠A +∠C=180°.
第五页,共二十二页。
证明:过点 D 作 DE⊥BC 于点 E,过点 D 作 DF⊥AB 交 BA 的延长线于 点 F,
(2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB+AC,又AB=5,AC=3, ∴2<2AD<8.∴1<AD<4
第十五页,共二十二页。
方法2:倍延过中点的线段 8.如图,在△ABC中,D是BC边上(biān shànɡ)的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF. 求证:BE+CF>EF.
(一)结合“ 过角平分线上一点作角两边的垂线”模型(móxíng)构造全等三角形 1.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线 OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.
角平分线专题训练

《角平分线》专题班级姓名业精于勤而荒于嬉,行成于思而毁于随。
——韩愈一、填空题1.___ __叫做角的平分线.2.角的平分线的性质是__________ _________________.它的题设是_____ ____,结论是___ __.3.到角的两边距离相等的点,在___ __.所以,如果点P到∠AOB两边的距离相等,那么射线OP是___ __.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么__ ___;(2)如果一个点到角的两边的距离相等,那么__ ___;(3)综上所述,角的平分线是__ ___的集合.图7-1 5.(1)三角形的三条角平分线___ __它到___________________________.(2)三角形内,到三边距离相等的点是___ __.6.如图7-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.一、解答题10.已知:如图7-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC 于F.求证:DE=DF.图7-511.已知:如图7-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图7-612.已知:如图7-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图7-7拓展、探究、思考13.已知:如图7-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图7-814.已知:如图7-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图7-9一、选择题1.如图8-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( )A .PC =PDB .OC =OD C .∠CPO =∠DPO D .OC =PC图8-1 图8-2 图8-32.如图8-2,在RtΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD=n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21 C .mn D .2mn 二、填空题3.已知:如图8-3,在RtΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.4.已知:如图,在ΔABC 中,BD 、CE 分别平分∠ABC 、∠ACB ,且BD 、CE 交于点O ,过O 作OP ⊥BC 于P ,OM ⊥AB 于M ,ON ⊥AC于N ,则OP 、OM 、ON 的大小关系为_____. 图三、解答题5.已知:如图8-5,OD 平分∠POQ ,在OP 、OQ 边上取OA =OB ,点C 在OD 上,CM ⊥AD 于M ,CN ⊥BD 于N .求证:CM =CN .图8-56.已知:如图,ΔABC 的外角∠CBD 和∠BCE 的平分线BF 、CF 交于点F .求证:点F 必在∠DAE 的平分线上.7.已知:如图8-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.8.如图8-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA 的面积比为3∶8,求△ADE与△BCA的面积之比.图8-89.已知:如图8-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图8-9 10.已知:如图8-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC 上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.。
角平分线的性质专项练习(含解析)

角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
八年级数学角平分线、中点专题训练试题

A DBC八年级数学角平分线、中点专题训练试题【例题讲解】(一)过角平分线上一点向角两边作垂线段,利用角平分线上的点到角两边距离相等去作题.1.如图在四边形ABCD 中,BC>BA ,AD=DC ,BD 平分∠ABC . 求证:︒=∠+∠180C A .2.已知:如图,在∆ABC 中,∠A=90°,AB=AC ,∠1=∠2,求证:BC=AB+AD . 3.如图,□ABCD 中,E 是DC 上一点,F 是AD 上一点,AE 交CF 于点O ,且AE=CF.求证:OB 平分AOC ∠.(二)有和角平分线垂直的线段时,把它延长可得到中点或相等的线段,从而与三角形中位线或三角形全等建立起联系.4.已知:如图,∠1=∠2,AB ﹥AC ,CD ⊥AD 于D ,H 是BC 中点, 求证:DH=21(AB -AC ). 5.已知:如图,AB=AC ,∠BAC=90°,∠1=∠2,CE ⊥BE ,求证:BD=2CE(三)有角平分线时,常作平行线,构造等腰三角形。
(角平分线+平行线⇒三角形.)6.已知:如图,)(AC AB ABC ≠∆中,D 、E 在BC 上,且DE=EC ,过D 作DF ∥AB,交AE 于点F ,DF=AC.求证:AE 平分BAC ∠. (四)作斜边中线,利用斜边中线性质解题7.如图,在ABC Rt ∆中,AB=AC ,︒=∠90BAC ,O 为BC 的中点. ①写出点O 到ABC ∆的三个顶点A 、B 、C 的距离的关系(不变证明)②如果点N 、M 分别在线段AB 、AC上移动,在移动中保证AN=BM ,请判断OMN 的形状,并证明你的结论.M(五)有底中点,连中线,利用等腰三角形三线合一性质证题8.已知:如图,矩形ABCD ,E 为CB 延长线上一点,且AC=CE ,F 为AE 中点, 求证:FD BF ⊥.(六)有中线时可延长中线,构造全等三角形或平行四边形: 9.已知:如图,AD 为ABC ∆中线,求证:AD AC AB 2>+.10.已知:如图,在ABC ∆中,︒=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且QM PM ⊥于M.求证:222BQ AP PQ +=.11.已知:如图,ABC ∆的边BC 的中点为N ,过A 的任一直线BD AD ⊥于D ,AD CE ⊥于E.求证:NE=ND.(七)有中点,造中位线12.如图,在ABC ∆中,AD 是BC 边上的高,B C ∠=∠21,点E 为BC 的中点, 求证:AB=2DE.D13.已知:如图,E 、F 分别为四边形ABCD 的对角线中点,AB>CD.求证:()CD AB EF ->21.(八)与梯形中点有关的辅助线:①有腰中点时,常见以下三种引辅助线法14.已知:如图,在梯形ABCD 中,AB ∥CD ,DC AB >,M 为AD 中点,且CM BM ⊥. 求证:(1)BM 平分ABC ∠,CM 平分DCB ∠.(2)BC CD AB =+.15.已知:如图,在直角梯形ABCD 中,AD ∥BC ,BC AB ⊥,M 为CD 的中点.求证:AM=MB.AD FEBCB(1B(2GB(3B【随堂练习】1.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADC.(1)求证:△ACD≌△CNBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论.2、如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.3.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连结DF,求DF的长.例1.如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF的值为.例2.△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:CO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当△ABC满足什么条件时,四边形AECF是正方形?AD ,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求例3.如图,ABCD为平行四边形,a证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.例4.如图,在△ABC中,∠ACB=90°,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF∥AB交直线DF于F.设CD=x.(1)当x取何值时,四边形EACF是菱形?请说明理由;(2)当x取何值时,四边形EACD的面积等于2?例5.阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个便点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个:矩形ACBD和矩形AEFB(如图2).解答问题;(1)设图2中矩形ACBD和矩形AEFB的面积分别为S l、S2,则S1 S2(填“>”,“=”或“<”);(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出个,利用图3把它画出来;(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,则符合要求的矩形可以画出个,利用图4把它画出来;(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?【随堂练习】1.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是C M2.(1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE :∠BAE =3:1,则∠CAC = ; (2)矩形的一个角的平分线分矩形一边为lcm 和3cm 两部分,则这个矩形的面积为_______cm 2.3.如图,以△ABC 的三边为边在BC 的同一侧分别作三个等边三角形,即△ABD 、 △BCE 、△ACF .(1)四边形ADEF 是 ; (2)当△ABC 满足条件 时,四边形ADEF 为矩形; (3)当△ABC 满足条件 时,四边形ADEF 不存在.4.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+3,则这两边之积为 .5.如图,ABCD 中,M 是AB 上的一点,连结CM 并延长交DA 的延长线于P ,交对角线BD 于N ,求证:NP MN CN ⋅=218.如图,在梯形ABCD 中,AD ∥BC ,∠B=∠ACD ⑴请再写出图中另外一对相等的角;⑵若AC=6,BC=9,试求梯形ABCD 的中位线的长度。
专题训练 与三角形的角平分线有关的计算

专题训练 与三角形的角平分线有关的计算------教材P29T11的运用及拓展 教材母题:(教材P29T11)如图,△ABC 中,∠ABC 和∠ACB 的平分线BE,CF 相交于点G.求证:)(21180)1(0ACB ABC BGC ∠+∠-=∠()A BGC ∠+=∠219020证明:ACB GCB ABC GBC ∠=∠∠=∠∴21,21G ,相交于点CF BE,的平分线ACB 和∠ABC ∠∵(1))(21ACB ABC GCB GBC ∠+∠=∠+∠∴)(21180)(180180000ACB ABC GCB GBC BGC AACB ABC ∠+∠-=∠+∠-=∠∴∠-=∠+∠ (2)在△ABC 中,A A ACB ABC BGC A ACB ABC ∠+=∠--=∠+∠-=∠∴∠-=∠+∠2190)180(21180)(211801800000拓展类型1 一个内角平分线和一个外角平分线的夹角 如图,BD 是△ABC 的角平分线,CD 是△ABC 的外角平分线。
(1)若∠ABC=55°,∠ACB=65°,求∠D 的度数.(2)若∠A=60°,求∠D 的度数.(3)试探究∠D 与∠A 之间的数量关系.A D ∠=∠21拓展类型2 两个外角平分线的夹角如图,BD 、CD 分别是△ABC 的两个外角∠CBE 、∠BCF 的平分线.(1)若∠ABC=40°,∠ACB=60°,则∠D= 度.(2)若∠A=60°,则∠D= 度.(3)试探究∠D 与∠A 之间的数量关系..针对训练1.如图,点O是△ABC的∠ABC与∠ACB两个角的平分线的交点,若∠BOC=118°,则∠A的角度是________°2.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点D,∠A=50°,则∠D=_ _3.如图,在△ABC中,P点是∠BCE和∠CBF的角平分线的交点,若∠A=60°,则∠P=______4.如图,在平面直角坐标系中,A,B分别是x,y轴上的两个动点,∠BAO的平分线与∠ABO的外角平分线相交于点C,在A,B的运动过程中,∠C的度数是一个定值,这个定值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.如图5-ZT-9所示,已知∠B=∠C=90°,M是BC的中点, DM平分∠ADC. 求证:(1)AM平分∠DAB; (2)AD=AB+CD.
图5-ZT-9
[解析] 作ME⊥AD,证明Rt△DEM≌Rt△DCM,Rt△AEM≌Rt△ABM.
证明:(1)如图,过点 M 作 ME⊥AD 于点 E. ∵DM 平分∠ADC,∠C=90°,∴MC=ME. ∵M 是 BC 的中点, ∴MC=MB=ME. 又∵ME⊥AD,MB⊥AB, ∴AM 平分∠DAB.
距离相等,OA,OB为海岸线.一轮船P离开码头O,计划沿
∠AOB的平分线航行.
(1)用尺规作出轮船的预定航线OC;
(2)在航行途中,轮船P始终保持与灯
塔A,B的距离相等,则轮船航行时 是否偏离了预定航线?请说明理由.
图5-ZT-12
解:(1)如图.
(2) 轮船航行时没有偏离预定航线. 理由:在△AOP 和△BOP 中,POAA==POBB,,
运用三 确定三角形的周长
6.如图5-ZT-6,在△ABC中,∠B=90°,AB=BC,AD平分 ∠BAC,DE⊥AC,AC=20,求△CED的周长.
[解析] 猜想△DCE和△DBF的面积相等, 由已知CE=BF,故只需说明两个三角形中以 CE,BF为底边上的高相等.
图5-ZT-6
解::因为 AD 平分∠BAC,DE⊥AC,DB⊥AB,所以 DE=DB. 在 Rt△ADE 和 Rt△ADB 中,DAED==DABD,,所以 Rt△ADE≌Rt△ADB. 所以 AE=AB. 所以△CED 的周长为 CE+DE+CD=CE+DB+CD=CE+(DB+CD) =CE+BC=CE+AB=CE+AE=AC=20.
第十二章 全等三角形
专题训练(五) 角平分线的六种运用
第十二章 全等三角形
专题训练(五) 角平分线的六 运用
运用一 确定点的坐标和线段的长
1.如图5-ZT-1所示,在平面直角坐标系中,AD是Rt△OAB 的角平分线,点D到AB的距离DE=3,则点D的坐标是 __(3_,_0_)___.
图5-ZT-1
证明:(2)在 Rt△DEM 和 Rt△DCM 中,MDME==MDMC,, ∴Rt△DEM≌Rt△DCM.∴DE=DC. 在 Rt△AEM 和 Rt△ABM 中,MAME==MAMB,, ∴Rt△AEM≌Rt△ABM. ∴AE=AB,∴AD=AE+DE=AB+CD.
[点评] 作出点M到角两边的垂线段,利用垂线段相等是解决这个问题 的关键,因此当遇到角平分线的问题时,如果不能打开思路,不妨过 角平分线上的点作出到角两边的垂线段.
运用四 证明两条线段相等
7.我们把两组邻边相等的四边形叫做“筝形”.如图5-ZT-7, 四边形ABCD是一个筝形,其中AB=CB,AD=CD. 对角线AC,BD相交于点O,OE⊥AB, OF⊥CB,垂足分别是E,F. 求证:OE=OF.
图5-ZT-7
证明:在△ABD 和△CBD 中,AABD==CCBD,, BD=BD,
∴△ABD≌△CBD(SSS).
∴∠ABD=∠CBD.
∴BD 平分∠ABC.
又∵OE⊥AB,OF⊥CB,∴OE=OF.
运用五 角平分线的性质和判定的综合
8.如图5-ZT-8所示,△ABC的外角∠CBD,∠BCE的平分线相 交于点F,则下列结论一定成立的是( C) A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.FA平分∠BFC
图5-ZT-3
[解析] 由已知BC=10,欲求△BDC的面积,需求出BC边上的高, 从而考虑过点D作DE⊥BC,由角平分线的性质可知DE=AD,从而 问题转化为求AD的长.
解:如图,过点 D 作 DE⊥BC,垂足为 E. 因为 AB=8,S△ABD=332,所以12AB·AD=332.所以 AD=83. 因为 BD 是△ABC 的角平分线,DA⊥AB,DE⊥BC, 所以 DE=AD=83. 所以 S△BDC=12BC·DE=12×10×83=430.
图5-ZT-2
[解析] 由垂线段最短可知,当 DP⊥BC 时,DP 的长最小. ∵∠A=∠BDC=90°,∠ADB=∠C, ∴∠DBA=∠DBC.∴BD 平分∠ABC. ∵DA⊥AB,DP⊥BC,∴DP=DA=4.
运用二 确定三角形的面积
3.如图 5-ZT-3,在△ABC 中,∠A=90°,BD 是△ABC 的 角平分线.若 AB=8,BC=10,S△ABD=332,求△BDC 的面积.
OP=OP, ∴△AOP≌△BOP(SSS).∴∠AOP=∠BOP, 即点 P 在∠AOB 的平分线上.故轮船T-10,在四边形ABCD中,AB=AD,CB =CD,BO平分∠ABC交AC于点O.求证:DO平分∠ADC.
图5-ZT-10
证明:如图,过点 O 作 AB,BC,CD,DA 的垂线,垂足分别为 E,F,G,H. 在△ACB 和△ACD 中,ACBB==ACDD,,
AC=AC, ∴△ACB≌△ACD(SSS).∴∠BAC=∠DAC,∠BCA=∠DCA, 即 AC 平分∠BAD,CA 平分∠BCD. 由角平分线的性质可知 OE=OH,OF=OG. ∵BO 平分∠ABC,∴OE=OF.∴OG=OH. 又∵OH⊥AD,OG⊥CD, ∴DO 平分∠ADC.
5.如图5-ZT-5,现有一块三角形的空地,其三条边长分别是 20 m,30 m,40 m.现要把它分成面积比为2∶3∶4的三部分, 分别种植不同种类的花,请你设计一种方案,并简单说明理由.( 要求:尺规作图,保留作图痕迹,不写作法)
图5-ZT-5
解:分别作∠ACB 和∠ABC 的平分线,相交于点 P. 连接 PA,则△PAB,△PAC,△PBC 的面积之比为 2∶3∶4(如图所示). 理由如下: 如图,∵P 是∠ABC 和∠ACB 的平分线的交点, 过点 P 分别作 PE⊥AB 于点 E,PF⊥AC 于点 F,PH⊥BC 于点 H, 则 PE=PF=PH,∴S△PAB=12AB·PE=10PE, S△PAC=12PF·AC=15PF,S△PBC=12PH·BC=20PH, ∴S△PAB∶S△PAC∶S△PBC=10∶15∶20=2∶3∶4.
[解析] ∵欲求点D的坐标,先求线段OD的长.因为AD是Rt△OAB 的角平分线,DE⊥AB,OD⊥OA,所以DE=OD=3.所以点D的坐 标是(3,0).
2.如图5-ZT-2,在四边形ABCD中,∠A=90°,AD=4,连 接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长 的最小值为______4__.
4.如图5-ZT-4,D,E,F分别是△ABC三边上的点,AD平分 ∠BAC,CE=BF.若S△DCE=4,求S△DBF.
图5-ZT-4
[解析] 猜想△DCE和△DBF的面积相等,由已知CE=BF,故只需 说明两个三角形中以CE,BF为底边上的高相等.
解:如图,过点 D 作 DH⊥AB 于点 H,DG⊥AC 于点 G. 因为点 D 在∠BAC 的平分线上,所以 DG=DH. 又因为 CE=BF, 所以12CE·DG=12BF·DH. 所以 S△DBF=S△DCE=4.
运用六 角平分线在实际生活中的应用
11.某市有一块由三条公路围成的三角形绿地(如图5-ZT-11), 现准备在其中建一小亭子供人们休息,而且要使小亭子中心到三 条公路的距离相等,试确定小亭子的中心位置.
解:在三角形内部分别作出两条角平分线, 其交点就是小亭子的中心位置,图略.
图5-ZT-11
12.如图5-ZT-12所示,O为码头,A,B两个灯塔与码头O的