三年高考(【人教版】2020)高考数学试题分项版解析 专题02 常用逻辑用语 文(含解析)
2020版《3年高考2年模拟》(二轮)第1讲 集合、常用逻辑用语(可自主编辑word)

第二板块基础考点自练自检第1讲集合、常用逻辑用语一、选择题1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}答案B∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}答案D∵A∩C={-1,1,2,3,5}∩{x∈R|1≤x<3}={1,2},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4}.3.(2019安徽五校联盟第二次质检)设集合A={x|-1<x<1},B={y|y=x2,x∈A},则A∩∁R B=()A.{x|0≤x<1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|-1<x<1}答案B因为A={x|-1<x<1},所以B={y|y=x2,x∈A}={y|0≤y<1},所以∁R B={y|y<0或y≥1},则A∩∁R B={x|-1<x<0},故选B.4.(2019河南郑州第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1}B.{x|x<-1或x≥3}C.{x|x≤3}D.{x|x≤-3}答案D因为B={x|x≥-1},A={x|-3<x<1},所以A∪B={x|x>-3},所以∁U(A∪B)={x|x≤-3}. 故选D.5.(2019辽宁沈阳质量检测)设命题p:∀x∈R,x2-x+1>0,则¬p为()A.∃x∈R,x2-x+1>0B.∀x∈R,x2-x+1≤0C.∃x∈R,x2-x+1≤0D.∀x∈R,x2-x+1<0答案C已知原命题p:∀x∈R,x2-x+1>0,全称命题的否定是将全称量词改为存在量词,并否定命题的结论,故原命题的否定¬p为∃x∈R,x2-x+1≤0.6.(2019江西八所重点中学联考)已知集合M={y|y=|x|-x},N={x|y=ln(x2-x)},则M∩N=()A.RB.{x|x>1}C.{x|x<0}D.{x|x≥1或x<0}答案B∵y=|x|-x={0,x≥0,∴y≥0,∴M={y|y≥0}.∵x2-x>0,-2x,x<0,∴x<0或x>1,∴N={x|x<0或x>1},∴M∩N={x|x>1},故选B.7.(2019安徽考试)已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠⌀,则a的取值范围是()A.(-∞,1]B.[1,+∞)C.(-∞,3]D.[3,+∞)答案B解法一:集合A={x|x≤a},集合B={1,2,3},若A∩B≠⌀,则1,2,3这三个元素至少有一个在集合A中,若2或3在集合A中,则1一定在集合A中,因此只要保证1∈A即可,所以a≥1,故选B.解法二:集合A={x|x≤a},B={1,2,3},a的值大于3时,满足A∩B≠⌀,因此排除A,C.当a=1时,满足A∩B≠⌀,排除D.故选B.8.(2019广东六校第一次联考)下列四个结论:①命题“∃x0∈R,sin x0+cos x0<1”的否定是“∀x∈R,sin x+cos x≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>-5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确的是()A.①④B.②③C.①③D.②④答案A①根据特称命题的否定是全称命题,可知结论正确;②若p∧q是真命题,则p是真命题,¬p是假命题,故结论不正确;③取a=4,b=3,满足a+b>0,故结论不正确;④根据幂函数的图象与性质,可知结论正确.故选A.>2,则下列判9.(2019山东济南模拟)已知命题p:∃x∈R,x-1≥lg x,命题q:∀x∈(0,π),sin x+1sinx断正确的是()A.p∨q是假命题B.p∧q是真命题C.p∨(¬q)是假命题D.p∧(¬q)是真命题答案D对于命题p,当x=10时,x-1≥lg x成立,所以命题p是真命题;对于命题q,当x=π2 >2不成立,所以命题q是假命题.根据复合命题真假的判断,可知p∧(¬q)是真命题,时,sin x+1sinx故选D.10.(2019安徽五校第二次质检)若l,m是两条不同的直线,α是一个平面,m⊥α,则“l⊥m”是“l∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B当直线l在平面α内时,有l⊥m,此时由“l⊥m”推不出“l∥α”;若l∥α,由线面平行的性质,可知在平面α内一定存在一条直线n与l平行,又m⊥α,所以m⊥n,所以m⊥l.所以“l⊥m”是“l∥α”的必要不充分条件,故选B.11.已知r>0,x,y∈R,p:“x2+y2≤r2”,q:“|x|+|y|≤1”,若p是q的充分不必要条件,则实数r的取值范围是()A.(0,√2]B.(0,1]2C.[√2,+∞) D.[1,+∞)2答案 A 由题意知,命题q 对应的是正方形及其内部,当x>0,y>0时,可得正方形的一边所在的直线方程为x+y=1,由p 是q 的充分不必要条件,可得圆x 2+y 2=r 2的圆心到直线x+y-1=0的距离d=1√1+1=√22≥r,又r>0,所以实数r 的取值范围是(0,√22],故选A.12.(2019安徽考试)已知下列两个命题:p 1:存在正数a,使函数y=2x +a ·2-x 在R 上为偶函数;p 2:函数y=sin x+cos x+√2无零点.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(¬p 1)∨p 2,q 4:p 1∧(¬p 2)中,真命题是( )A.q 1,q 4B.q 2,q 3C.q 1,q 3D.q 2,q 4答案 A 当a=1时,y=2x +a ·2-x 在R 上是偶函数,所以p 1为真命题.当x=5π4时,函数y=sin x+cos x+√2=0,所以命题p 2是假命题.所以p 1∨p 2,p 1∧(¬p 2)是真命题,故选A.二、填空题13.已知集合A={x|log 2(x-1)<1},B={x||x-a|<2},若A ⊆B,则实数a 的取值范围是 . 答案 [1,3]解析 由log 2(x-1)<1,得0<x-1<2,即1<x<3,所以A=(1,3),由|x-a|<2得a-2<x<a+2,即B=(a-2,a+2),因为A ⊆B,所以{a -2≤1,a +2≥3,解得1≤a ≤3,所以实数a 的取值范围是[1,3]. 14.已知命题p:“∀x ∈[0,1],a ≥e x ”;命题q:“∃x 0∈R,x 02+4x 0+a=0”.若命题p ∧q 是真命题,则实数a 的取值范围是 .答案 [e,4]解析 ∵∀x ∈[0,1],a ≥e x ,∴a ≥(e x )max ,可得a ≥e.∵∃x 0∈R,x 02+4x 0+a=0,∴Δ=16-4a ≥0,解得a ≤4.∵命题p ∧q 是真命题,∴p 与q 都是真命题,∴实数a 的取值范围是[e,4].15.若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是.答案[2,+∞)解析p:|x|≤2等价于-2≤x≤2.因为p是q的充分不必要条件,所以[-2,2]⊆(-∞,a],即a≥2.16.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出以下三个结论:①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是.答案②解析①中,-4+(-2)=-6∉A,所以①不正确;②中,设n 1,n2∈A,n1=3k1,n2=3k2,k1,k2∈Z,则n1+n2∈A,n1-n2∈A,所以②正确;③中,令A1={n|n=3k,k∈Z},A2={n|n=√2k,k∈Z},则A1,A2为闭集合,但3k+√2k∉(A1∪A2),故A1∪A2不是闭集合,所以③不正确.。
2020高考真题数学分类汇编—集合、常用逻辑用语含答案

2020高考真题数学分类汇编—集合、常用逻辑用语一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2}3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .65.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则A B 中元素的个数为( )A .2B .3C .4D .5 6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(A B = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(A B = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3} 9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(A B = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .411.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素 D .若S 有3个元素,则ST 有4个元素17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = .23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = . 24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x=+有如下四个命题: ①()f x 的图象关于y 轴对称. ②()f x 的图象关于原点对称. ③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2. 其中所有真命题的序号是 . 25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面. 3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 . ①14p p ∧ ②12p p ∧ ③23p p ⌝∨④34p p ⌝∨⌝2020高考真题数学分类汇编—集合、常用逻辑用语参考答案一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }【解答】解:全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3}, 则{2UB =-,1-,1},(){1U A B ∴=-⋂,1},故选:C .2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(AB = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2} 【解答】解:集合{1A =-,0,1,2},{|03}B x x =<<,则{1A B =,2},故选:D .3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%【解答】解:设只喜欢足球的百分比为x ,只喜欢游泳的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,96x y z ++=,82y z +=,解得46z =. ∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C .4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .6【解答】解:集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=, {(A B x ∴=,*)|,}{(1,7)8,y xy x y N x y ⎧∈=⎨+=⎩,(2,6),(3,5),(4,4)}. AB ∴中元素的个数为4.故选:C .5.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则AB 中元素的个数为( )A .2B .3C .4D .5【解答】解:集合{1A =,2,3,5,7,11},{|315)B x x =<<, {5A B ∴=,7,11}, AB ∴中元素的个数为3.故选:B .6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(PQ = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<【解答】解:集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}PQ x x =<<.故选:B .7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(AB = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}【解答】解:集合{|||3A x x =<,}{|33x Z x x ∈=-<<,}{2x Z ∈=-,1-,1,2}, {|||1B x x =>,}{|1x Z x x ∈=<-或1x >,}x Z ∈,{2A B ∴=-,2}.故选:D .8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(AB = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3}【解答】解:集合2{|340}(1,4)A x x x =--<=-,{4B =-,1,3,5}, 则{1AB =,3},故选:D .9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(AB = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<【解答】解:集合{|13}A x x =,{|24}B x x =<<, {|14}AB x x ∴=<.故选:C .10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}AB x x =-,则(a = )A .4-B .2-C .2D .4【解答】解:集合2{|40}{|22}A x x x x =-=-,1{|20}{|}2B x x a x x a =+=-,由{|21}AB x x =-,可得112a -=,则2a =-. 故选:B .11.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}【解答】解:集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2}, 则{1A B =-,0,1,2}, 则(){2UAB =-,3},故选:A .12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解答】解:由2a a >,解得0a <或1a >, 故1a >”是“2a a >”的充分不必要条件, 故选:A .13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③【解答】解:因为()sin()3f x x π=+,①由周期公式可得,()f x 的最小正周期2T π=,故①正确;②51()sin()sin 22362f ππππ=+==,不是()f x 的最大值,故②错误;③根据函数图象的平移法则可得,函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象,故③正确.故选:B .14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【解答】解:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:当2k n =,为偶数时,2n απβ=+,此时sin sin(2)sin n απββ=+=, 当21k n =+,为奇数时,2n αππβ=+-,此时sin sin()sin απββ=-=,即充分性成立,当sin sin αβ=,则2n απβ=+,n Z ∈或2n αππβ=+-,n Z ∈,即(1)k k απβ=+-,即必要性成立, 则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件, 故选:C .16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则ST 有6个元素C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则ST 有4个元素【解答】解:取:{1S =,2,4},则{2T =,4,8},{1S T =,2,4,8},4个元素,排除C .{2S =,4,8},则{8T =,16,32},{2ST =,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2ST =,4,8,16,32,64,128},7个元素,排除B ;故选:A .17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称【解答】解:由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称;设sin x t =,则1()y f x t t ==+,[1t ∈-,1],由双勾函数的图象和性质得,2y 或2y -,故A 错误;又有11()sin()(sin )()sin()sin f x x x f x x x-=-+=-+=--,故()f x 是奇函数,且定义域关于原点对称,故图象关于原点中心对称;故B 错误; 11()sin()sin sin()sin f x x x x xπππ+=++=--+;11()sin()sin sin()sin f x x x x xπππ-=-+=+-,故()()f x f x ππ+≠-,()f x 的图象不关于直线x π=对称,C 错误;又11()sin()cos 22cos sin()2f x x x xx πππ+=++=++;11()sin()cos 22cos sin()2f x x x xx πππ-=-+=+-,故()()22f x f x ππ+=-,定义域为{|x x k π≠,}k Z ∈,()f x 的图象关于直线2x π=对称;D 正确;故选:D .18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】解:(1)若αβ=,则2222sin cos sin cos 1αβαα+=+=, ∴ “αβ= “是“22sin cos 1αβ+= “的充分条件;(2)若22sin cos 1αβ+=,则22sin sin αβ=,得不出αβ=, ∴ “αβ=”不是“22sin cos 1αβ+=”的必要条件, ∴ “αβ=”是“22sin cos 1αβ+=”的充分非必要条件.故选:A .二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y【解答】解:A .若1n =,则11P =,故1212()log 1log 10H x p p =-=-⨯=,故A 正确;B .若2n =,则121p p +=,121222121121()(log log )[log (1)log (1)]H x p p p p p p p p =-+=-+--,设22()[log (1)log (1)]f p p p p p =-+--,01p <<, 则22211()[(1)(1)]2(1)21pf p log p p log p p log ln p p ln p-'=-+--+-=---, 令()0f p '<,解得112p <<,此时函数()f p 单调递减, 令()0f p '>,解得102p <<,此时函数()f p 单调递增,故B 错误; C .若1(1,2,,)i P i n n ==⋯,则2211()H x n log log n n n=-=, 由对数函数的单调性可知,()H x 随着n 的增大而增大,故C 正确;D .依题意知,12(1)m P Y p p ==+,221(2)m P Y p p -==+,322(3)m P Y p p -==+,⋯,1()m m P Y m p p +==+,122122212221()[()log ()()log ()m m m m H Y p p p p p p p p --∴=-+++++ 121()log ()]m m m m p p p p +++⋯+++,又1212222222()(log log log log )m m m m H X p p p p p p p p =-++⋯++⋯+, ∴2121222221222112()()m m m m m p p p H Y H X p log p log p log p p p p p p --=++⋯++++, 又21212221121,1,,1m m m mp p p p p p p p p -<<⋯<+++, ()()0H Y H X ∴-<,()()H X H Y ∴>,故D 错误.故选:AC .三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则AB = {2,4} .【解答】解:因为{1A =,2,3},{2B =,4,5},则{2A B =,4}. 故答案为:{2,4}.22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = {0,2} .【解答】解:集合{0B =,2,3},{1A =-,0,1,2},则{0A B =,2}, 故答案为:{0,2}.23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = 3 .【解答】解:3A ∈,且A B ⊆,3B ∴∈,3a ∴=,故答案为:3.24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x =+有如下四个命题: ①()f x 的图象关于y 轴对称.②()f x 的图象关于原点对称.③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2.其中所有真命题的序号是 ②③ .【解答】解:对于①,由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称,由11()sin()sin ()sin()sin f x x x f x x x -=-+=--=--; 所以该函数为奇函数,关于原点对称,所以①错②对; 对于③,由11()sin()sin ()sin()sin f x x x f x x x πππ-=-+=+=-,所以该函数()f x 关于2x π=对称,③对; 对于④,令sin t x =,则[1t ∈-,0)(0⋃,1],由双勾函数1()g t t t =+的性质,可知,1()(g t t t=+∈-∞,2][2-,)+∞,所以()f x 无最小值,④错;故答案为:②③.25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 ①③④ .①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【解答】解:设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,2p :过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,3p :若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.由线面垂直的定义可知,此命题为真命题; 由复合命题的真假可判断①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是:①③④,故答案为:①③④,。
高考真题理科数学分项解析汇编(三年(2018-2020)

是一道容易题 .
4.【2020 年高考天津】设全集 U = {-3, - 2, - 1,0,1,2,3},
集合 A = {-1,0,1,2},B = {-3,0,2,3},
则A∩
)
∁ U B =(
A. {-3,3}
B. {0,2}
C. {-1,1}
D. {-3, - 2, - 1,1,3}
故 - = 1,
2
解得 a = -2.
故选 B.
【点睛】本题主要考查交集的运算,
不等式的解法等知识,
意在考查学生的转化能力和计算求解能力 .
2.【2020 年高考全国Ⅱ卷理数】已知集合 U = {-2,-1,0,1,2,3},A = {-1,0,1},B = {1,2},
则∁
)
U (A ∪ B) =(
而B
∈ m ⊂ α,C ∈ n ⊂ α,
根据公理 1 可知,
专题 01
集合与常用逻辑用语
1.【2020 年高考全国Ⅰ卷理数】设集合 A = {x | x2 – 4 ≤ 0},B = {x | 2x + a ≤ 0},
且 A ∩ B = {x |– 2 ≤
x ≤ 1},
则 a =(
)
A. – 4
B. – 2
C. 2
D. 4
【答案】B
【解析】
【分析】
由题意首先求得集合 A,B,
y≥x
*
【详解】由题意,A ∩ B 中的元素满足
x + y = 8 ,且 x,y ∈ N ,
由 x + y = 8 ≥ 2x,
得 x ≤ 4,
所以满足 x + y = 8 的有 (1,7), (2,6), (3,5), (4,4),
历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(集合与常用逻辑用语)汇编考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( ) A .{}1,3,4 B .{}2,3,4 C .{}1,2,3,4 D .{}0,1,2,3,4,93.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1-- B .{}0,1,2 C .{}2- D .{}25.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( ) A .{1,2}- B .{1,2} C .{1,4} D .{1,4}- 6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( ) A .{}02x x ≤< B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T?( )A .∅B .SC .TD .Z10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,911.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( )A .{}|12x x -<<B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( ) A .{}1,4,9 B .{}3,4,9 C .{}1,2,3 D .{}2,3,52.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( )A .()U M N ðB .U N M ðC .()U M N ðD .U M N ⋃ð4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( )A .{3}B .{1,6}C .{5,6}D .{1,3}7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a c C .{},b d D .{},,,a b c d考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥ ”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥ ”的充分条件D .“1x =-”是“//a b ”的充分条件2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-= ”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2yxx y +=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}n S n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥参考答案考点01 集合间的基本关系1.(2023∙全国新Ⅱ卷∙高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ( ). A .2 B .1 C .23 D .1-【答案】B【详细分析】根据包含关系分20a -=和220a -=两种情况讨论,运算求解即可.【答案详解】因为A B ⊆,则有:若20a -=,解得2a =,此时{}0,2A =-,{}1,0,2B =,不符合题意;若220a -=,解得1a =,此时{}0,1A =-,{}1,1,0B =-,符合题意;综上所述:1a =.故选:B.2.(2020全国新Ⅰ卷∙高考真题)已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详细分析】根据充分条件和必要条件的定义即可求解.【答案详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.考点02 交集1.(2024∙全国新Ⅰ卷高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.(2024年全国甲卷高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,9【答案】C 【详细分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【答案详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C3.(2023∙北京∙高考真题)已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N ⋂=( ) A .{21}x x -≤<∣ B .{21}xx -<≤∣ C .{2}xx ≥-∣ D .{1}x x <∣ 【答案】A【详细分析】先化简集合,M N ,然后根据交集的定义计算.【答案详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣, 根据交集的运算可知,{|21}M N x x =-≤< .故选:A4.(2023全国新Ⅰ卷高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( ) A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C 【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出. 【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--, 所以M N ⋂={}2-.故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .5.(2022∙全国新Ⅱ卷高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}- 【答案】B【详细分析】方法一:求出集合B 后可求A B ⋂.【答案详解】[方法一]:直接法因为{}|02B x x =≤≤,故{}1,2A B = ,故选:B.[方法二]:【最优解】代入排除法=1x -代入集合{}11B x x =-≤,可得21≤,不满足,排除A 、D ;4x =代入集合{}11B x x =-≤,可得31≤,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.6.(2022年全国乙卷∙高考真题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4} B .{2,4,6} C .{2,4,6,8} D .{2,4,6,8,10}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.7.(2022年全国甲卷∙高考真题)设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【详细分析】根据集合的交集运算即可解出.【答案详解】因为{}2,1,0,1,2A =--,502B x x ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.8.(2022全国新Ⅰ卷∙高考真题)若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭ C .{}316x x ≤< D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【详细分析】求出集合,M N 后可求M N ⋂. 【答案详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D9.(2021年全国乙卷∙高考真题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z【答案】C【详细分析】详细分析可得T S ⊆,由此可得出结论.【答案详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.(2021年全国甲卷∙高考真题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【详细分析】求出集合N 后可求M N ⋂. 【答案详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.11.(2021年全国甲卷∙高考真题)设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【详细分析】根据交集定义运算即可 【答案详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【名师点评】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.12.(2021全国新Ⅰ卷∙高考真题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【详细分析】利用交集的定义可求A B ⋂.【答案详解】由题设有{}2,3A B ⋂=,故选:B .考点03 并集1.(2024∙北京∙高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=( ) A .{}11x x -≤< B .{}3x x >-C .{}|34x x -<<D .{}4x x <【答案】C【详细分析】直接根据并集含义即可得到答案.【答案详解】由题意得{}|34M x x N ⋃=-<<.故选:C.2.(2022∙浙江∙高考真题)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【答案】D【详细分析】利用并集的定义可得正确的选项.【答案详解】{}1,2,4,6A B = ,故选:D.3.(2021∙北京∙高考真题)已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B ⋃=( ) A .{}|12x x -<< B .{}|12x x -<≤C .{}|01x x ≤<D .{}|02x x ≤≤【答案】B【详细分析】结合题意利用并集的定义计算即可.【答案详解】由题意可得:{}|12A B x x =-<≤ .故选:B.4.(2020∙山东∙高考真题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【详细分析】根据集合并集概念求解.【答案详解】[1,3](2,4)[1,4)A B ==U U故选:C【名师点评】本题考查集合并集,考查基本详细分析求解能力,属基础题.考点04 补集1.(2024年全国甲卷∙高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5【答案】D【详细分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【答案详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =, 则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D 2.(2023年全国乙卷∙高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð( ) A .{}0,2,4,6,8 B .{}0,1,4,6,8 C .{}1,2,4,6,8 D .U【答案】A【详细分析】由题意可得U N ð的值,然后计算U M N ⋃ð即可.【答案详解】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选:A.3.(2023年全国乙卷∙高考真题)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=( ) A .()U M N ð B .U N M ðC .()U M N ðD .U M N ⋃ð【答案】A【详细分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【答案详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确; {}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.4.(2022∙全国乙卷∙高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则( ) A .2M ∈ B .3M ∈ C .4M ∉ D .5M ∉【答案】A【详细分析】先写出集合M ,然后逐项验证即可【答案详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A5.(2022∙北京∙高考真题)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð( ) A .(2,1]- B .(3,2)[1,3)-- C .[2,1)- D .(3,2](1,3)--【答案】D【详细分析】利用补集的定义可得正确的选项.【答案详解】由补集定义可知:{|32U A x x =-<≤-ð或13}x <<,即(3,2](1,3)U A =-- ð,故选:D .6.(2021全国新Ⅱ卷∙高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð( ) A .{3} B .{1,6}C .{5,6}D .{1,3}【答案】B【详细分析】根据交集、补集的定义可求()U A B ⋂ð.【答案详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð, 故选:B.7.(2020全国新Ⅰ卷∙高考真题)已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于( ) A .∅ B .{},a cC .{},b dD .{},,,a b c d【答案】C【详细分析】利用补集概念求解即可. 【答案详解】{},U M b d =ð. 故选:C考点05 充分条件与必要条件1.(2024∙全国甲卷∙高考真题)设向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b ”的充分条件 【答案】C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.2.(2024∙天津∙高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【答案详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.3.(2024∙北京∙高考真题)设 a ,b 是向量,则“()()ꞏ0a b a b +-=”是“a b =- 或a b = ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b =,结合充分、必要条件详细分析判断.【答案详解】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- , 例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.4.(2023∙北京∙高考真题)若0xy ≠,则“0x y +=”是“2y xx y+=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【详细分析】解法一:由2xyy x +=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可. 【答案详解】解法一: 因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-, 所以112x y y yy x y y -+=+=--=--, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=. 所以必要性成立.所以“0x y +=”是“2x yy x +=-”的充要条件. 解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xyy x xy xy xy xy+-+++--+=====-, 所以充分性成立;必要性:因为0xy ≠,且2x yy x +=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-, 所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2xyy x +=-”的充要条件. 故选:C5.(2023∙全国甲卷∙高考真题)设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【答案详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B6.(2023∙天津∙高考真题)已知,R a b ∈,“22a b =”是“222a b ab +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】B【详细分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【答案详解】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立; 由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B7.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+, 因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C8.(2022∙浙江∙高考真题)设x ∈R ,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【详细分析】由三角函数的性质结合充分条件、必要条件的定义即可得解. 【答案详解】因为22sin cos 1x x +=可得: 当sin 1x =时,cos 0x =,充分性成立; 当cos 0x =时,sin 1x =±,必要性不成立; 所以当x ∈R ,sin 1x =是cos 0x =的充分不必要条件. 故选:A.9.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >,所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.10.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.考点06 全称量词与存在量词1.(2024∙全国新Ⅱ卷∙高考真题)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题 D .p ⌝和q ⌝都是真命题【答案】B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【答案详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.2.(2020∙全国新Ⅰ卷∙高考真题)下列命题为真命题的是( ) A .10>且34> B .12>或45> C .x R ∃∈,cos 1x > D .x ∀∈R ,20x ≥【答案】D【详细分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果. 【答案详解】A 项:因为43>,所以10>且34>是假命题,A 错误; B 项:根据12<、45<易知B 错误; C 项:由余弦函数性质易知cos 1≤x ,C 错误; D 项:2x 恒大于等于0,D 正确, 故选:D.。
2020年高考文科数学专题一 集合与常用逻辑用语 含习题答案

2020年高考文科数学专题一集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。
2020年高考数学五年真题与三年模拟考点分类解读(江苏版)02 常用逻辑用语(解析版)

考点02:常用逻辑用语一、考纲要求了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系。
理解充分条件、必要条件、充分条件的意义,会判断充分条件、必要条件、充要条件。
了解或、且、非的含义·了解全称量词与存在量词的意义,能准确地对一个量词的命题进行否定·二、近五年高考分析从近几年江苏高考可以看出,高考对本章的考查主要体现在函数的恒成立和存在问题,这也是与函数知识点融合的热点问题,这就要引起考生的重视,另外一方面也要重点复习含有量词的否定等含有量词的简单问题以及两个命题的条件的问题。
三、考点总结本节内容是高考的要求掌握的内容,本节内容在江苏高考中很少直接考查,往往是以本节内容的知识点为依托考查函数、立体几何、解析几何等有关内容。
以两种形式考查,一是简单的填空题形式出现,如四种命题、含有量词的否定,集合的充分条件、必要条件、充要条件的判断。
而是中档题或者解答题中的考查,主要以存在量词和全称量词在函数中的考查,主要是研究函数的值域的关系,恒成立问题,存在问题等形式出现。
在高考复习中要特别注意以下几点:①、判断命题时要分清命题的条件与结论,进而根据命题的关系写出其它命题。
②、判断命题之间P 是q 的什么条件,要从两个方面入手:一是P 能否推出q ,另一方面是q 能否推出p 。
若不能推出可以举出一个反例即可,否则就要进行简单的证明。
对于证明命题的充要条件要从充分性和必要性两个方面加以证明。
③、对于含义存在于任意的问题,要充分理解题意,分清是函数中的值域问题还是恒成立问题或者是最值问题或者构造函数问题。
四、五年真题1、(2019年江苏试卷).定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{an}满足:245132,440a a a a a a =-+=,求证:数列{an}为“M -数列”;(2)已知数列{bn}满足: 111221,n n n b S b b +==-,其中Sn 为数列{bn}的前n 项和. ①求数列{bn}的通项公式;②设m 为正整数,若存在“M -数列”{cn}θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【详解】(1)设等比数列{an}的公比为q ,所以a1≠0,q≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩. 因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{bn}是首项和公差均为1的等差数列.因此,数列{bn}的通项公式为bn=n ()*n N ∈. ②由①知,bk=k ,*k N ∈.因为数列{cn}为“M–数列”,设公比为q ,所以c1=1,q>0.因为ck≤bk≤ck+1,所以1k k q k q -≤≤,其中k=1,2,3,…,m.当k=1时,有q ≥1;当k=2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x=e.列表如下:因为ln 2ln8ln 9ln 3663=<=,所以max ln 3()(3)3f k f ==.取q =k=1,2,3,4,5时,ln ln k q k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 2、(2018年江苏卷) 设是首项为,公差为d 的等差数列,是首项为,公比为q 的等比数列.(1)设,若对均成立,求d 的取值范围; (2)若,证明:存在,使得对均成立,并求的取值范围(用表示).解析:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.详解:解:(1)由条件知:.因为对n=1,2,3,4均成立,即对n=1,2,3,4均成立,即11,1d3,32d5,73d9,得.因此,d的取值范围为.(2)由条件知:.若存在d,使得(n=2,3,···,m+1)成立,即,即当时,d满足.因为,则,从而,,对均成立.因此,取d=0时,对均成立.下面讨论数列的最大值和数列的最小值().①当时,,当时,有,从而.因此,当时,数列单调递增,故数列的最大值为.②设,当x>0时,,所以单调递减,从而<f (0)=1.当时,,因此,当时,数列单调递减,故数列的最小值为.因此,d 的取值范围为.3、(2017年江苏卷)对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d=+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d--+++-122(1)2na n d a =+-=,1,2,3,k =所以n n n n n n na a a a a a a ---+++++=321123+++6,因此等差数列{}n a 是“(3)P 数列”.n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n na a a -++=112,其中4n ≥,所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-,所以数列{}n a 是等差数列.4、(2016江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1) 设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值;【解析】思路分析 第1问的第2小题,通过将变量m 分离出来,将问题转化为求分离出的函数的最小值则可.第2问,注意到g (0)=0,从而得0是函数g (x )的一个零点,为此,只需说明函数g (0)为函数g (x )的最大值或者最小值,进而说明它的某个极值点与0相等,由此来求出ab 的值.规范解答 (1) 因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0,所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x=(2x +2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, 所以,)(4)(2x f x m f+≤对于一切实数R 恒成立。
【审核版】专题22 算法—三年高考(2020-2020)数学(文)真题分项版解析(解析版).doc
1.【2017山东,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤ 【答案】B【考点】程序框图【名师点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值(计数变量与累加变量的初始值)、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比较少时,可依次列出,循环次数较多时,可先循环几次,找出规律,最后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误;完善程序框图的试题多为判断框内内容的填写,这类问题常涉及到,,,≥>≤<的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外还要注意判断框内的条件不是唯一的,如a >b ,也可写为a ≤b ;5i >,也可写成6i ≥. 2.【2017课标1,文10】如图是为了求出满足321000n n ->的最小偶数nA.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【答案】D【考点】程序框图,当型循环结构【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.3.【2017课标3,文8】执行下面的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 4. 【2017课标II ,文10】执行右面的程序框图,如果输入的1a =-,则输出的S = A.2 B.3 C.4 D.5【答案】B第三次:132,1,4S a k =-=-== ; 第四次:242,1,5S a k =-+==-= ; 第五次:253,1,6S a k =-=-== ; 第六次:363,1,7S a k =-+==-= ; 结束循环,输出3S = .故选B.【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5.【2017北京,文3】执行如图所示的程序框图,输出的s值为(A)2 (B)3 2(C)53(D)85【答案】C【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.6.【2017天津,文4】阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3 【答案】C第二次循环:63NN ==,不满足3N ≤; 第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =. 本题选择C 选项.【考点】循环结构程序框图【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错. 7.【2017江苏,4】右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 ▲ .【答案】2-【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.【2016,20115,2014高考题】1. 【 2014湖南文7】执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-(第4题)【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数【名师点睛】识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.2.【2015高考湖南,文5】执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A 、67 B 、37 C 、89 D 、49【答案】B【考点定位】程序框图【名师点睛】识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.3. 【2016高考新课标2文数】中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )34 【答案】C考点: 程序框图,直到型循环结构.【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等结合,进一步强化框图问题的实际背景.4. 【2016高考新课标1文数】执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足( ) (A )2y x = (B )3y x =(C )4y x = (D )5y x =【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.5. 【2014高考陕西版文第4题】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=开始输入NS=1,i=1a i=2*SS=a ii=i+1否i>N是输出a1,a2,...,a N结束【答案】C考点:程序框图的识别.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要注意这是一个循环结构,而且最后输出的是数列的前N项要根据这些项归纳出数列的通项公式.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 【2015高考陕西,文7】根据右边框图,当输入x为6时,输出的y ()A.1B.2C.5D.10【答案】D【解析】该程序框图运行如下:6330x =-=>,330x =-=,0330x =-=-<,2(3)110y =-+=,故答案选D .【考点定位】程序框图的识别.【名师点睛】1.本题考查程序框图的识别,解题的关键是判断什么时候退出循环.2.考查逻辑思维能力、计算能力.本题属于基础题,常考题型.7. 【2014全国2,文8】执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) (A )4 (B )5 (C )6 (D )7【答案】D【考点定位】程序框图.【名师点睛】本题主要考查程序框图中的循环结构;本题属于基础题,解决本题的关健在于读懂程序框图,然后一步一步的写出每循环运行一次的结果,直到条件成立时为止,就能正确快速地得到结果,注意循环条件的判断.8. [2016高考新课标Ⅲ文数]执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B 【解析】试题分析:第一次循环,得2,4,6,6,1a b a s n =====;第二次循环,得2,6,4,10a b a s =-===,2n =;第三次循环,得2,4,6,16,3a b a s n =====;第四次循环,得2,6,4,2016,4a b a s n =-===>=,退出循环,输出4n =,故选B . 考点:程序框图.【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.9. 【2014四川,文6】执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .3必定是以.本题只需对循环后的k值进行判S的值为( )(C)-12(D)12【答案】D【考点定位】本题考查循环结构形式的程序框图,考查特殊角的三角函数值,考查基本运算能力.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现,它可以包括程序框图的所有结构类型.本题只需对循环后的k 值进行判定,最后输出相应的三角函数值即可,属于简单题.11. 【2016高考北京文数】执行如图所示的程序框图,输出的s 值为( )A.8B.9C.27D.36 【答案】B 【解析】试题分析:分析程序框图可知,程序的功能等价于输出33129s =+=,故选B. 考点: 程序框图【名师点睛】解决循环结构框图问题,要先找出控制循环的变量的初值、步长、终值(或控制循环的条件),然后看循环体,循环次数比较少时,可依次列出,循环次数较多时,可先循环几次,找出规律,要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误. 12.【2014全国1,文9】执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203 B.72 C.165 D.158【答案】D考点:算法的循环结构【名师点睛】考生在解决程序框图以及循环结构时,首先要明确循环的条件,其次在计算的过程中要细心,本题还考查了考生的计算能力.13. 【2015高考新课标1,文9】执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次,t =0.01,S=1,n =0,m =12=0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>t =0.01,是,循环,执行第2次,S =S -m =0.25,2mm ==0.125,n =2,S=0.25>t =0.01,是,循环, 执行第3次,S =S -m =0.125,2mm ==0.0625,n =3,S=0.125>t =0.01,是,循环,执行第4次,S=S-m =0.0625,2mm ==0.03125,n =4,S=0.0625>t =0.01,是,循环,执行第5次,S=S-m =0.03125,2mm ==0.015625,n =5,S=0.03125>t =0.01,是,循环,执行第6次,S=S-m =0.015625,2mm ==0.0078125,n =6,S=0.015625>t =0.01,是,循环, 执行第7次,S=S-m =0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t =0.01,否,输出n =7,故选C.考点:程序框图【名师点睛】本题是已知程序框图计算输出结果问题,对此类问题,按程序框图逐次计算,直到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.14. 【2016高考四川文科】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A)35 (B) 20 (C)18 (D)9 【答案】C考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.15. 【2014高考重庆文第5题】执行如题(5)图所示的程序框图,则输出s 的值为( ).10A .17B .19C .36D【答案】C考点:循环结构.【名师点睛】本题主要考查程序框图中的循环结构,属于基础题,常常一步一步的写出运行的结果,直到符合条件为止.16. 【2015高考重庆,文8】执行如图(8)所示的程序框图,则输出s 的值为( ) (A)34 (B) 56 (C) 1112 (D) 2524【答案】D【解析】初始条件:0,0s k ==,第1次判断0<8,是,112,0;22 k s==+=第2次判断2<8,是,113 4,;244 k s==+=第3次判断4<8,是,3111 6,;4612 k s==+=第4次判断6<8,是,11125 8,;12824 k s==+=第5次判断8<8,否,输出2524s=;故选D.【考点定位】程序框图.【名师点睛】本题考查程序框图,这是一个当循环结构,先判断条件是否成立再确定是否循环,一步一步进行求解.本题属于基础题,注意条件判断的准确性.17. 【2014高考北京文第4题】执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15输出【答案】C考点:本小题主要考查程序框图的基础知识,难度不大,程序框图是高考新增内容,是高考的重点知识,熟练本部分的基础知识是解答的关键.18.【2015高考北京,文5】执行如图所示的程序框图,输出的k的值为()A.3 B.4 C.5 D.6【答案】B【解析】初值为3,0a k ==,进入循环体后,3,12a k ==;3,24a k ==;3,38a k ==;3,416a k ==; 此时14a <,退出循环,故4k =,故选B.【考点定位】程序框图.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“14a <”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19. 【2014,安徽文4】如图所示,程序框图(算法流程图)的输出结果是 ( )A .34B .55C .78D .89【答案】B .考点:1.程序框图的应用.【名师点睛】解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、函数赋值交汇在一起,用循环结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②循环出错;③计算出错.20.【2015高考安徽,文7】执行如图所示的程序框图(算法流程图),输出的n为()(A)3 (B)4 (C)5 (D)6【答案】B【考点定位】本题主要考查程序框图以及循环结构的判断.【名师点睛】考生在解决程序框图以及循环结构时,首先要明确循环的条件,其次在计算的过程中要细心,本题还考查了考生的计算能力.21. 【2014福建,文4】阅读右图所示的程序框图,运行相应的程序,输出的n的值为()A B C D.1.2.3.4【答案】B 【解析】试题分析:执行程序,1n =,满足条件22nn >,2;n = 不满足条件22nn >,输出2,n =选B . 考点:算法与程序框图.【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,其中把程序框图与数列结合在一起考查是高考考查频率最高的一类题型,对于循环结构的程序框图,运算次数的确定是解决这一类问题的关键.22.【2015高考福建,文4】阅读如图所示的程序框图,运行相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C【考点定位】程序框图.【名师点睛】本题考查程序框图,关键在于读懂框图有什么功能,要注意依序进行,认真判断条件来决定程序的执行方向.理解每个变量和框图的关系.运算量不大,重在理解,重在细心,属于基础题.23.【2015高考天津,文3】阅读下边的程序框图,运行相应的程序,则输出i 的值为( ) (A) 2 (B) 3 (C) 4 (D)5【答案】C【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.【名师点睛】天津卷程序框图常以客观题形式出现,属于基础题,解决此类问题的关键是确定循环次数,当循环次数不多时,可以逐次列出计算结果,天津卷2014年第3题和本题是同一类问题,希望考生留意这种命题方式.24. (2014课标全国Ⅰ,文9) 执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( ).A .203 B .72 C .165 D .158答案:D解析:第一次执行循环体时,n =1,13122M =+=,a =2,32b =;第二次执行循环体时,n=2,28233M=+=,32a=,83b=;第三次执行循环体时,n=3,3315288M=+=,83a=,158b=,这时n=4,跳出循环.输出M的值158.名师点睛:本题考查程序框图,当型循环结构,考查转化能力,识图能力,容易题. 注意循环类型以及判断框中的条件.25. 【2015新课标2文8】下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0 B.2 C.4 D.14【答案】B【考点定位】本题主要考查程序框图及更相减损术.【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,更相减损术是人教版课本算法案例中的一个内容,本题以更相减损术为载体命制试题,故本题可看作课本例题的改编,这说明课本是高考试题的“生长点”,故在此提醒考生考试复习时不要忘“本”.二、填空题1. 【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出S的值为_______.【答案】4 【解析】试题分析:第一次循环:8,n 2S ==;第二次循环:2,n 3S ==;第三次循环:4,n 4S ==;结束循环,输出 4.S = 考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 2.【2014山东.文11】 执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .【答案】3符合条件13x ≤≤,4,3x n ==;不符合条件13x ≤≤,输出3n =.答案为3. 考点:算法与程序框图.【名师点睛】本题考查算法与程序框图,在理解条件分支结构及算法功能的基础上,逐次运算,是解答此类问题的常见解法.本题属于基础题,由于给定数据较小,运算次数少,降低了题目的难度.3.【2015高考山东,文11】执行右边的程序框图,若输入的x 的值为1,则输出的y 的值是 .【答案】13【考点定位】算法与程序框图.【名师点睛】本题考查算法与程序框图,在理解条件分支结构的基础上,准确地加以计算. 本题属于基础题,考查算法与程序框图的基本概念和基本结构,本题给定数据较小,循环次数少,大大降低了题目的难度.4. 【2014年.浙江卷.文13】若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.【答案】6 【解析】试题分析:当0=S ,1=i ,则第一次运行1102=+⨯=S ,211=+=i ; 第二次运行4112=+⨯=S ,312=+=i ; 第三次运行11342=+⨯=S ,413=+=i ; 第四次运行264112=+⨯=S ,514=+=i ;第五次运行50575262>=+⨯=S ,615=+=i 终止循环, 故输出6=i .考点:程序框图,直到型循环结构,容易题.【名师点睛】本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.输入语句、输出语句和赋值语句基本对应于算法的顺序结构.在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.解决程序框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数,如i =i +1;(2)累加变量:用来计算数据之和,如S =S +i.(3)累乘变量:用来计算数据之积,如p =p×i.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.解决算法的交汇性问题的方法:(1)读懂程序框图,明确交汇知识;(2)根据给出问题与程序框图处理问题;(3)注意框图中结构的判断.5.【2014年普通高等学校招生全国统一考试湖北卷14】阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .【答案】1067考点:新定义题型,程序框图,当型循环结构,容易题.【名师点睛】本题属基础题,主要考查算法与程序框图,充分体现了高考仍是以教材为蓝本,以基础为重点的指导思想,能较好的考查学生基础知识、基本技能和基本操作的能力.其解题的关键是读懂题意所给的程序框图的含义.6. 【2016高考山东文数】执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.【答案】1考点:程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好的考查考生应用知识分析问题解决问题的能力等.7. 【2014天津,文11】阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】 4.-考点:循环结构流程图8. 执行右侧的程序框图,若输入3n =,则输出T = .【答案】20 【解析】试题分析:输入n 3=,在程序执行过程中,,,i S T 的值依次为0,0,0i S T ===;1,1,i S ==1T =;2,3,4i S T ===;3,6,10i S T ===;4,10,20i S T ===,程序结束.输出20T =.【考点定位】程序框图.【名师点睛】本题考查算法与程序框图的概念,在理解条件分支结构及算法功能的基础上,逐次运算,是解答此类问题的常见解法.本题属于基础题,由于给定数据较小,运算次数少,降低了题目的难度.9. 【2014天津文11】阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】 4.-考点:循环结构流程图考点定位:本题考点为程序框图,要求会准确运行程序【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.三视图问题,是进年高考热点,属于必考题,是高考备考的重点,也是学生必须掌握需要得满分的题目,需要加强训练的题型.。
全国通用2020-2022年三年高考数学真题分项汇编专题01集合与常用逻辑用语
01 集合与常用逻辑用语},则A∩B= 1.【2022年全国甲卷】设集合A={−2,−1,0,1,2},B={x∣0≤x<52()A.{0,1,2}B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】},所以A∩B={0,1,2}.因为A={−2,−1,0,1,2},B={x∣0≤x<52故选:A.2.【2022年全国甲卷】设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3 =0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.3.【2022年全国乙卷】集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.4.【2022年全国乙卷】设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【解析】【分析】先写出集合M ,然后逐项验证即可【详解】由题知M ={2,4,5},对比选项知,A 正确,BCD 错误故选:A5.【2022年新高考1卷】若集合M ={x ∣√x <4}, N ={x ∣3x ≥1},则M ∩N =( )A .{x |0≤x <2 }B .{x |13≤x <2 }C .{x |3≤x <16 }D .{x |13≤x <16 } 【答案】D【解析】【分析】求出集合M,N 后可求M ∩N .【详解】M ={x ∣0≤x <16},N ={x ∣x ≥13},故M ∩N ={x|13≤x <16},故选:D6.【2022年新高考2卷】已知集合A ={−1,1,2,4},B ={x ||x −1|≤1 },则A ∩B =( )A .{−1,2}B .{1,2}C .{1,4}D .{−1,4} 【答案】B【解析】【分析】求出集合B 后可求A ∩B .【详解】B ={x|0≤x ≤2},故A ∩B ={1,2},故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【解析】【分析】求出集合N 后可求M N ⋂.7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( ) A .103x x ⎧⎫<≤⎨⎬⎩⎭ B .143x x ⎧⎫≤<⎨⎬⎩⎭ C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】【分析】根据交集定义运算即可【详解】 因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z 【答案】C【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T =.故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U AB =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【解析】【分析】根据交集、补集的定义可求()U A B ⋂.【详解】由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=, 故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】 本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3} 【答案】A【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-. 故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2} 【答案】D【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】 因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为( )A .2B .3C .4D .6【答案】C【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】 由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈, 由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( )A .2B .3C .4D .5【答案】B【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B == 故选:C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =故选:C【点睛】本题考查的是集合交集的运算,较简单.22.【2020年新课标2卷理科】设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。
2020新课标高考数学讲义:集合、不等式、常用逻辑用语含解析
3.已知向量a=(x-1、3)、b=(1、y)、其中x、y都为正实数.若a⊥b、则 + 的最小值为()
A.2B.2
C.4D.2
解析:选C.因为a⊥b、所以a·b=x-1+3y=0、即x+3y=1.又x、y为正实数、所以 + =(x+3y)· =2+ + ≥2+2 =4、当且仅当x=3y= 时取等号.所以 + 的最小值为4.故选C.
A.(2、3)B.[2、4)
C.[2、3]D.(2、3]
解析:选B.不等式[x]2-5[x]+6≤0可化为([x]-2)·([x]-3)≤0、解得2≤[x]≤3、即不等式[x]2-5[x]+6≤0的解集为2≤[x]≤3.根据[x]表示不超过x的最大整数、得不等式的解集为2≤x<4.故选B.
5.已知实数b>a>0、m<0、则mb________ma、 ________ (用>、<填空).
基本不等式及其应用
[考法全练]
1.(多选)下列不等式的证明过程错误的是()
A.若a、b∈R、则 + ≥2 =2
B.若a<0、则a+ ≥-2 =-4
C.若a、b∈(0、+∞)、则lga+lgb≥2
D.若a∈R、则2a+2-a≥2 =2
解析:选ABC.由于a、b的符号不确定、故选项A错误;因为a<0、所以a+ =- ≤-2 =-4、故B错误;由于lga、lgb的符号不确定、故选项C错误;因为2a>0、2-a>0、所以2a+2-a≥2 =2、故选项D正确.故选ABC.
B.∀x∈R、2x>x2
C.a+b=0的充要条件是 =-1
D.若x、y∈R、且x+y>2、则x、y中至少有一个大于1
三年(2017-2019)高考真题数学(文)分项汇编:专题01 集合与常用逻辑用语(含解析)
专题01 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U BA =ð{6,7}.故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解.2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-. 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)AB =-+∞.故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-ð.故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集 , , 所以根据补集的定义得 . 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得 . 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】 , . 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算. 14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =.故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】 , , 因此A B = . 故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()AB C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}【答案】C【解析】由并集的定义可得: ,结合交集的定义可知: . 故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为 ,所以根据线面平行的判定定理得 . 由 不能得出 与 内任一直线平行, 所以 是 的充分不必要条件. 故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若 则 ”、“若 则 ”的真假.并注意和图示相结合,例如“ ⇒ ”为真,则 是 的充分条件.(2)等价法:利用 ⇒ 与非 ⇒非 , ⇒ 与非 ⇒非 , ⇔ 与非 ⇔非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若 ⊆ ,则 是 的充分条件或 是 的必要条件;若 = ,则 是 的充要条件. 18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式 可得 , 求解绝对值不等式 可得 或 , 据此可知:“ ”是“ ” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当时, 不成等比数列,所以不是充分条件; 当 成等比数列时,则 ,所以是必要条件. 综上所述,“ ”是“ 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“ ⇒ ”以及“ ⇒ ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<.故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =.故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则AB 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =,故AB 中元素的个数为2.所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =,所以{}()1,2,4A B C =.故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =(1,2)-.故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<, 故={|02}{|2}{|02}M N x x x x x x <<<=<<.故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>, 反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件. 故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向, 即不一定存在负数λ,使得λ=m n , 所以是充分而不必要条件. 故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题; 由221(2),12<->-可知q 是假命题, 所以p q ∧⌝是真命题. 故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤, 所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件; ②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ . 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合 , ,那么 ________.【答案】{1,8}【解析】由题设和交集的定义可知: .【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________. 【答案】 , (答案不唯一)【解析】使“若 ,则 ”为假命题,则使“若 ,则 ”为真命题即可, 只需取 即可满足,所以满足条件的一组 的值为 (答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
专题02 常用逻辑用语 文
考纲解读明方向
考点 内容解读 要求 常考题型 预测热度
1.命题及四种命题间的关系 1.理解命题的概念 2.了解“若p,则q”形式的命题及其逆
命题、否命题与逆否命题,会分析四种命
题的相互关系
Ⅱ 选择题 ★★☆
2.充分条件与必要条件 理解必要条件、充分条件与充要条件的含义 Ⅲ 选择题 ★★★
3.逻辑联结词“或”“且”“非” 了解逻辑联结词“或”“且”“非”
的含义
Ⅱ 选择题 ★★☆
4.全称量词与存在量
词
1.理解全称量词和存在量词的意义
2.能正确地对含有一个量词的命题进行否定 Ⅲ 选择题 ★★★
分析解读
1.本节主要考查充分必要条件的推理判断及四种命题间的相互关系问题.
2.本部分内容在高考试题中多以选择题或填空题的形式出现,考查四种命题的真假判断以及充分条件、必要条
件的判定和应用,考查学生的逻辑推理能力.
3.会判断含有一个量词的全称命题或特称命题的真假,能正确地对含有一个量词的命题进行否定.
4.能用逻辑联结词“或”“且”“非”正确地表达相关的数学内容.
5.本节内容在高考中约为5分,属中低档题.
命题探究练扩展
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
2018年高考全景展示
1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】A
【解析】
点睛:充分、必要条件的三种判断方法:
(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充
分条件.
(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的
命题,一般运用等价法.
(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.
2.【2018年文北京卷】能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.
【答案】(答案不唯一)
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根
据不等式的性质,去特值即可.
详解:使“若,则”为假命题,则使“若,则”为真命题即可,
只需取即可满足,所以满足条件的一组的值为(答案不唯一)
点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性
质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.
3.【2018年天津卷文】设,则“”是 “” 的
A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
点睛:
本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.
4.【2018年北京卷文】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】B
【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数
列”“”可利用等比数列的性质.
详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,
所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件,故选B.
点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给
出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利
用原命题与逆否命题同真同假的特点转化问题.
2017年高考全景展示
1.【2017天津,文2】设xR,则“20x”是“|1|1x”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分也不必要条件
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
【答案】B
【考点】充分必要条件
【名师点睛】判断充分必要条件的的方法:1.根据定义,若,pqqp,那么p是q的充分不必要条件,同时
q是p
的必要不充分条件,若pq,那互为充要条件,若pq,那就是既不充分也不必要条件,2.当命题
是以集合形式给出时,那就看包含关系,若:,:pxAqxB,若AB,那么p是q的充分必要条件,同时q是
p
的必要不充分条件,若AB,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价
性,根据互为逆否命题的两个命题等价,将p是q条件的判断,转化为q是p条件的判断.
2.【2017山东,文5】已知命题p:,xR210xx;命题q:若22ab,则a
【答案】B
【解析】
试题分析:由0x时210xx成立知p是真命题,由221(2),12可知q是假命题,所以pq是真命
题,故选B.
【考点】命题真假的判断
【名师点睛】判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆
否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题
的真假.
3.【2017北京,文13】能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,
c
的值依次为______________________________.
【答案】-1,-2,-3(答案不唯一)
【解析】
试题分析:123,1233相矛盾,所以验证是假命题.
【考点】不等式的性质
【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,
答案不唯一.
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
2016年高考全景展示
1.【2016高考四川文科】设p:实数x,y满足1x且1y,q: 实数x,y满足2xy,则p是q的( )
(A)充分不必要条件 (B)必要不充分条件
(C) 充要条件 (D) 既不充分也不必要条件
【答案】A
【解析】
考点:充分必要条件.
【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是
否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合
的包含关系得出结论.
2.【2016高考天津文数】设0x,Ry,则“yx”是“||yx”的( )
(A)充要条件 (B)充分而不必要条件
(C)必要而不充分条件 (D)既不充分也不必要条件
【答案】C
【解析】
试题分析:34,3|4|,所以充分性不成立;||xyyxy,必要性成立,故选C
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的
充分条件.
2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定
式的命题,一般运用等价法.
集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.
3.【2016高考上海文科】设Ra,则“1a”是“12a”的( )
(A)充分非必要条件 (B)必要非充分条件
(C)充要条件 (D)既非充分也非必要条件
【答案】A
※ -精 品 人教 试 卷- ※
人教版 ※- 推- 荐 ※ 下- 载- ※
【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等
关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.