质粒提取技术

合集下载

去内毒素质粒提取原理

去内毒素质粒提取原理

去内毒素质粒提取原理内毒素质粒提取原理。

内毒素质粒提取是一种常用的生物实验技术,用于从细菌中提取内毒素质粒,以便进行后续的实验操作。

内毒素是一种存在于细菌细胞壁中的有毒物质,其存在会对实验结果产生干扰甚至影响实验结果的准确性,因此需要将其从细菌中去除。

下面将介绍内毒素质粒提取的原理及操作步骤。

1. 原理。

内毒素质粒提取的原理主要是利用离心技术和化学试剂的作用,将细菌细胞壁破裂并去除,从而得到内毒素质粒的提取物。

首先,通过离心将细菌培养液离心沉淀,得到含有细菌细胞的沉淀物。

然后使用化学试剂(如SDS、蛋白酶K等)对细菌细胞进行破裂和去除内毒素的处理,最终得到内毒素质粒的提取物。

2. 操作步骤。

(1)培养细菌,首先需要在含有适当营养物的培养基中培养目标细菌,使其达到适当的生长状态。

(2)离心沉淀,将培养好的细菌培养液进行离心,得到细菌细胞的沉淀物。

(3)破裂细胞,使用化学试剂(如SDS)对细菌细胞进行破裂,使内部的内毒素质粒暴露出来。

(4)去除内毒素,使用蛋白酶K等化学试剂去除内毒素,得到纯净的内毒素质粒提取物。

3. 注意事项。

在进行内毒素质粒提取实验时,需要注意以下几点:(1)操作环境要保持清洁,避免外源性内毒素的污染。

(2)化学试剂的使用要按照安全操作规范进行,避免对人身和实验物质造成伤害。

(3)离心操作要注意转速和离心时间的控制,以保证细菌细胞的充分沉淀。

(4)内毒素质粒提取物的保存要在低温条件下,避免其降解和污染。

4. 应用领域。

内毒素质粒提取技术主要应用于生物学实验中,如基因工程、蛋白表达等领域。

通过去除内毒素质粒,可以减少实验结果的干扰,提高实验的准确性和可重复性。

总之,内毒素质粒提取是一项重要的生物实验技术,其原理简单而有效,操作步骤清晰明了。

在实际应用中,需要严格按照操作规范进行,以确保实验结果的准确性和可靠性。

希望本文介绍的内容对您有所帮助,谢谢阅读!。

质粒提取实验注意事项

质粒提取实验注意事项

质粒提取实验注意事项质粒提取是分子生物学中常用的实验技术之一,它能够从细菌中提取目标质粒,用于后续的转染、定量PCR、序列测定等实验。

质粒提取实验虽然操作简单,但是仍然需要遵循一定的注意事项,才能确保实验的顺利进行和结果的准确性。

下面将介绍质粒提取实验的注意事项。

1. 实验前的准备工作:在进行质粒提取实验之前,首先要做好实验室的准备工作。

要确保实验室中的工作台、仪器和试剂瓶都是干净整洁的,避免污染影响实验结果。

另外,要准备好所需的耗材和试剂,如离心管、离心管架、洗涤缓冲液、溶解缓冲液等。

并根据实验计划,提前准备好质粒所在的宿主菌培养液,提取缓冲液等相关材料。

2. 操作过程中的注意事项:在进行质粒提取实验的操作过程中,需要严格遵守操作规程,确保实验操作的准确性和稳定性。

在进行菌培养和离心等步骤时,要避免振荡或剧烈振动,以免对菌体和质粒的完整性产生影响。

另外,在使用洗涤缓冲液、溶解缓冲液和纯化缓冲液时,要注意溶液的pH值和温度是否符合要求,以及是否在有效期内。

同时要注意防止留下DNA和蛋白质残留,避免污染影响后续实验。

3. 质粒提取后的保存和处理:在完成质粒提取实验后,提取得到的质粒需进行适当的保存和处理。

一般情况下,提取得到的质粒可以用无菌的ddH2O或TE缓冲液溶解后,分装成适量的小份,然后在-20或更低的温度下保存。

另外要注意标记好每份提取得到的质粒,以免混淆。

在进行保存和后续实验过程中,要避免频繁的冻融,以免对质粒的完整性产生影响。

4. 实验后的清洁和记录工作:在完成质粒提取实验后,要及时清理实验台和操作工具,保持实验室的整洁。

同时要详细记录实验过程中的操作步骤、使用的试剂和仪器,以及实验结果等相关信息。

这些记录对于实验结果的分析和后续实验的开展都是十分重要的。

总之,质粒提取实验是一项重要的实验技术,在进行实验时需要严格遵循操作规程,注意操作细节,确保实验结果的准确性和可靠性。

希本通过本文介绍的注意事项,能够帮助实验人员顺利进行质粒提取实验,并获得高质量的实验数据。

提取质粒dna的方法

提取质粒dna的方法

提取质粒dna的方法提取质粒DNA的方法是一种从生物样品中提取DNA的方法,用于分析基因组学、遗传学或其他基因相关的研究。

它是所有DNA技术的基础。

提取质粒DNA的方法主要包括三个步骤:破解细胞壁、提取DNA片段和提取DNA片段。

第一步,破解细胞壁。

为了提取细胞内的DNA,必须先破坏细胞壁。

这一步可以通过使用植物激素、酶和其他破坏细胞壁的物质来完成。

第二步,提取DNA片段。

在破坏细胞壁之后,生物样品中的DNA就可以从细胞内被提取出来。

这一步通常是将样品加入一定的溶液,如洗涤溶液,然后用放大器去提取DNA片段。

第三步,提取DNA片段。

在提取DNA片段之后,必须对其进行纯化处理,以便提取的DNA片段不会受到其他物质的干扰。

一般情况下,这一步是通过使用离心机将DNA 片段从溶液中分离出来,然后用水冲洗去除其他物质,最后得到纯净的DNA片段。

提取质粒DNA的方法也可以用来提取植物细胞内的DNA。

与提取动物细胞中的DNA不同,植物细胞内的DNA要更加困难,因为植物细胞周围可能有多层细胞壁,而这些细胞壁很难被破坏。

因此,植物细胞内的DNA提取一般都是采用化学方法,即使用碱性有机溶液,以破坏细胞壁,然后再用放大器提取DNA片段。

此外,还有一些无细胞DNA提取的方法,如PCR法、小RNA测序、质粒提取等。

PCR法是用来检测和检验DNA的一种技术,可以扩增微量DNA,从而获取充足的DNA材料进行检测。

小RNA测序是一种新型的基因测序技术,可以检测植物和动物体内特定的RNA,检测特定靶基因的表达。

最后,质粒提取是一种从生物样品中提取DNA质粒的技术,可以用于分子生物学研究,如基因克隆、DNA测序等。

总之,提取质粒DNA的方法是一种常用的DNA提取技术,也是所有DNA技术的基础。

它可以用于从动物和植物样品中提取DNA片段,以及从无细胞DNA中提取DNA质粒,以用于各种基因组学、遗传学和分子生物学研究。

质粒提取的保存方法

质粒提取的保存方法

质粒提取的保存方法引言质粒提取是生物实验中常用的一种技术,它利用质粒提取试剂盒或其他方法,将质粒从细菌中提取出来。

在实验中,正确的质粒保存方法十分重要,可以确保质粒的稳定性和功能性,从而保证实验结果的准确性和可靠性。

背景质粒是一种圆环状的DNA分子,常存在于细菌中。

质粒可以携带一些有用的基因,如抗生素抗性基因、荧光蛋白基因等,因此在基因工程和分子生物学研究中具有重要的应用价值。

为了保持质粒的稳定性和功能性,在质粒提取后应采取适当的保存方法。

质粒提取的保存方法以下是一些常见的质粒提取保存方法:1. 冷冻保存将质粒溶液分装到无菌冻存管中,添加一定浓度的保护剂(如甘露醇、DMSO等),然后将其置于-20或更低的温度下冷冻保存。

冷冻保存可以减缓酶活性,避免DNA降解和质粒不稳定等问题。

2. 酶解后保存对于某些特殊目的,可选择在质粒提取后立即酶解质粒,并将酶解产物冻存。

这种方法可以防止质粒还原,确保酶解产物的稳定性。

在使用时,只需要重新溶解酶解产物即可。

3. 干燥保存将质粒溶液薄层均匀涂敷在无菌玻璃片或硅片上,然后在洁净环境中将其干燥。

干燥保存可以避免存储液溶剂中的细菌繁殖,减少质粒降解的风险。

在使用时,只需将玻璃片或硅片浸泡在合适的缓冲液中,使质粒重新溶解即可。

4. 超声波处理保存将质粒溶液暴露于超声波处理器中,运行一定时间的超声波处理程序。

超声波处理可以有效破坏细菌的细胞壁和膜,使质粒充分暴露。

处理后的质粒可以冷冻保存或直接用于实验。

5. 干冰保存将质粒溶液分装到冰盒中,然后将冰盒放入干冰中保存。

干冰保存可以将温度降至非常低,避免质粒降解和细菌生长,因此适合长时间保存。

结论在质粒提取实验中,正确的保存方法对于实验结果的准确性和可靠性至关重要。

冷冻保存、酶解后保存、干燥保存、超声波处理保存和干冰保存是常用的质粒保存方法。

根据实际需要选择适合的保存方法,可以确保质粒稳定性和功能性,为后续实验提供可靠的基础。

质粒提取方法详解

质粒提取方法详解

第一节概述把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。

细菌质粒是重组DNA技术中常用的载体。

质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。

质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。

质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。

质粒的存在使宿主具有一些额外的特性,缍钥股氐目剐缘取质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。

质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed cont rol)。

前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。

后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。

在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%.第二节利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。

当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。

质粒提取 原理及步骤

质粒提取 原理及步骤

质粒提取原理及步骤质粒提取是分子生物学中的一项重要实验技术,被广泛应用于基因克隆、基因转染、基因表达等方面。

本文将重点介绍质粒提取的原理及步骤。

一、原理质粒提取的原理基于质粒和细胞的生化学性质差异。

质粒是一种独立复制的DNA分子,可以自主复制并传递给细胞的子代。

而在真核细胞中,大多数DNA都位于细胞核中,很难获得足够的DNA量进行实验。

质粒提取利用了这一差异,将大量的质粒从细胞中提取出来。

质粒提取的主要步骤如下:二、步骤1. 细胞培养首先需要选择适当的细胞类型并在培养基中培养,使细胞处于最佳生长状态。

对于大多数细胞类型,建议在对数生长期时采集,因为此时细胞数量最多且代谢活跃,可以有效提高质粒提取的DNA量和质量。

同时,还需注意避免细胞因为过于密集而形成聚集体或凝胶。

2. 细胞收获收获细胞的方法取决于细胞类型和实验的目的。

常见的方法包括用PBS或细胞培养液将细胞冲洗下来,或者用胶体离心等方法进行细胞收获。

收获的细胞量需要根据实验需求进行调整,一般建议在0.1-1g的范围内收获细胞。

3. 细胞裂解细胞裂解是质粒提取过程中最关键的步骤之一,它能有效破坏细胞膜和核膜,释放细胞内的DNA。

常用的细胞裂解剂包括SDS、Triton X-100和Tween-20等,同时还需要将细胞裂解液加入蛋白酶抑制剂和DNA酶切酶,以避免核酸降解和一些酶促反应的发生。

细胞裂解后,将细胞裂解液转移到离心管中,并进行离心分离,将细胞碎片等大分子杂质通过离心将其剔除。

4. DNA纯化DNA纯化是质粒提取的最后一步,目的是将提取得到的DNA从其他杂质中纯化出来。

不同的实验需求需要不同级别的DNA纯化,从而需要使用不同种类的DNA纯化试剂盒。

目前常用的DNA纯化试剂盒包括酚/氯仿提取法、离子交换柱纯化法、硅胶膜纯化法等。

在DNA纯化后,通过分析电泳和UV测定等方法进行检测,以确保提取的DNA质量和浓度满足实验需求。

总结质粒提取是分子生物学中非常基础和常用的实验技术,其所涉及的步骤包括细胞培养、细胞收获、细胞裂解和DNA纯化等步骤。

质粒提取实验报告分析

质粒提取实验报告分析引言质粒提取是分子生物学实验中常用的技术手段之一,可以用于获取目标质粒并纯化。

在本次质粒提取实验中,我们使用了传统的琼脂糖凝胶柱层析法提取目标质粒。

本报告将对实验过程、结果和讨论进行详细的分析。

实验方法1. 质粒培养和提取1. 选取目标质粒进行大规模培养,添加适量的抗生素并摇床培养。

2. 收集培养液,离心沉淀并洗涤。

3. 使用琼脂糖凝胶柱层析法提取目标质粒。

2. 质粒浓度检测1. 取提取得到的质粒样品,使用纳米比色计测量DNA的浓度。

2. 根据测量结果计算质粒的浓度。

实验结果1. 质粒提取情况根据琼脂糖凝胶柱层析法分离得到的质粒经紫外线照射后观察,发现提取效果良好,目标质粒很大程度上得到了纯化。

2. 质粒浓度检测根据纳米比色计的测量结果,计算得到质粒的浓度为XX ng/μl。

测量的标准曲线显示结果可靠。

结果分析1. 实验验证质粒提取的过程中,通过琼脂糖凝胶柱层析法有效地分离出了目标质粒,并得到了相对较纯的质粒样品。

通过紫外线照射观察质粒形态,进一步确认了提取效果良好。

2. 质粒浓度结果根据浓度检测结果,我们可以初步了解到质粒的含量。

这对后续实验的设计和操作非常重要。

结论通过本次实验使用琼脂糖凝胶柱层析法提取质粒,成功获得了相对纯净的目标质粒样品。

质粒的浓度检测结果进一步验证了实验的成功。

这为后续的实验研究和应用提供了基础数据。

改进和展望1. 实验中可以尝试使用其他提取方法,比较不同方法的效果并选取最佳方案。

2. 在质粒浓度检测方面,可以引入其他的分析方法,如凝胶电泳等,以更全面地评估质粒的品质。

参考文献[1] 张三, 李四. 质粒提取实验方法综述[J]. 生物技术通讯,20XX,XX(XX):XX-XX.。

质粒dna提取步骤

质粒dna提取步骤
质粒 DNA 提取是分子生物学实验中的一项基本技术,用于从细菌细胞中分离出质粒DNA。

以下是一般的质粒 DNA 提取步骤:
1. 收集细菌培养物:将含有质粒的细菌培养在适当的培养基上,直到培养物达到合适的密度。

可以使用离心或过滤的方法收集细菌细胞。

2. 细胞裂解:将收集的细菌细胞加入裂解缓冲液中,通过物理方法(如搅拌、超声处理等)或化学方法(如加入裂解酶等)使细胞破裂,释放出质粒 DNA 和其他细胞成分。

3. 去除细胞碎片:将裂解后的混合液通过离心或过滤的方法去除细胞碎片和其他杂质。

4. 沉淀 DNA:向裂解液中加入乙醇或异丙醇等沉淀剂,使质粒 DNA 沉淀。

通过离心将沉淀收集。

5. 洗涤沉淀:用 70%的乙醇洗涤沉淀,以去除残留的盐分和杂质。

6. 干燥沉淀:将洗涤后的沉淀离心,并去除上清液。

然后将沉淀在室温下干燥,以去除残留的乙醇。

7. 溶解 DNA:将干燥的沉淀加入适当的缓冲液中,使质粒 DNA 溶解。

可以在缓冲液中加入 RNA 酶以去除 RNA 杂质。

8. 纯化和浓缩 DNA:可以使用柱层析、电泳或其他方法对提取的质粒 DNA 进行进一步的纯化和浓缩。

9. 质量检测:使用琼脂糖凝胶电泳或其他适当的方法检测提取的质粒 DNA 的质量和完整性。

需要注意的是,具体的质粒 DNA 提取步骤可能因使用的试剂盒或实验条件而有所不同。

在进行质粒 DNA 提取之前,应仔细阅读所使用的试剂盒说明书或相关实验方案,并根据实际情况进行适当的调整和优化。

质粒提取步骤及原理

质粒提取是分子生物学中常用的实验技术,其目的是从细菌中提取出质粒DNA,用于后续的基因操作和分析。

下面是质粒提取的主要步骤和原理的详细解释。

一、质粒提取原理
质粒是细胞内的一种环状的小分子DNA,是进行DNA重组的常用载体。

作为一个具有自身复制起点的复制单位独立于细胞的主染色体之外,质粒DNA上携带了部分的基因信息,经过基因表达后使其宿主细胞表现相应的性状。

在DNA重组中,质粒或经过改造后的质粒载体可通过连接外源基因构成重组体。

从宿主细胞中提取质粒DNA,是DNA重组技术中最基础的实验技能。

二、质粒提取步骤
培养细菌使质粒扩增:将含有目标质粒的细菌接种在适当的培养基上,提供适当的条件(如温度、湿度和营养)使细菌生长和繁殖,从而使质粒得到扩增。

收集和裂解细菌:通过离心等方法收集培养好的细菌,然后使用适当的裂解液裂解细菌,使细菌的细胞壁和细胞膜破裂,释放出内部的质粒DNA。

分离和纯化质粒DNA:通过离心、过滤或层析等方法,将裂解液中的蛋白质、细胞碎片等杂质去除,得到相对纯净的质粒DNA。

这个过程中可能需要使用一些特殊的试剂或柱子来提高分离和纯化的效率。

通过以上步骤,我们可以从细菌中提取出高质量的质粒DNA,用于后续的基因操作和分析。

质粒大提原理

质粒大提原理
质粒大提原理(Plasmid Maxiprep Principle)是指在实验室中从大容量培养物中纯化大量质粒DNA的方法。

它是分子生物学中非常重要的技术,用于提取纯度较高的质粒DNA,以满足高效率的转染和进一步的实验需求。

质粒大提原理的基本流程包括以下几个步骤:
1. 质粒培养:将含有目标质粒的细菌在培养基中大量培养,以增加质粒的数量。

2. 细胞收获:将培养的细菌离心,收集菌体沉淀。

3. 菌体裂解:使用裂解缓冲液将菌体裂解,释放出细胞内的质粒DNA。

4. 蛋白质去除:通过加入蛋白酶和盐,除去蛋白质,使DNA 不受干扰。

5. DNA精制:通过加入酒精沉淀以及洗涤步骤,去除杂质,提纯DNA。

6. DNA溶解:将精制后的DNA用适当的溶液溶解,以便后续实验使用。

质粒大提原理的关键是将培养所得的细菌菌体裂解,释放出细胞内的质粒DNA。

通过一系列的化学处理和物理分离步骤,可实现对质粒DNA的提纯和纯化。

这样,可以获得足够高纯度的质粒DNA,以进行后续的分子生物学实验,例如重组DNA构建、基因克隆、基因表达等。

总结来说,质粒大提原理是一种利用细菌培养和DNA分离技
术,从大容量培养物中高效提取质粒DNA的方法。

它在分子生物学研究中有着广泛的应用,并为后续实验奠定了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒提取技术一、导论已经提出过许多方法用于从细菌中提纯质粒DNA,这些方法都含有以下3个步骤:细菌培养物的生长、细菌的收获和裂解、质粒DNA的纯化。

(一)细菌培养物的生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长),然后从中纯化质粒,质粒的提纯几乎总是如此。

现在使用的许多质粒载体(如pUC系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB 培养基中生长到对数晚期,就可以大量提纯质粒。

此时,不必造反性地扩增质粒DNA。

然而,较长一代的载体(如pBR322)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。

氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。

这样,像pBR322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。

多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml)已成为标准的操作、用该方法提取的质粒DNA量,对于分子克隆中几乎所有想象到的工作任务。

(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。

选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。

尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。

1)大质粒(大于 15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。

将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入 SDS一类去污剂溶解球形体。

这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。

2)可用更剧烈的方法来分离小质粒。

在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。

这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。

当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。

3)一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。

糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。

因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。

故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。

4)当从表达内切核酸酶A的大肠杆菌菌株(endA+株,如HB101) 中小量制备质粒时,建议不使用煮沸法。

因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。

但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。

5)目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。

然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。

大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。

有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。

(三)质粒DNA的纯化常使用的所有纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。

例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。

溴化乙锭通过嵌入奋不顾身碱基之间而与DNA结合,进而使双螺旋解旋。

由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。

最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。

但线状分子不受此限,可继续结合更多的染料,直至达到饱和( 每2个碱基对大约结合1个溴化乙锭分子) 。

由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。

多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。

然而该过程既昂贵又费时,为此发展了许多替代方法。

其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。

本实验室采用离子交换层析法已可得到极高纯度的质粒。

二、质粒DNA的小量制备(细菌的收获和裂解、收获、碱裂解法、煮沸裂解、质粒DNA小量制备的问题与对策)质粒DNA的小量制备可采用下述的碱裂解法或煮沸法(一)细菌的收获和裂解1.收获1)将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30℃剧烈振摇下培养过夜。

2)将1.5ml培养物倒入微量离心管中,用微量离心机于4℃以12000g离心30秒,将剩余的培养物贮存于4℃。

3)吸去培养液,使细菌沉淀尽可能干燥。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。

当液体从管中吸出时,尽可能使吸头远离细菌沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。

2.碱裂解法1)将细菌沉淀,所得重悬于100μl用冰预冷的溶液I中,剧烈振荡。

溶液I50mmol/L葡萄糖25mmol/L Tris.Cl(pH8.0)10mmol/LEDTA(pH8.0)溶液I可成批配制,每瓶约100ml,在10lbf/in2(6.895×104Pa) 高压下蒸气灭菌15分钟,贮存于4℃。

须确使细菌沉淀在溶液I中完全分散,将两个微量离心管的管底部互相接触震荡,可使沉淀迅速分散。

2)加200μl新配制的溶液Ⅱ。

溶液Ⅱ0.2mol/L NaOH(临用前用10mol/L贮存液现用现稀释)1%SDS盖紧管口,快速颠倒离心管5次,以混合内容物。

应确保离心管的整个内表面均与溶液Ⅱ接触。

不要振荡,将离心管放置于冰上。

3)加150μl用冰预冷的溶液Ⅲ溶液Ⅲ5mol/L乙酸钾 60ml冰乙酸 11.5ml水 28.5ml所配成的溶液对钾是3mol/L,对乙酸根是5mol/L。

盖紧管口,将管倒置后和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。

4)用微量离心机于4℃12 000g离心5分种,将上清转移到另一离心管中。

5)可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4 ℃以12000g 离心2分钟,将上清转移到另一良心管中。

有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。

6)用2倍休积的乙醇于室温沉淀双锭DNA。

振荡混合,于室温放置2分钟。

7)用微量离心机于4℃以12 000g离心5分钟。

8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。

再将附于管壁的液滴除尽。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,并用吸头接触液面。

当液体从管中吸出时,尽量使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。

9)用1ml70%乙醇于4℃洗涤双链DNA沉淀,按步骤8)所术方法去掉上清,在空气中使核酸沉淀干燥10分钟。

i.此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5μg。

ii.如果要通过限制酶切割反应来分析DNA,可取1μl DNA溶液加到另一含8μl水的微量离心管内,加1μl 10×限制酶缓冲液和1单位所需限制酶,在适宜温育1-2小时。

将剩余的DNA贮存于-20℃。

iii.此方法按适当比例放大可适用于100ml细菌培养物:3.煮沸裂解1)将细菌沉淀,所得重悬于350μlSTET中。

STET0.1mol/L NaCL10mmol/L Tris.Cl(pH8.0)1mmol/L EDTA(pH8.0)5% Triton X-1002)加25μl新配制的溶菌酶溶液[10mg/ml,用10mmol/L Tris.Cl(pH8.0)配制],振荡3秒钟以混匀之。

如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。

3)将离心管放入煮沸的水浴中,时间恰为40秒。

4)用微量离心机于室温以12 000g离心10分种。

5)用无菌牙签从微量离心管中去除细菌碎片。

6)在上清中加入40μl 5mol/L乙酸钠(pH5.2)和420μl异丙醇,振荡混匀,于室温放置5分钟。

7)用微量离心机于4℃以12 000g离心5分种,回收核酸沉淀。

8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。

再将附于管壁的液滴除尽。

除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。

当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。

9)加1ml 70%乙醇,于4℃以12 000g离心2分钟。

10)按步骤8)所述再次轻轻地吸去上清,这一步操作要格外小心,因为有时沉淀块贴壁不紧,去除管壁上形成的所有乙醇液滴,打开管口,放于室温直至乙醇挥发殆尽,管内无可见的液体(2-5)分钟。

11)用50μl含无DNA酶的胰RNA酶(20μg/ml)的TE(pH8.0)溶解核酸稍加振荡,贮存于-20℃。

注:当从表达内切核酸酶A的大肠杆菌株(endA+株,如HB101 )中小量制粒尤其DNA时,建议舍弃煮沸法。

因为煮沸步骤不能完全灭活内切核酸酶A,以后在Mg2+存在下温育(V中用限制酶时)质粒DNA可被降解。

在上述方案的步骤9)之间增加一步,即用酚:氯仿进行抽提,可以避免这一问题。

(二)质粒DNA小量制备的问题与对策裂解和煮佛法都极其可靠,重复性也很好,而且一般没有会么麻烦。

多年来,在我们实验室中日常使用这两种方法的过程中,只碰到过两个问题:1)有些工作者首次进行小量制备时,有时会发现质粒DNA不能被限制酶所切割,这几乎总是由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意得不够。

大多数情况下,用酚:氯仿对溶液进行抽提可以去除小量备物中的杂质。

如果总是依然存在,可用离心柱层析注纯化DNA。

2)在十分偶然的情况下,个别小时制备物会出现无质粒DNA的现象。

这几乎肯定是由于核酸沉淀颗粒已同乙醇一起被弃去。

三、质粒DNA的大量制备(在丰富培养基中扩增质粒、细菌的收获和裂解、收获、碱裂解法)(一)在丰富培养基中扩增质粒许多年来,一直认为在氯霉素存在下扩增质粒只对生长在基本培养基上的细菌有效,然而在带有pMBl或ColEl复制子的高拷贝数质粒的大肠杆菌菌株中,采用以下步骤可提高产量至每500ml培养物2-5mg质粒DNA,而且重复性也很好。

相关文档
最新文档