必修四1.4.3正切函数的性质与图象

合集下载

人教A版数学必修4第一章1.4.3 正切函数的性质和图象 教案

人教A版数学必修4第一章1.4.3 正切函数的性质和图象 教案

1.4.3正切函数的性质与图象一、教学目标:1、借助单位圆中的正切线,能画出y=tanx 的图象,了解正切函数的周期性;2、引导学生利用正切函数已有的知识研究其性质,然后再根据性质研究正切函数的图象,使数形结合的思想体现的更加全面。

3、借助图象理解正切函数在⎪⎭⎫ ⎝⎛-2,2ππ上的性质(如单调性、周期性、值域、图象与x 轴的交点等),并能解决一些简单问题。

二、教学重点、难点重点:通过引导学生利用正切函数已有的知识研究其性质,然后再根据性质研究正切函数的图象,学会用“三点两线法”画正切函数的简图。

难点:借助单位圆中的正切线,研究正切函数的单调性和值域,并利用正切函数的性质,对正切曲线的特征作出解释。

三、教学方法与教学手段教学方法:“问题发现”和启发探究式教学方法学法指导: 分组合作、互动探究、搭建平台、分散难点教学手段: 计算机、投影仪四、教学过程(一)明确目标,提出问题复习1、正弦函数的图象是通过什么方法作出的?复习2、正、余弦函数的基本性质包括哪些内容?这些性质是怎样得到的?问题1:三角函数包括正、余弦函数和正切函数,你能否根据研究正、余弦函数的图象和性质的经验,以同样的方法进一步研究正切函数的性质与图象?(二)自主学习,解决问题复习3、我们学习了正弦线、余弦线、正切线.你能画出图中的正切线吗?思考1:正切函数是如何定义的? 其定义域是什么?思考2: 正切函数是否为周期函数?思考3:根据相关诱导公式,你能判断正切函数具有奇偶性吗?(三)合作学习,探究问题 思考4:观察下图(课本43页图1.4-8)中的正切线,当角x 在 ⎪⎭⎫ ⎝⎛-2,2ππ内增加时,正切函数值发生什么变化?由此反映出一个什么性质?思考5: 观察下图(课本43页图1.4-8(I )和(II ))中的正切线,正切函数的值域是什么?(四)引导提升,得出结论 思考1:类比正弦函数图象的作法,可以利用正切线作正切函数在区间(2π-,2π) 的图象,具体应如何操作?思考2:结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象?思考3:正切函数还具有怎样的对称性?思考4:在正切函数的图象上,起关键作用的点或直线有哪几个?如何画出正切函数图象的简图?(五)归纳整理,总结方法则y=Atan(ωx+φ)(ω>0)的周期T πω=. 例1.求下列函数的周期:(1)3tan 5y x π⎛⎫=+ ⎪⎝⎭ 答:T π=。

高中数学 1.4.3正切函数的性质与图象教案 新人教A版必

高中数学 1.4.3正切函数的性质与图象教案 新人教A版必

正切函数的性质与图像一教材分析:《正切函数的图象和性质》是人教A版高中《数学》必修4第一章第四单元第三节内容,本节课既是对前面正余弦函数图象和性质知识的延展,是对三角函数内容的进一步完善,也为学习后续知识直线的斜率作了铺垫。

一般说来,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后从代数角度对性质作出严格表述.但对正切函数,教材先根据已有的知识(正切函数定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象. 主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的体现得更加全面. 在此也向学生进一步说明华罗庚先生的“数缺形少直观,形少数难入微”的精妙,借助一切机会向学生渗透数学文化观念,让学生体会数学的美无处不在,数学无处不美。

为了让学生能更加直观、形象地理解正切函数的值域和周期性变化,正切曲线的作图过程,采用《几何画板》自制课件进行演示,以提高了学生的学习兴趣,使之能达到良好的教学效果。

二教学目标(一)知识与技能目标:1.在对正切函数已有认知的基础上,理解正切函数的性质。

2.通过已知的性质,利用正切线,得到正切曲线。

3.根据正切曲线,完善正切函数的性质。

(二)过程与方法目标:在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.(三)情感态度价值观目标在教学中使学生了解问题的来龙去脉;强调解决问题方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.三教学重点利用正切函数已有的知识(如定义、诱导公式、正切线等)研究性质.四教学难点正切函数的单调性和值域五学法与教法学生已基本掌握正切函数的定义、诱导公式等知识;基本掌握了从代数角度研究函数单调性、奇偶性、周期性的方法.但是由于该课涉及到的知识内容较多,特别是涉及到正切线时,学生会感到困难.我班学生有扎实的知识基础,学习的主动性和积极性也较高,已基本形成自主学习的习惯和能力.有合作学习的经验和氛围.因此学生学法为合作交流,教法为探究与发现式。

1.4.3正切函数的性质与图象

1.4.3正切函数的性质与图象

B
)
π 2.y=tanx(x≠kπ+ ,k∈Z)在定义域上的单调性为( 2 A.在整个定义域上为增函数 B.在整个定义域上为减函数
C
)
π π C.在每一个区间- +kπ, +kπ (k∈Z)上为增函数 2 2 π π D.在每一个区间- +2kπ, +2kπ (k∈Z)上为增函数 2 2
(2)∵tan496°=tan136°,
y=tanx 在(90°,270°)上是增函数,270°>136°>126
°>90°,∴tan136°>tan126°,即 tan496°>tan126°.
不求值, 比较下列每组中两个正切值的大小, 用不等号 “<” 、 “>”连接起来.
< (1)tan32°________tan215 °.
O 6
4 3 2
x
正切函数的性质 :
定义域: x x k , k Z 2 值域: R
周期性:
k 对称中心是 ( , 0), k Z 2
T
奇偶性: 奇函数
单调性: 在开区间 2 k , 2 k k Z 内递增
cosx 是偶函数,∴(4)对. 因此,正确的命题的序号是(1)(4).
解:令 z x
例1.求函数 y tan (x )的定义域 . 4


z z k , k z 2 由x z k , 4 2 可得 x k k 2 4 4
y A tan( x ) T y tan x T π
2、奇偶性 π tan( x ) tan x , x R, x kπ , k Z 2 正切函数是奇函数

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

[规律方法] 正切型函数单调性求法与正、余弦型函数求法一 样,采用整体代入法,但要注意区间为开区间且只有单调增区 间或单调减区间.利用单调性比较大小要把角转化到同一单调 区间内.
【活学活用 2】 (1)求函数 y=3tanπ4-2x的单调递减区间. (2)比较 tan 65π 与 tan-173π的大小.
课堂小结 1.正切函数的图象
正切函数有无数多条渐近线,渐近线方程为 x=kπ+π2,k∈Z, 相邻两条渐近线之间都有一支正切曲线,且单调递增.
2.正切函数的性质 (1)正切函数 y=tan x 的定义域是xx≠kπ+π2,k∈Z ,值域是 R. (2)正切函数 y=tan x 的最小正周期是 π,函数 y=Atan(ωx+ φ)(Aω≠0)的周期为 T=|ωπ |. (3)正切函数在-π2+kπ,π2+kπ(k∈Z)上递增,不能写成闭区 间.正切函数无单调减区间.
xπ6+2kπ≤x≤43π+2kπ,k∈Z

.

(3)令2x-π3=0,则 x=23π. 令2x-π3=π2,则 x=53π. 令2x-π3=-π2,则 x=-π3. ∴函数 y=tan2x-π3的图象与 x 轴的一个交点坐标是23π,0, 在这个交点左、右两侧相邻的两条渐近线方程分别是 x=-π3, x=53π.从而得函数 y=f(x)在一个周期-π3,53π内的简图(如图).
【例 2】 (1)求函数 y=tan-12x+π4的单调区间; (2)比较 tan 1、tan 2、tan 3 的大小. [思路探索] (1)可先将原式转化为 y=-tan12x-π4,从而把12x-π4 整体代入-π2+kπ,π2+kπ,k∈Z 这个区间内,解出 x 便可. (2)可先把角化归到同一单调区间内,即利用 tan 2=tan (2-π), tan 3=tan (3-π),最后利用 y=tan x 在-π2,π2上的单调性判 断大小关系.

高中数学_1.4.3正切函数的性质与图象教学设计学情分析教材分析课后反思

高中数学_1.4.3正切函数的性质与图象教学设计学情分析教材分析课后反思

《正切函数的性质与图象》的教学设计一.教材分析1.地位与作用《正切函数的性质与图象》是高中数学必修4第一章第四节内容(人教版)。

在学习了正弦函数、余弦函数的图象与性质之后,研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升。

2.教材处理教材采用探究的方法引导学生注意正切函数与正弦函数在研究方法上类似,我采用以提问、设计问题探究的方式,让学生回忆如何有前面学习的知识得到正切函数的性质。

数的研究缺乏形象、直观的特点,进而引导学生由正弦线得到正切曲线的作图过程与方法,设计一系列问题一步步引导学生注意画正切曲线的细节。

我把空间、时间留给学生,让他们自主探究,不仅发挥了学生的能动性,而且增强了动脑、动手绘图的能力。

二.学情分析通过前面正切线,诱导公式的学习,学生已经能解决部分问题,尤其对正弦函数图象与性质的研究,让学生有了思考的方向,且具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。

但在画正切函数图象时,还有许多需要注意的地方,比如定义域,函数区间等问题。

这又提升了学生分析问题的能力及严密认真的态度。

三.教学目标确定正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。

本着新课程标准的理念,养成学生对知识的生成过程的体验,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.知识目标:1).掌握正切函数的性质.2).能借助单位圆中的正切线画出正切函数的图像.3).能够利用正切函数的图像与性质解决问题.2. 过程与方法:1)通过类比,联想正弦函数图象的作法作正切函数的图象.2)能学以致用,结合图象分析得到正切函数的性质,并能解决问题。

3.情感态度与价值观:通过一系列问题的设置,培养学生用联系发展的观点思考问题,充分体验数形结合的思想优势,激发学生学习的积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生学好数学的自信心. 4.重点与难点重点:正切函数的图象及其主要性质。

人教版数学必修四第一章1.4.3 正切函数的性质和图象 经典教案

人教版数学必修四第一章1.4.3 正切函数的性质和图象 经典教案

1.4.3正切函数的性质与图象一、教材分析《正切函数的图象和性质》是人教A版高中《数学》必修4第一章第四单元第三节内容,本节课既是对前面正余弦函数图象和性质知识的延展、对三角函数内容的进一步完善,也为学习后续知识直线的斜率作了铺垫.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后从代数角度对性质作出严格表述.但对正切函数,教材采用了先根据已有的知识(正切函数定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面.二、教学目标(一)知识与技能1.理解并掌握正切函数的定义域、周期性、奇偶性、单调性、值域等性质;2.能利用正切线画出正切函数的准确图象,利用“三点两线”画出正切函数的简图,掌握正切函数图象结构、特征;3.能根据正切函数图象观察性质,根据性质理解图象,用数形结合的思想理解和解决一些简单的三角问题.(二)过程与方法1.通过复习回顾正、余弦函数图象与性质的探究过程,引导学生将本节课要学习的内容与之建立起联系,培养学生的“类比”思维能力;2.利用诱导公式、正切线等探究正切函数的性质;3.经历由正切函数的性质推测图象,再由图象理解性质的过程,渗透了“由数到形和由形到数”的“数形结合”的思想,从而培养学生自觉运用“数形结合”的思想从不同角度解决问题的能力;4.在正切函数的图象分析中,让学生体会、感知无限逼近(极限)的思想;5.通过讲解例题,总结方法,巩固练习等,学会用数形结合的思想理解和处理问题.(三)情感态度与价值观在得到正切函数图象的过程中,学会一类周期性函数的研究方式,通过自己动手得到图象让学生亲身经历数学研究的过程,体验探索的乐趣.通过数形结合,培养学生勇于探索、勤于思考的习惯,渗透由抽象到具体的思想方法,让学生理解动与静的唯物辨证观,进一步培养学生合作学习和数学交流的能力,增强对数学的应用意识,同时,正切曲线的中心对称性让学生感受到数学的美学魅力,增强学生的学习兴趣.三、学情分析学生在知识上已经掌握了三角函数的定义,诱导公式,三角函数线,正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.四、教学重难点教学重点:正切函数的性质,用单位圆中的正切线作正切函数图象.教学难点:1.利用单位圆中的正切线探究正切函数的单调性;2.利用正切线及正切函数的奇偶性、单调性作⎪⎭⎫ ⎝⎛-∈=2,2,tan ππx x y 图象; 3.正切函数性质的简单应用.五、教学用具直尺,三角板,圆规,多媒体设备(PPT ).六、教学过程(一)复习回顾(0.5分钟)回忆:在前面已经学习了哪几种三角函数的图象和性质?研究了它们的哪些性质?学生自由发言,互相补充,之后教师作口头梳理.设计意图:复习巩固已学知识,为后面教学作铺垫.(二)问题引入(4.5分钟)思考1:我们是先研究的正余弦函数的图象还是性质?能否采用同样的方法研究正切函数的图象与性质呢?学生口答后,教师指出:本节课我们将不从图象研究性质,而是从一个“全新”的角度来研究正切函数的性质.(给出课题,同时板书课题)设计意图:主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面,同时培养学生的类比思维能力,引出这节课的课题和明确研究方向.思考2:我们学过有关正切函数的哪些性质?学生简单的口答后,提问学生回顾正切函数的定义、诱导公式、正切线等,教师在PPT 上给出单位圆,引导学生进行回顾,同时板书正切函数的定义域并强调用集合或区间表示.设计意图:为后面研究正切函数的性质、画图象作铺垫.思考3:要研究一个函数的性质,我们一般从哪些方面入手?学生自由发言,互相补充,之后教师给出下一个问题.思考4:在这众多的性质中,我们先研究哪个性质更好呢?教材中是先研究的哪个性质?(周期性)学生自由发言,教师稍作等候后对给出不同回答的同学进行提问,并做补充解释,让学生明白先研究周期性的原因:如果一个函数具有周期性,那么当研究清楚该函数在一个周期内的性质之后,就可以推广到整个定义域上,可以降低探究难度.在本节中,对探究单调性和图象等有所帮助..设计意图:周期性是学生刚刚接触到的一个函数性质,相对其他性质还比较陌生,这样设计能让学生进一步体会到周期性在函数性质研究中的地位与作用.(三)探究新知1.性质(共12分钟)(1)周期性(3分钟)引导性提问:正切函数有没有周期性?→周期是多少?→如何得到的?(tanx π)tan(x =+)→正切函数的周期是π.学生自由口答,教师可视情况进行提问,引导学生结合周期性的定义对正切函数的周期是π做一强调,指出与正余弦函数周期的不同,并板书性质.(2)奇偶性(3分钟)引导性提问:正切函数有没有奇偶性?→是奇函数还是偶函数,为什么?→I x x x ∈∀=-,tan )tan(,→定义域关于原点对称→正切函数是奇函数.学生自由口答,若学生没提到检验定义域,则教师提醒学生要先检验定义域是否关于原点对称,并师生共同完成正切函数定义域的检验,为直观起见,可借助数轴.设计意图:强调判断奇偶性要先看定义域,同时先探究奇偶性对探究单调性有所帮助. (3)单调性(5分钟)思考5:既然正切函数的周期是π,那么我们只需要研究一个长度为多少的区间上的单调性?选择哪个区间好呢? 学生思考后自由回答,若回答不准确,则教师引导学生选择包含原点的区间⎪⎭⎫ ⎝⎛22-ππ,,因为原点附近的角是我们常见的角.思考6:这个区间能否根据我们已经得到的某一条性质进一步缩小呢?学生自由口答,教师较有指向性的提问,能使学生很容易发现“由于正切函数是奇函数,只需要探究它在⎪⎭⎫ ⎝⎛20π,上的单调性”. 思考7:如何探究正切函数在⎪⎭⎫ ⎝⎛20π,上的单调性?已掌握的有关正切函数的知识中,可以用来比较正切值大小是什么?给学生充足的时间相互探讨,由于已学过的有关正切函数的知识只有“定义、诱导公式和正切线”,所以学生在简单的讨论交流之后应该很容易想到是正切线.教师引导学生借助正切线探究正切函数在单调性⎪⎭⎫ ⎝⎛20π,上的单调性,再根据奇偶性将结论推广到⎪⎭⎫ ⎝⎛22-ππ,,再根据周期性将结论推广到整个定义域.设计意图:正切函数单调性的探究是本节课的难点,在本节课中利用已经得到的奇偶性和周期性,将需要研究的单调区间一步步缩小,之后再利用奇偶性和周期性,还原出正切函数在定义域上的单调情况,让学生体会到函数性质之间的联系,培养学生“从特殊到一般”“从局部到整体”的数学思维.另外,当明确了单调性之后,值域也能很容易得到.(4)值域(1分钟)正切函数在⎪⎭⎫ ⎝⎛-2,2ππ上的值域是R→正切函数的值域是R→无最大值和最小值. 2.图象(共11分钟)猜想:根据我们已经探究出的正切函数的性质,请同学们先猜想、想象一下正切函数的图象会如何呢?学生想象,稍后教师提问一名学生,让他口头表述自己想象的正切函数的图象,之后教师引导学生画图验证猜想.设计意图:猜想图象可使学生对性质进行整合,培养学生的想象能力.思考8:利用已知的性质,如何画函数的图象?可以先画怎样的一个区间内的图象? 教师较有提示性的提问,学生很容易做出回答:由于正切函数的是周期为,所以只需要画出一个周期内的图象,然后通过平移就可以得到在整个定义域内的图象.由于在探究单调性时就选取的⎪⎭⎫ ⎝⎛-2,2ππ,所以学生也能很容易想到先画出⎪⎭⎫ ⎝⎛-2,2ππ上的函数图象. 类比正弦函数图象的作法,利用单位圆中的正切线绘制()Z k k x x y ∈+≠=,2,tan ππ图象.(1)教师借助PPT ,引导学生按照下列步骤作图:(5分钟)①作直角坐标系,并在直角坐标系轴左侧作单位圆; ②选取特殊角:34606-4-3-ππππππ,,,,,,,分别在单位圆中作出正切线,以6π为例进行详细的步骤说明;③描点;(纵坐标是相应的正切线)④连线:当x 趋近于22-ππ或时,图象的走势如何?思考之后学生自由回答,教师引导学生理解22-ππ==x x 和是正切函数的两条渐进线.思考9:有时不需要画出正切函数精确的图象,只需画出简图,只需确定哪些点或线就能画出函数⎪⎭⎫ ⎝⎛∈=22-,tan ππ,x x y 的简图? 学生可看出有三个点很关键(0,0),),(14--π,),(14π,还有两条渐近线:2π-=x ,2π=x .即“三点两线”.学生回答之后,教师板演画出草图.思考10:如何得到函数在⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的图象?整个定义域上的图象呢? 学生自由回答,根据正切函数的周期性,我们可以把上述图象左右平移,得到正切函数()Z k k x x y ∈+≠=,2,tan ππ的图象,称为“正切曲线”.教师板演画出⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的草图.这时,学生可以拿出先前由性质推测的图象进行对比,自己找出问题,加以体会.设计意图:培养学生运用类比的方法解决问题的能力,形成对正切函数图象的感知.(2)观察图象,验证、丰富性质(4分钟)从图中可以看出,正切曲线是被相互平行的直线()Z k k x ∈+=,2ππ所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;图象关于原点中心对称,得到它的哪一性质——奇函数;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,22-ππππ,,没有减区间. 设计意图:形与数的结合,更能加深对性质的认识,对比正切函数的性质和图象,分析各个性质在图象上的反映,得出:函数的性质有利于画函数的图象,函数的图象是其性质的直观反应,培养学生的识图能力,利用正切函数的图象进一步加深对性质的理解,体会“数形结合”的思想,同时,由渐近线感知无限逼近的思想.追问:在整个定义域上是增函数吗?注意:只能说在某个区间单调递增,不能说在整个定义域单调递增.设计意图:避免一些错误认识,进一步加深对正切函数单调性的理解.它的图象是关于原点对称的,得到是哪一性质——奇函数.追问:认真观察图象还有其它的对称中心吗?有没有对称轴? 通过图象我们还能发现是中心对称,对称中心是Z k k ∈⎪⎭⎫ ⎝⎛,,02π,无对称轴. 强调:正切函数的对称中心是图象和渐近线与x 轴的交点.3.例题分析(8分钟)例1.求函数y =tan (2πx +3π)的定义域、周期和单调区间. 教师板演讲解,说明可将2πx +3π作为一个整体来处理,而不必设元,并写出解题过程,以规范学生的解题步骤. 设计意图:巩固正切函数的定义域、周期性和单调性,渗透换元的思想.例2.比较大小()︒167tan 1︒173tan ()⎪⎭⎫ ⎝⎛-411tan 2π 513tan π 学生思考后,举手发言,说明理由.教师提醒学生注意利用诱导公式将角度转化为同一单调区间后才能进行比较,并结合正切函数的图象加以说明.设计意图:深化对正切函数的单调性的理解和转化的思想.练习:(5分钟)1.观察正切函数的图象,写出使不等式3tan ≥x 成立的x 的集合.2.求函数x y 3tan =的定义域、值域、周期和单调区间.(学生板演)(四)小结1.正切函数的性质与图象;2.性质有助于更有效的作图,图象有助于更直观的研究性质;3.数形结合的思想方法;设计说明:从知识,方法,思想三个方面对本节课进行总结.(五)布置作业习题1.4,A组,8,9题,B组2题:其他题完成在书上.七、板书设计。

数学必修四课件 1.4.3 正切函数的性质与图象

数学必修四课件 1.4.3 正切函数的性质与图象

17π - 【解析】tan =-tan 4 22π - tan =-tan 5
π , 4
2π , 5
π π 2π π 2π π ∵- < < < ,∴tan >tan , 2 4 5 2 5 4 即
17π 22π - tan- 4 >tan . 5
)
tan 2x 3.函数 f(x)= 的定义域为( tan x
kπ A.xx∈R且x≠ 4 ,k∈Z
)
π B. xx∈R且x≠kπ+4,k∈Z π C. xx∈R且x≠kπ+2,k∈Z π D.xx∈R且x≠kπ-4,k∈Z

【答案】A
• 正切函数的性质
【例 1】 求函数 间.
【解题探究】 利用正切函数的定义域, 求出函数的定义域, 通过正切函数的周期公式求出周期,结合正切函数的单调增区 间求出函数的单调增区间.
π π y=tan2x+3 的定义域、周期和单调区
π π π 1 【解析】由 x+ ≠ +kπ,k∈Z,解得 x≠ +2k,k∈Z. 2 3 2 3
1 ∴定义域为 xx≠3+2k,k∈Z .
π 周期 T= =2. π 2 π π π π 由- +kπ< x+ < +kπ,k∈Z, 2 2 3 2 5 1 解得- +2k<x< +2k,k∈Z. 3 3
5 1 ∴函数的单调递增区间为-3+2k,3+2k ,k∈Z.
• 【方法规律】运用正切函数单调性比较大小 的方法 • (1)运用函数的周期性或诱导公式将角化到同 一单调区间内. • (2)运用单调性比较大小关系.

专题1.4.3 正切函数的性质与图象-20届高中数学同步讲义人教版(必修4)

专题1.4.3 正切函数的性质与图象-20届高中数学同步讲义人教版(必修4)

第一章 三角函数1.4.3 正切函数的性质与图象一、正切函数的性质 1.周期性由诱导公式可知,πtan πtan ,π,2()x x x x k k +=∈≠+∈R Z ,,因此 是正切函数的一个周期. 一般地,函数()(tan 0)y A x k A ωϕω=++≠的最小正周期π||T ω=.学科=网2.奇偶性正切函数的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,关于原点对称,由于()()()()sin tan cos x f x x x --=-=- ()sin tan cos xx f x x-==-=-,因此正切函数是 . 3.单调性和值域单位圆中的正切线如下图所示.利用单位圆中的正切线研究正切函数的单调性和值域,可得下表:角xππ022-→→ π3ππ22→→正切线AT 0-∞→→+∞ 0-∞→→+∞tan x增函数 增函数由上表可知正切函数在ππ(,)22-,π3π(,)22上均为增函数,由周期性可知正切函数的增区间为π(π,2k -+ ππ)()2k k +∈Z .此外由其变化趋势可知正切函数的值域为(,)-∞+∞或R ,因此正切函数 最值. 二、正切函数的图象利用正切线作出函数ππtan ,(,)22y x x =∈-的图象(如图). 作法如下:(1)作直角坐标系,并在y 轴左侧作单位圆.(2)把单位圆右半圆分成8等份,分别在单位圆中作出正切线. (3)描点.(横坐标是一个周期的8等分点,纵坐标是相应的正切线) (4)连线.根据正切函数的周期性,把上述图象向左、右扩展,就可以得到正切函数tan ,y x x =∈R ,且ππ(2x k k ≠+∈Z)的图象,我们把它叫做正切曲线(如图).正切曲线是被相互平行的直线ππ()2x k k =+∈Z 所隔开的无穷多支曲线组成的.K 知识参考答案:一、1.π 2.奇函数 3.没有K —重点 正切函数的性质与图象K —难点 正切函数的性质的应用,正切函数的图象的应用 K —易错不能正确利用正切函数的图象与性质解题1.正切函数的性质熟练掌握正切函数tan ,y x x =∈R 的性质: (1)定义域:π{|,π,}2x x x k k ∈≠+∈R Z ; (2)值域:R ;学-科网 (3)最小正周期:π; (4)奇偶性:奇函数; (5)单调性:在每一个开区间π(π,2k -+ππ)()2k k +∈Z 内均为增函数. 【例1】下列函数中,最小正周期为π2的是 A .y =sin(2x -π3) B .y =tan(2x -π3) C .y =cos(2x +π6)D .y =tan(4x +π6)【答案】B【解析】函数y =tan(2x -π3)的最小正周期T =π2,故选B .【例2】求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.【解析】由π33x -ππ2k ≠+得π5π318k x ≠+(k ∈Z ), 所以所求函数的定义域为π5π{|,318k x x x ∈≠+R 且,k ∈Z }; 值域为R ;函数πtan(3)3y x =-的定义域不关于原点对称,因此该函数既不是奇函数又不是偶函数;正切函数tan y x =在区间π(π,2k -+ππ)()2k k +∈Z 上为增函数, 因此令πππ323k x -+<-ππ2k <+,解得ππ183k x -+<5ππ183k <+()k ∈Z , 即函数πtan(3)3y x =-的单调递增区间为ππ5ππ(,)()183183k k k -++∈Z .【易错启示】正切函数是奇函数,但是函数()tan y x ωϕ=+一般不具有奇偶性, 需要先求出定义域,再进行判断.【名师点睛】(1)正切函数tan y x =的定义域为π{|,π,}2x x x k k ∈≠+∈R Z ,这是解决正切函数相关问题首先要关注的地方.(2)求函数(n )ta y A x ωϕ=+的单调区间时,将x ωϕ+视为整体,代入函数tan y x =的单调区间即可,注意,A ω的符号对单调区间的影响. 2.正切函数的性质的应用(1)利用正切函数的单调性比较两个正切值的大小,实际上是将两个角利用函数的周期性或诱导公式放在一个单调区间内比较大小.(2)三角函数与二次函数的综合问题,一般是研究函数的值域或最值,求解方法是通过换元或整体代换将问题转化为二次函数型的函数值域问题,对于新引入的元或整体,要注意其范围的变化. 【例3】比较下列各组数的大小: (1)13πtan4与17πtan 5; (2)tan1,tan 2,tan 3,tan 4.【名师点睛】(1)比较三角函数值的大小,主要利用函数单调性及单位圆,有时可以利用引进中间量等方法.(2)有关正切函数值大小的比较,一般将角化到同一单调区间内,再利用函数的单调性处理. 【例4】求函数y =-tan 2x +10tan x -1,x ∈[π4,π3]的值域.【解析】由x ∈[π4,π3],得tan x ∈[1,3],令tan x =t ,则t ∈[1,3].∴y =-tan 2x +10tan x -1=-t 2+10t -1=-(t -5)2+24. 由于1≤t ≤3, ∴8≤y ≤103-4,故函数的值域是[8,103-4].【名师点睛】利用换元法求解问题时,往往容易忽视元的范围的变化,导致错解.如该题,如果不注意元的取值范围的限制,直接求解二次函数的值域,显然就会扩大所求函数的值域而得到错解. 3.正切函数的图象及其应用 (1)tan y x =的周期性:函数sin y x =及cos y x =的周期是其对应函数sin ,cos y x y x ==周期的一半,而函数tan y x =的图象是把tan y x =在x 轴下方的图象翻折到x 轴上方,但其周期与tan y x =的周期相等,均为π. (2)解三角不等式的方法一般有两种:学-科网一是利用三角函数线,借助于单位圆在直角坐标系中找出角的区域,再求出不等式的解集;二是利用三角函数图象,先在一个周期内求出x 的范围,再在整个定义域上求出不等式的解集.利用正切函数的图象求角的范围时,主要是利用其单调性.这是数形结合思想方法的一个具体应用. 【例5】作出函数y =|tan x |的图象,并根据图象求其最小正周期和单调区间. 【答案】B【解析】y =|tan x |=⎩⎨⎧tan x ,x ∈⎣⎡⎭⎫k π,k π+π2k ∈Z -tan x ,x ∈⎝⎛⎦⎤k π-π2,k πk ∈Z ,其图象如图所示.由图象可知,函数y =|tan x |的最小正周期T =π,单调增区间的⎣⎡⎭⎫k π,k π+π2(k ∈Z );单调减区间为⎝⎛⎦⎤k π-π2,k π(k ∈Z ). 【名师点睛】要作出函数y =|tan x |的图象,可先作出y =tan x 的图象,然后将其在x 轴上方的图象保留,而将其在x 轴下方的图象翻到上方(即作出其关于x 轴对称的图象),就可得到y =|tan x |的图象. 【例6】求下列函数的定义域: (1)函数y =tan x +1+lg(1-tan x );(2)函数y =tan(sin x ).(2)∵对任意x ∈R ,-1≤sin x ≤1, ∴函数y =tan(sin x )总有意义, 故函数y =tan(sin x )的定义域为R . 4.正确利用函数性质求解【例7】若函数y =tan(2x +θ)的图象的一个对称中心为(π3,0),且-π2<θ<π2,则θ的值是________. 【错解】因为函数y =tan x 的图象的对称中心为(k π,0),其中k ∈Z ,所以2x +θ=k π,其中x =π3.所以θ=k π-2π3,k ∈Z .由于-π2<θ<π2,∴k =1时,θ=π-2π3=π3.【错因分析】错解主要是误认为正切函数图象的对称中心的坐标是(k π,0)(其中k ∈Z ),但由正切函数的图象发现:点(k π+π2,0)(其中k ∈Z )也是正切曲线的对称中心,因此正切函数图象的对称中心的坐标是(k π2,0)(其中k ∈Z ). 【答案】-π6或π3.【正解】易知函数y =tan x 的图象的对称中心为(k π2,0),其中k ∈Z ,所以2x +θ=k π2,其中x =π3,即θ=k π2-2π3,k ∈Z .因为-π2<θ<π2,所以当k =1时,θ=-π6;当k =2时,θ=π3.即θ=-π6或π3.1.函数y =tan x 在其定义域上的奇偶性是 A .奇函数 B .偶函数C .既奇且偶的函数D .非奇非偶的函数2.函数y =tan (π2–x )(ππ044x x ⎡⎤∈-≠⎢⎥⎣⎦,且)的值域为 A .[–1,1] B .[–1,+∞)C .(–∞,1)D .(–∞,–1]∪[1,+∞)3.函数πtan 24y x ⎛⎫=- ⎪⎝⎭的定义域是A .πππ3π2828k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,B .π3πππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,C .ππππ2424k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,D .π5πππ44k k k ⎛⎫++∈ ⎪⎝⎭Z ,,4.函数t =tan (3x +π3)的图象的对称中心不可能是 A .(–π9,0) B .(π18,0)C .π018⎛⎫- ⎪⎝⎭,D .5π018⎛⎫- ⎪⎝⎭, 5.函数πtan 4y x ⎛⎫=- ⎪⎝⎭的单调递增区间为A .()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,B .(k π,k π+π)(k ∈Z )C .()3ππππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,D .()π3πππ44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,6.下列关于函数y =tan (x +π3)的说法正确的是 A .在区间(–π6,5π6)上单调递增 B .最小正周期是π C .图象关于点(π4,0)成中心对称 D .图象关于直线x =π6成轴对称 7.函数f (x )=tan x 在ππ34⎡⎤-⎢⎥⎣⎦,上的最小值为___________.8.已知ππ2α⎛⎫∈ ⎪⎝⎭,,且1+tan α≥0,则角α的取值范围是___________.9.函数f (x )=5tan (3x +π4)+2的最小正周期T =___________. 10.函数y =3tan (2x +π3)的最小正周期为___________. 11.观察正切曲线,满足条件tan x >1的x 的取值范围是___________. 12.求函数y =tan (π–23x )的定义域、单调区间和对称中心.学-科网13.根据三角函数图象,写出满足下列条件的x 的取值范围.(1)-32<cos x <0;(2)3tan x -3≥0.14.下列各式中正确的是A .tan47π>tan 37π B .tan (–134π)<tan (–175π) C .tan4>tan3D .tan281°>tan665°15.直线y =–1与y =tan x 的图象的相邻两个交点的距离是A .π2B .πC .2πD .与a 的值的大小有关16.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的大致图象是17.已知函数y =tan(2x +φ)的图象过点(π12,0),则φ可以是A .-π6B .π6C .-π12D .π1218.函数y =tan (sin x )的值域为A .[–π4,π4] B .[–22,22]C .[–tan1,tan1]D .以上均不对19.判断函数f (x )=lg tan x +1tan x -1的奇偶性.20.设函数()πtan 23x f x ⎛⎫=- ⎪⎝⎭.(1)求函数f (x )的定义域和最小正周期; (2)求f (x )的单调增区间; (3)求不等式–1≤f (x )≤3的解集.21.求函数y =tan (3x –π3)的定义域、值域,并指出它的周期性、奇偶性、单调性.22.若函数f (x )=tan 2x -a tan x (|x |≤π4)的最小值为-6,求实数a 的值.23.已知函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=. (1)求f (x )的最小正周期和单调递减区间; (2)试比较()πf 与3π2f ⎛⎫⎪⎝⎭的大小.1 2 3 4 5 6 14 15 16 17 18 ADACDBCBAAC1.【答案】A【解析】正切函数y =tan x 的定义域是(–π2+k π,π2+k π)k ∈Z ,定义域关于原点对称,且对于定义域内的任意x ,满足f (–x )=tan (–x )=–tan x =–f (x ),所以函数y =tan x 在其定义域上是奇函数.故选A .3.【答案】A【解析】πtan 24y x ⎛⎫=- ⎪⎝⎭=–tan (2x –π4),要使原函数有意义,则ππππ2π242k x k -+<-<+,解得ππ3ππ8282k k x -+<<+,k ∈Z ,∴函数πtan 24y x ⎛⎫=- ⎪⎝⎭的定义域是πππ3π2828k k k ⎛⎫-+∈ ⎪⎝⎭Z ,,,故选A . 4.【答案】C【解析】因为正切函数y =tan x 图象的对称中心是(π2k ,0),k ∈Z .令3x +ππ32k =,解得x =ππ–69k ,k ∈Z ;所以函数y =tan (3x +π3)的图象的对称中心为(ππ–69k ,0),k ∈Z ;当k =0、1、–1时,得ππ–69k =–π9、π18、–5π18,所以A 、B 、D 选项是函数图象的对称中心.故选C . 5.【答案】D【解析】对于函数πtan 4y x ⎛⎫=- ⎪⎝⎭,令k π–π2<x –π4<k π+π2,求得k π–π4<x <k π+3π4,可得函数的增区间为(k π–π4,k π+3π4),故选D .7.【答案】3-【解析】由于函数f (x )=tan x 在(–π2,π2)上单调递增,故函数f (x )=tan x 在ππ34⎡⎤-⎢⎥⎣⎦,上单调递增,故当x =–π3时,函数f (x )取得最小值为–3,故答案为:3-. 8.【答案】[3π4,π) 【解析】1+tan α≥0,∴tan α≥–1,解得–π4+k π≤α<π2+k π,k ∈Z .又α∈(π2,π),∴3π4≤α<π,即α的取值范围是[3π4,π).故答案为:[3π4,π). 9.【答案】π3【解析】根据正切函数的图象与性质得:函数f (x )=5tan (3x +π4)+2的最小正周期为:T =ππ3ω=.故答案为:π3. 10.【答案】2π【解析】函数y =3tan (2x +π3)的最小正周期为:T =ππ12ω==2π.故答案为:2π. 11.【答案】(ππ4k +,ππ2k +),k ∈Z 【解析】观察正切曲线:当tan x =1时,x =ππ4k +,k ∈Z ,由tan x >1,可得ππππ42k x k +<<+.故答案为:(ππ4k +,ππ2k +),k ∈Z .12.【解析】对于函数y =tan (π–23x ), 令12x –π3≠k π+π2,k ∈Z , 解得x ≠2k π+5π3,k ∈Z ,故函数y 的定义域为{x |x ≠2k π+5π3,k ∈Z }. 令k π–ππ–223x <<k π+π2,k ∈Z , 解得2k π–π3<x <2k π+5π3,k ∈Z , 故函数y 的单调增区间为(2k π–π3,2k π+5π3),k ∈Z ;无单调减区间. 令ππ–232x k =,k ∈Z , 求得x =k π+2π3,k ∈Z , 故函数y 图象的对称中心为(k π+2π3,0),k ∈Z . 13.【解析】(1)如图所示.由图象可知,满足不等式的x 的取值范围为(2k π+π2,2k π+5π6)∪(2k π+7π6,2k π+3π2),k ∈Z .(2)如图所示.由3tan x -3≥0,得tan x ≥33. 由图象可知,满足不等式的x 的取值范围为[π6+k π,π2+k π),k ∈Z .14.【答案】C【解析】函数y =tan x 在(–π2,π2)上单调递增.A ,tan 47π=tan (–37π),∴tan 47π<tan 37π,故A 错误.B ,tan (–134π)=tan (–π4),tan (–175π)=tan (–2π5),则tan (–134π)>tan (–175π),故B 错误.C ,tan4=tan (4–π),tan3=tan (3–π),则tan (4–π)>tan (3–π),即tan4>tan3,故C 正确.D ,tan281°=tan (–79°),tan665°=tan (–55°),则tan281°<tan665°,故D 错误,故选C . 15.【答案】B【解析】直线y =–1与y =tan x 的图象的相邻两个交点的距离正好等于y =tan x 的一个周期,即直线y =–1与y =tan x 的图象的相邻两个交点的距离为π,故选B .学-科网 16.【答案】A【解析】∵函数y =tan ⎝⎛⎭⎫12x -π3的最小正周期为2π,因此可排除B 、D ,选项C 中,当x =π3时,y ≠0,因此排除C ,故选A . 17.【答案】A【解析】解法一:验证:当φ=-π6时,2x +φ=2×π12-π6=π6-π6=0,∴tan(2x +φ)=0,满足题意,故φ可以是-π6.解法二:由题意,得2×π12+φ=k π(k ∈Z ),∴φ=k π-π6(k ∈Z ),令k =0时,φ=-π6,故φ可以是-π6.18.【答案】C【解析】∵–1≤sin x ≤1,且函数y =tan t 在t ∈[–1,1]上是单调增函数,∴tan (–1)≤tan t ≤tan1,即–tan1≤tan (sin x )≤tan1,∴函数y =tan (sin x )的值域为[–tan1,tan1].故选C . 19.【解析】由tan x +1tan x -1>0,得tan x >1或tan x <-1.故函数f (x )的定义域为(k π-π2,k π-π4)∪(k π+π4,k π+π2)(k ∈Z ).又f (-x )+f (x )=tan()1lg tan()1x x -+--+lg tan x +1tan x -1=tan 1tan 1lg()tan 1tan 1x x x x -+⋅+-=0,即f (-x )=-f (x ).∴f (x )为奇函数.(3)由题意,k π–π4≤π23x -≤k π+π3, 可得不等式–1≤f (x )≤3的解集π4π{|2π2π}63x k x k k +≤≤+∈Z ,. 21.【解析】由ππ3π32x k -≠+,解得π5π318k x ≠+,k ∈Z ; ∴所求的定义域为π5π{|}318k x x x k ∈≠+∈R Z ,且,; 函数的值域为R , 周期为T =ππ3ω=, f (x )的定义域不关于原点对称,∴f (x )是非奇非偶的函数; 令–π2+k π<3x –ππ32<+k π,k ∈Z , 解得–π18+π3k <x <5π18+π3k ,k ∈Z , ∴函数y 在区间()πππ5π318318k k k ⎛⎫-+∈ ⎪⎝⎭Z ,上是增函数.③若a2≥1,即a ≥2时,二次函数在[-1,1]上单调递减,∴y min =1-a =-6, ∴a =7,综上所述,a =-7或7. 23.【解析】(1)∵()ππ3tan()3tan()6446x x f x =-=--, ∴函数的最小正周期为4πT =. 由πππππ,2462x k k k -<-<+∈Z ,得4π8π4π4π,33k x k k -<<+∈Z , ∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调增区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,∴函数()π3tan 64x f x ⎛⎫-⎪⎝⎭=的单调减区间为4π8π4π,4π,33k k k ⎛⎫-+∈ ⎪⎝⎭Z ,(2)()πππππ3tan 3tan 3tan 641212f ⎛⎫⎛⎫=-=-=-⎪ ⎪⎝⎭⎝⎭,3ππ3π5π5π3tan 3tan 3tan 2682424f ⎛⎫⎛⎫⎛⎫=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵π5ππ012242<<<, ∴π5πtan tan1224<,∴π5π3tan3tan 1224->-,即()3ππ2f f ⎛⎫> ⎪⎝⎭.【思路分析】(1)将函数化为()π3tan()46x f x =--,然后根据正切函数的周期和单调性求解. (2)由题意可得()π3π5ππ3tan,3tan 12224f f ⎛⎫=-=- ⎪⎝⎭,根据函数tan y x =在区间π0,2⎛⎫⎪⎝⎭上的单调性可得π5πtantan 1224<,从而可得()3ππ2f f ⎛⎫> ⎪⎝⎭.【名师点睛】解决函数()tan()f x A x ωϕ=+有关问题的思路:(1)采用整体代换的解题方法,即把x ωϕ+看作一个整体,然后根据正切函数的有关性质求解. (2)解题时要注意参数,A ω的符号对解题结果的影响,特别是解决与单调性有关的问题时一定要注意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 (1) 2 4 (1)
(2)2
(2)
题型三
【例 3】 求下列函数的最小正周期: ( 1) y=- tan x 3 ;
求周期
ቤተ መጻሕፍቲ ባይዱ
3
5
( 2) y=| tan x| . 分析: ( 1) 利用 T= 求解; ( 2) 画出函数图象利用图象法求解.
|ω|
解: ( 1) ∵ ω= , ∴ 最小正周期 T= = 3.
内都是增函数。
kπ , ( ,0) k Z 2
对称轴呢?
典型例题
例1.求函数y= tan(

2
x

3
)的定义域、周期和单调区间。
5 定义域: x x 2k , k 3
周期:T 2
5 1 单调增区间: +2k , 2k , k 3 3
y tan x

正切函数的图象
3 2

0
y
3 2

2


3 2
o
x
问题4、正切函数 y
= tanx 的单调性。

2 k ,
正切函数在开区间(问题5、正切函数 y

= tanx
2 的值域。
k ), k 内都是增函数.
值域为R
正 切 函 数 图 像
性质 :
预习自测 1 (1) x k x k , k (2) x x k , k 2 (3) x k x k , k 2 k 2 x x , k 3 6
x k x k , k 2
x x k , k
x k x k , k 2
预习自测
2. tan3x的定义域
k , k x x 3 6
预习自测
作图
3 8

4
, 8

8
, 4
3 , 8
o
3 0 2 8 4 8
8
4
3 8
2
作图(-

4
, 1), (0, 0), (

4
,1), x -

2
,x

2
y
1
3 2



2
-1
0
2

3 2
x
正切曲线是由被相互平行的直线 x k (k Z ) 2 所隔开的无穷多支曲线组成的。 三点两线法作图
|ω|
(1)正切函数的图象
(2)正切函数的性质:
定义域: x | x k , k Z 2
3 2


2


值域: 全体实数R
3 2
正切函数是周期函数, 周期性: 最小正周期T= 奇函数, 奇偶性:

k , k , k Z 正切函数在开区间 2 单调性: 2 内都是增函数。
3 变式:求函数y tan(2 x )的定义域、周期和单调区间。 4
5 k 定义域: , k x x 8 2 周期:T = 2 k 5 k 单调减区间: + , , k 2 8 2 8
预习自测
1.(1) tan x 0 (2) tan x 0 (3) tan x 0
⑴ 定义域: ⑵ 值域: ⑶ 周期性: ⑷ 奇偶性: ⑸ 单调性:
渐 近 线
渐 近 线

R
{x | x k, k Z} 2
奇函数,图象关于原点对称。
在每一个开区间 (

(6)渐近线方程: (7)对称中心
2 x k , k Z 2
k ,

2
kZ k ) ,
Y
x , , 2 2
的图

( , tan )
3 3
A
0
3
X
x , 的图像: 利用正切线画出函数 y tan x , 2 2
作法: (1) 等分: (2) 作正切线 (3) 平移 (4) 连线 把单位圆右半圆分成8等份。
3.诱导公式:
正切函数 y tan x
问: 1)正切函数的图像是什么样?
2)它又有哪些性质呢?
正切函数的图像和性质 问题1、正切函数 y
= tanx 是否为周期函数?(周期性)
∵f x +π = tan x +π = tanx f x

y = tanx 是周期函数,最小正周期为 .
k 3. (1) y tan 2 x, x ( k ) 4 2
x (2) y 5 tan , x (2k 1) ( k ) 2

预习自测
4. (1) tan138 ____ tan143


13 17 (2) tan( ) ____ tan( ) 4 5
T
?

1、利用正切函数的定义,说出正切函数的定义域; y 的终边不在y轴上 tan x 0 x
k

2
k z
2、利用周期函数的定义及诱导公式,推导正切函数 的最小正周期;
tan( x) tan x 是y tan x的周期;
正切函数的图像和性质 问题3、正切函数 y
3 2

0
回顾: 1.如何作正弦函数的图像? 2.如何研究正弦函数,余弦函数的性质? y y=sinx
1 -6 -5 -4 -3 -2 - o -1 y 1 -6 -5 -4 -3 -2 - -1 2 3 4 5 6 x
y=cosx
2 3 4 5 6 x
3
3
( 2) 函数 y=| tan x| 的图象是将函数 y= tan x 图象 x 轴下方的图象沿 x 轴翻折 上去, 其余不变, 如图所示.
由图知函数 y=| tan x| 的最小正周期为 π. 反思: 函数 y= Atan(ωx+ φ) 与函数 y=| Atan(ωx+ φ)| (A≠0, ω≠0)的最小正周期均为 T= .
= tanx 的奇偶性。
定义域为 x x k , k ,关于原点对称 2 f ( x) tan( x) tan x f ( x) f ( x)为奇函数
正切函数的图像和性质
如何利用正切线画出函数 像?
角 的终边 3 T
y tan x
相关文档
最新文档