八年级上数学课堂作业本答案

合集下载

2020八年级上数学课堂作业本答案

2020八年级上数学课堂作业本答案

2020八年级上数学课堂作业本答案第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查[3.4]5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1保3330保3334=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后实行调查,调查的问题能够是平均每天上网的时间、内容等【4.2】1.22.2,不准确,因为样本容量太小3.C4.120千瓦2时5.8保叮玻堤猓ǖ冢堤猓(第6题)6.小王得分7035+5033+803210=66(分).同理,小孙得74保捣郑小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1保玻ㄆ椒交罚.八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161保担悖恚162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为9保赌辏众数为8年,中位数为8保的辏灰遥浩骄数为9保矗福胺值模甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这个角度看,乙组成绩更好(2)甲公司使用了众数,乙公司使用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差别大,乙组成员成绩差别较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选择的样本具有代表性7.(1)3.平均数为14保此辏中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2保6.D7.A8.A9.10,32004年(万元)5保保勃保叮勃保叮福310.不准确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6保担唱保埃唱保埃保保3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度实行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提升,但差别拉大(2)甲应增强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7保担乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)1保盖Э (2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不,只要分析有道理即可1.①⑥ 2.C。

八年级上册数学作业本(1)(2)全部答案。浙江教育出版社。详细

八年级上册数学作业本(1)(2)全部答案。浙江教育出版社。详细

八年级上册数学作业本(1)(2)全部答案。

浙江教育出版社。

详细第3章直棱柱【3.1】1.直,斜,长方形(或正方形)2.8,12,6,长方形3.直五棱柱,7,10,34.B5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形状、面积完全相同的长方形(2)9条棱,总长度为(6a+3b)cm7.正多面体顶点数(V)面数(F)棱数(E)V+F-E正四面体4462正六面体86122正八面体68122正十二面体2012302正二十面体1220302符合欧拉公式【3.2】(第6题)1.C2.直四棱柱3.6,74.(1)2条(2)槡55.C6.表面展开图如图.它的侧面积是(1 5+2+2.5)×3=18(cm2);它的表面积是18+12×1 5×2×2=21(cm2)【3.3】1.②,③,④,①2.C参考答案533.圆柱圆锥球从正面看长方形三角形圆从侧面看长方形三角形圆从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图(第5题)(第6题)【3.4】1.立方体、球等2.直三棱柱3.D 4.长方体.1 5×3×0 5×3×4=27(cm2)5.如图(第5题)(第6题)6.这样的几何体有3种可能.左视图如图复习题1.C2.15,5,103.直三棱柱(第7题)4.b5.B6.B7.示意图如图8.D9.(1)面F(2)面C(3)面A 10.蓝,黄11.如图(第11题)第4章样本与数据分析初步【4.1】1.抽样调查2.D3.B4.(1)抽样调查(2)普查(3)抽样调查5.不合理,可从不同班级中抽取一定数量的男女生来调查6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦?时5.8 625题6.小王得分70×5+50×3+80×210=66(分).同理,小孙得74 5分,小李得65分.小孙得分最高【4.3】1.5,42.B3.C4.中位数是2,众数是1和2义务教育课程标准实验教材作业本数学八年级上545.(1)平均身高为161cm(2)这10位女生的身高的中位数、众数分别是161 5cm,162cm(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的女生,直至挑选到40人为止6.(1)甲:平均数为9 6年,众数为8年,中位数为8 5年;乙:平均数为9 4年,众数为4年,中位数为8年(2)甲公司运用了众数,乙公司运用了中位数(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定【4.4】1.C2.B3.24.S2=25.D6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多7.(1)平均数中位数众数标准差2004年(万元)5 12 62 68.32006年(万元)6 53 03 011.3(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可).如从平均数、中位数、众数角度看,2006年居民家庭收入比2004年有较大幅度提高,但差距拉大【4.5】1.方差或标准差2.4003.(1)1 8千克(2)27000元4.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差1 2(平方环).八年级二班投中环数的同学的投飞标技术比较稳定5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于80分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因此,乙组成绩中高分居多.从这一角度看,乙组成绩更好6.(1)x甲=15(cm),S2甲=23(cm2);x乙=15(cm),S2乙=353(cm2).S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、舒服7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实际水平,用1700元或1600元表示更合适复习题1.抽样,普查2.方案④比较合理,因选取的样本具有代表性3.平均数为14 4岁,中位数和众数都是14岁4.槡25.2 86.D7.A8.A9.10,310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中上水平,要看他的成绩是否大于中位数11.(1)三人的加权平均分为甲29520分;乙31820分;丙30720分,所以应录用乙(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验12.(1)表中甲的中位数是7 5,乙的平均数、中位数、投中9个以上次数分别是7,7,0(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出参考答案55甲的成绩较好,且甲的成绩呈上升的趋势(3)答案不唯一,只要分析有道理即可第5章一元一次不等式【5.1】1.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x-7<5(3)5+x≤3x(4)m2+n2≥2mn3.(1)<(2)>(3)<(4)>(5)>4.(第4题)5.C6.(1)80+16x<54+20x(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明【5.2】1.(1)(2)×(3)(4)×(5)2.(1)≥(2)≥(3)≤(4)≥(5)≤(6)≥3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3 (3)x≥2,不等式的基本性质2(4)y<-13,不等式的基本性质34.-4x+3>-45y+35.a≥26.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则5×0 6y≤0 6x<0 6y,∴45y≤x<y【5.3(1)】1.①⑥2.C3.(1)x>3(2)x<-3(3)无数;如x=9,x 槡=3,x=-38等(4)x≥ 槡-24.(1)x≥1(2)x<45.x>2.最小整数解为36.共3组:0,1,2;1,2,3;2,3,47.a<-32【5.3(2)】1.(1)x≤0(2)x<43(3)x<32.(1)x>2(2)x<-73.(1)x≤5(2)x<-34.解不等式得x<72.非负整数解为0,1,2,35.(1)x<165(2)x<-16.(1)买普通门票需540元,买团体票需480元,买团体票便宜(2)设x人时买团体票便宜,则30x>30×20×0 8,解得x>16.所以17人以上买团体票更便宜【5.3(3)】1.B2.设能买x支钢笔,则5x≤324,解得x≤6445.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以30 座的客车至多租6辆4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加工服装200套5.设小颖家这个月用水量为x (m3),则5×1 5+2(x-5)≥15,解得x≥义务教育课程标准实验教材作业本数学八年级上568 75.至少为8 75m6.(1)140-11x9(2)设甲厂每天处理垃圾x时,则550x+495×140-11x≤7370,解得x≥6.甲厂每天至少处理垃圾6时7.(1)设购买钢笔x (x>30)支时按乙种方式付款便宜,则30×45+6(x-30)>(30×45+6x)×0 9,解得x>75(2)全部按甲种方式需:30×45+6×10=1410(元);全部按乙种方式需:(30×45+6×40)×0 9=1431(元);先按甲种方式买30台计算器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30×45+6×10×0 9=1404(元).这种付款方案最省钱【5.4(1)】1.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解3.(1)1≤x<4(2)x>-14.无解5.C6.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤10.在9千米到10千米之间,不包含9千米,包含10千米7.(1)-3<a≤-1(2)4【5.4(2)】1.3x-2>0,12(3x-2)×4≤烅烄烆20,解得3<x≤42.24或353.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答对了21题4.设电脑的售价定为x元,则x-3000>10%x,x-3000≤20%x{,解得333313<x≤3750.所以商店应确定电脑售价在3334至3750元之间5.设该班在这次活动中计划分x 组,则3x+10≥5(x-1),3x+10≤5(x-1)+1{,解得7≤x≤7.5.即计划分7个组,该班共有学生31人6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得0≤x≤2 5.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;②购A型1台,B型9台;③购A型2台,B型8台7.(1)x>2或x<-2(2)-2≤x≤0复习题1.x<122.7cm<x<13cm3.x≥24.825.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x28.(1)x>72(2)x≥1119.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥311.-2<x<112.设小林家每月“峰电”用电量为x千瓦时,则0 56x+0 28(140-x)≤0 53×140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰谷电”比较合算13.m≥214.设这个班有x名学生,则x-12x+14x+17()x <6,解得x<56.∵x是2,4,7的倍数,∴x=28.即这个班共有28名学生15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得9x+4(50-x)≤360,3x+10(50-x)≤290{,解得30≤x≤32,即甲种鱼苗的投放量应控制在30吨到32吨之间(包含30吨与32吨)参考答案57第6章图形与坐标【6.1】1.C2.(3,3)3.(1)东(北),350(350),北(东),350(350)(2)4954.A(2,1),C(4,0),D(4,3)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,3,4,5(2)略6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高气温是18℃。

数学作业本北师大版八上答案【六篇】

数学作业本北师大版八上答案【六篇】

【导语】这篇关于数学作业本北师⼤版⼋上答案【六篇】的⽂章,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助! 11.1.1三⾓形的边答案 基础知识 1~4:D;C;B;B;5、3;8、6、4和11、8、9和11、8、4 6、5;6;7 7、11或10 能⼒提升 8~11:B;B;C;C 12、(1)4为腰长,令⼀腰4,底=8,不合适则4为底, (16-4)÷2=12÷2=6 另外两边为6和6 (2)6为腰长,令⼀腰6,底=4,或6为底, (16-6)÷2=10÷2=5 (3)三边长都是整数,底为偶数,且底<2×腰长, 底<8底=2,4,6,腰=7,6,4 所以边长分别为:2、7、7;4、6、6;6、4、4 13、如图,连接AC、BD,其交点即H的位置。

根据两点之间线段最短,可知到四⼝油井的距离之和HA+HB+HC+HD最⼩。

理由:如果任选H′点(如图),由三⾓形三边关系定理可知, HA+HB+HC+HD=AC+BD<H′A+H′B+H′C+H′D 11.1.2三⾓形的⾼、中线与⾓平分线答案 基础知识 1~4:A;A;A;B 5、(1)AB (2)CD (3)FE (4)3;3 6、∠BAE=∠EAC;BF=FC 7、②③ 8、5 9、(1)因为AD是△ABC的中线,也就是说D是AC的中点,所以BD=CD △ABD的周长=AB+AD+BD,△ACD的周长=AC+AD+CD 所两个三⾓形的周长差就是AB-AC=5-3=2cm (2)三⾓形的⾯积=底×⾼÷2,因为两个三⾓形共⾼,⾼长都是AE的长度。

⼜因为两底有着BC=2CD的关系,所以S△ABC=2S△ACD 能⼒提升 10、设AB=x,BD=y ∵AB=AC;AD为中线 ∴BD=CD=y(三线合⼀定理) 由题意可知:x+x+y+y=34 x+y+AD=30 ∴AD=13cm 11、因为DE为中点 所以AD为△ABC的中线,BE为S△ABD的中线 所以S△ABD=1/2S△ABC,s△ABE=1/2S△ABD 所以S△ABE=1/4S△ABC=1cm2 12、(1)∵∠ACB=90°,BC=12cm,AC=5cm, ∴S△ABC=1/2*AC*BC=30cm² (2)∵CD是AB边上的⾼, ∴S□ABC=1/2*AB*CD ∵AB=13cm,S△ABC=30cm2 ∴CD=60/13cm 11.1.3三⾓形的稳定性答案 基础知识 12345 DCDBA 6、(1)√; (2)√; (3)× 能⼒提升 7、B 8、三⾓形具有稳定性 探索研究 9、四边形⽊架,⾄少要再钉上1根⽊条,使四边形变成两个三⾓形; 五边形⽊架,⾄少要再钉上2根⽊条,使四边形变成3个三⾓形; 六边形⽊架,⾄少要再钉上3根⽊条,使四边形变成4个三⾓形; n边形⽊架,⾄少要再钉上(n-3)根⽊条,使四边形变成(n-2)个三⾓形。

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。

(2) 无理数是不能表示为有理数的数。

(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。

(4) √2、π、e等都是无理数。

2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。

(2) 无理数是指不能表示为有理数的数,如√2、π、e等。

(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。

循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。

(4) 在实数轴上,0与正数、负数之间是有间隔的。

(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。

3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。

证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。

如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。

所以d=b,即a和b的最大公约数是b的约数。

(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。

证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。

则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。

同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。

(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。

因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。

二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。

八上数学作业本答案

八上数学作业本答案

八上数学作业本答案一、第一章1.1 整数及其运算1.1.1 整数及其概念整数包括正整数、零和负整数。

1.1.2 整数的比较当两个整数的绝对值相等时: - 若两个整数同号,则较大的整数值较大。

- 若两个整数异号,则负整数值较大。

1.1.3 整数的运算整数的基本运算包括加法、减法、乘法和除法。

1.1.3.1 加法两个整数相加的运算规则是,同号两数相加得同号,异号两数相加取绝对值较大者,结果符号与较大值相同。

例如: (-5) + (-3) = -8; (-5) + 3 = -2; 5 + 3 = 8。

1.1.3.2 减法两个整数相减的运算规则是,减去一个负数等于加上一个正数。

例如: 5 - (-3) = 5 + 3 = 8。

1.1.3.3 乘法两个整数相乘的运算规则是,同号两数相乘为正,异号两数相乘为负。

例如: (-5) * (-3) = 15; (-5) * 3 = -15; 5 * 3 = 15。

1.1.3.4 除法两个整数相除的运算规则是,除法的运算结果只能是商。

若被除数和除数同号,则商为正;若被除数和除数异号,则商为负。

例如: (-15) ÷ (-3) = 5; (-15) ÷ 3 = -5; 15 ÷ 3 = 5。

1.1.4 整数的拓展运算整数的拓展运算包括幂运算和混合运算。

1.1.4.1 幂运算整数的幂运算表示多个相同的因数的连乘积。

例如:23=2∗2∗2=8。

1.1.4.2 混合运算混合运算是指包含多个不同运算符的运算。

例如: $2^3 \\times (4 - 2) = 8 \\times 2 = 16$。

二、第二章…(以下省略)以上是八下数学作业本的答案,希望对你的学习有所帮助。

八年级上册数学作业本答案

八年级上册数学作业本答案

八年级上册数学作业本答案第一章一、填空题1. 7502. 4583. 4624. 6355. 1256. 441二、选择题1. B2. C3. A4. D5. B三、解答题1. 解:首先根据题意,已知矩形的周长为72,设矩形的长为x,宽为y,则有2(x+y)=72。

同时,根据题意,已知矩形的面积是84,可以得到xy=84。

将第一个式子改写为x+y=36,然后将第二个式子改写为y=84/x,将y的值代入第一个式子中,得到下面的方程:x + 84/x = 36将方程改写为x² + 84 = 36x,化简得到x²-36x+84=0,再进一步化简得到(x-6)(x-14)=0。

由此可得x=6或x=14,代入可得相应的y值。

2. 解:设那个数为x,则根据题意可得出方程3x + 8 = 20x - 160。

化简方程得到17x = 168,然后将方程两边同除以17,得到x = 9.88。

所以那个数为9.88。

3. 解:根据题意,可以得到一个方程x + (x-2) + (x-4) + (x-6) = 38。

化简方程得到4x - 12 = 38,进一步化简得到4x = 50,然后将方程两边同除以4,得到x = 12.5。

所以第一个整数为12.5,第二个整数即为12.5 - 2 = 10.5。

第三个整数为10.5 - 2 = 8.5,第四个整数为8.5 - 2 = 6.5。

4. 解:首先需要根据题意,计算出菱形每条边的长度。

根据勾股定理,可以得到2x² = 24²,然后可以解得x = 12。

接下来,要计算菱形的面积。

根据公式S = ½ x d1 x d2,d1和d2分别表示菱形的对角线的长度。

在这个题目中,我们已经知道菱形的边长为12,所以对角线的长度可以根据勾股定理计算出来:d² = 12² + 12²,然后可以解得d = 12√2。

人教版八年级上册数学作业本答案完整版

人教版八年级上册数学作业本答案完整版

参考答案第十一章 三角形11.1与三角形有关的线段11.1.1三角形的边1.(1)3;әA B C,әA B D,әA D C(2)A B,B D,A D;A,B,D(3)øA D C,øD C A,øC A D2.(1)3(2)123.(1)> (2)> (3)> (4)<4.(1)能.理由略(2)不能.理由略(3)能.理由略(4)不能.理由略5.a=5c m或7c m,周长为17c m或19c m6.35c m的长铁条合适,10c m的长铁条不合适.理由略11.1.2三角形的高㊁中线与角平分线11.1.3三角形的稳定性1.略2.(1)4c m2(2)30ʎ(3)2.4c m3.(1)D (2)B4.14c m5.(1)C D,B C(2)әA B C,әA B E,әA E C(3)әD B C,әD B E,әD E C6.25ʎ,25ʎ*7.(1)S1=S2.理由略(2)S3=S5,因为S3+S6=S5+S6=12S(3)S7=S8=S9=S10=S11=S1211.2与三角形有关的角11.2.1三角形的内角(1)1.(1)180ʎ,75ʎ(2)30ʎ,60ʎ,90ʎ2.(1)77ʎ(2)70ʎ3.33ʎ4.ø2=50ʎ,øB=50ʎ,øA C B=90ʎ5.(1)120ʎ(2)1256.øA B P=30ʎ+25ʎ=55ʎ,øB A P=80ʎ11.2.1三角形的内角(2)1.302.(1)3(2)43.D4.115ʎ5.42ʎ6.R tәA B D,R tәA C D,R tәA D E.理由略11.2.2三角形的外角1.C2.60ʎ3.145ʎ4.(1)øA B C=90ʎ,øC=45ʎ(2)40ʎ,50ʎ,90ʎ5.40ʎ.理由:ø3=ø2+180ʎ-140ʎ6.74ʎ*7.øC A D=30ʎ,øA E D=80ʎ,øE A D=10ʎ11.3多边形及其内角和11.3.1多边形1.(1)首尾顺次相接,n边形(2)顶点,对角线,n(n-3)2(3)相等,相等2.1;øB C D;2;øD C E,øB C F3.略4.①④5.(1)⑤ (2)①ˑ ②ˑ ③6.(1)图略,3,4(2)4,5,5,6(3)n-3,n-211.3.2多边形的内角和1.(1)720ʎ(2)八(3)45ʎ2.53.36ʎ,72ʎ,108ʎ,144ʎ4.1165.116.160ʎ复习题1.A B C,A D E2.①3.1,图略4.125.62ʎ,118ʎ6.(1)由A CʅB C,得ø1+øB C D=90ʎ,又因为ø1=øB,所以øB+øB C D=90ʎ,所以C D是әA B C的高(2)2c m7.118.øA E B=øC.理由略9.(1)26ʎ(2)略10.(1)øI=90ʎ+12øA,øO=12øA,øP=90ʎ-12øA.理由略(2)125ʎ,35ʎ,55ʎ11.(1)19,0(2)0<x<19第十二章 全等三角形12.1全等三角形1.(1) (2)ˑ (3)ˑ (4)2.C,øA,A C3.97,104.B C与D E,A C与A E,øB A C与øD A E,øC与øE5.直线B C,逆时针旋转180ʎ,平移B C长度6.(1)øE D C,E C(2)6,90ʎ12.2三角形全等的判定(1)1.S S S2.A B=B C,A B D,C B E3.提示:由әA B DɸәB A C(S S S),得øD=øC4.略5.øB A D=øC A D,理由略.提示:әA O EɸәA O F(S S S)6.(1)略(2)A BʊD E,A CʊD F,理由略*7.提示:由әA B DɸәA C D(S S S),可得A DʅB C,A D平分øB A C12.2三角形全等的判定(2)1.øB E D,D E,әB D E,S A S2.øE A D=øB A C或øE A B=øD A C或E D=B C3.B4.由әE DHɸәF DH,得E H=F H.还能得如下结论:øD E H=øD F H,øDH E=øDH F5.由әB C AɸәD E B(S A S),得B C=D E6.由әA B CɸәA B D(S A S),得øA B C=øA B D, ʑ øC B E=øD B E7.(1)A B=A C,A D=A D,øB=øC*(2)不全等.两边及一边的对角对应相等的两个三角形不一定全等12.2三角形全等的判定(3)1.C2.(1)øB C A=øE F D(2)øB=øE3.提示:由øC B A=øF E D,øB C A=øE F D,A B=D E,得әB A CɸәE D F(A A S)4.提示:由әA B CɸәE D C(A S A),得D E=A B5.提示:由әB C DɸәC B E(A S A),得B E=C D6.提示:可先证明әA O DɸәA O E,得出O D=O E;再证明әB O DɸәC O E,从而得出O B=O C12.2三角形全等的判定(4)1.D2.(1) (2)ˑ (3)ˑ (4)3.(1)A C=D C(2)øA=øD或øB=øE(3)A C=D C4.(1)提示:әA B CɸәA D C(A A S)(2)由(1)得C B=C D5.提示:әA O DɸәC O B(S A S),әA O EɸәC O F(A A S)6.全等三角形有әA B CɸәD C B(S A S),әA B OɸәD C O(A A S).理由略12.2三角形全等的判定(5)1.D2.A C=D F或B C=E F或øA=øD或øB=øE3.提示:由R tәA D EɸR tәA D F(H L),得øD A E=øD A F,即A D是øB A C的平分线4.(1)A E=D F,A BʊC D(2)略5.(1)ȵ A D=B D,A C=B E,øA D C=øB D E, ʑ әB E DɸәA C D(H L)(2)提示:由әB E DɸәA C D,得D E=D C6.当A P=A C=10c m,即点P与点C重合时,或A P=B C=5c m,即P是A C的中点时,әA B C与әA P Q全等*7.正确. ȵ R tәO C PɸR tәO D P, ʑ øC O P=øD O P,即O P平分øA O B12.2三角形全等的判定(6)1.(1)A A S(2)A S A (3)S A S(4)H L2.②④3.D4.提示:先证明әA B EɸәA C D,再证明әO B DɸәO C E5.提示:先证明әA O DɸәB O C,再证明әO C EɸәO D F6.提示:延长A M到点N,使MN=A M,连接B N.先证明әA C MɸәN B M,得到B N=A C,再由әA B N的三边关系得到A N<A B+B N, ʑ 2A M<A B+A C12.3角的平分线的性质(1)1.(1)略(2)5c m2.(1)B C,C D(2)A B,A D3.P B=P C,A B=A C4.提示:根据角平分线的性质可得A E=E F,D E=E F,故A E=D E5.提示:由әP DMɸәP E N(S A S),得P M=P N6.(1)提示:两个三角形的边A B,A C上的高相等(2)方法一:ȵ B D=C D,ʑ SәA B D=SәA C D. ʑ A B=A C方法二:过点D分别作A B,A C的垂线段,通过三角形全等证明12.3角的平分线的性质(2)1.A2.253.略4.21ʎ5.提示:可证明әC O EɸәB O D,得O E=O D6.(1)略(2)作图略,A DʅA E复习题1.A2.4对:әA F DɸәA F E,әB D FɸәC E F,әA F BɸәA F C,әA B EɸәA C D3.由әA B CɸәA'B'C',得B C=B'C',即影子一样长4.点P为øA和øB的平分线的交点,图略5.提示:由әB D FɸәC D E(S A S),得øF=øD E C,故B FʊC E6.3c m,37ʎ7.由R tәA B DɸR tәC B E(H L),得øB A D=øB C E.ȵøE+øB C E= 90ʎ, ʑ øE+øB A D=90ʎ, ʑ A FʅC E8.(1)提示:证明әC B DɸәE F C,D B=C F(2)2(3)2第十三章 轴对称13.1轴对称13.1.1轴对称1.B2.A DʅB C,中点,垂直平分线3.(1) (2)ˑ4.①和③是轴对称图形.对称轴及对称点略5.(1)点D ,E ,F (2)l 垂直平分线段A D (3)交点在直线l 上6.图略.正三㊁四㊁五㊁ n 边形分别有3,4,5, ,n 条对称轴13.1.2 线段的垂直平分线的性质(1)1.(1)B M (2)90 (3)2c m 2.A D +D E +A E =B D +D E +E C =B C =5c m3.ȵ A C =A D , ʑ 点A 在C D 的垂直平分线上.同理,点B 在C D 的垂直平分线上, ʑ AB 垂直平分CD 4.以点A 为圆心㊁适当长为半径作弧,交l 于点B 和C ,再分别以点B 和C 为圆心㊁大于12B C 的长为半径作弧,两弧交于点D ,连接D A ,直线D A 就是所求作的垂线5.ȵ A B =A C ,B D =D C , ʑ 直线A D 是线段B C 的垂直平分线.ȵ 点E 在A D 上, ʑ E B =E C6.A C =A E =12A B =3c m13.1.2 线段的垂直平分线的性质(2)1.对应点,垂直平分线2.连接A B ,分别以点A 和B 为圆心㊁大于12A B 的长为半径画弧,两弧交于点C 和D ,连接C D ,C D 就是所求作的直线3.①②③⑤是轴对称图形.图略 4.略5.提示:作出三角形任意一边的中线即可6.方案一:两组对边中点的连线;方案二:两条对角线13.2 画轴对称图形(1)1.(1)略 (2)A 'B 2.略 3.略 4.略 5.略 6.略13.2 画轴对称图形(2)1.C 2.点P 的坐标(2,3)(1,-4)(-2.5,-6)0,-72点P 关于x 轴对称的点的坐标(2,-3)(1,4)(-2.5,6)0,72 点P 关于y 轴对称的点的坐标(-2,3)(-1,-4)(2.5,-6)0,-723.1,24.略5.(1)图略.-3,5,-1,1,-3,3 (2)图略.-1,5,-3,1,-1,3 (3)是.图略6.A 2(1,-3),B 2(4,-1),C 2-12,-2.图略13.3 等腰三角形13.3.1 等腰三角形(1)1.(1)50ʎ (2)66ʎ 2.50 3.3,904.øB C D =25ʎ,øA D C =50ʎ,øA C B =90ʎ5.由әA B C ɸәA E D (S A S ),得A C =A D .又AM ʅC D , ʑ C M =MD .ʑ M 是C D 的中点6.提示:连接A P ,证明әA D P ɸәA E P 或әB D P ɸәC E P ,得P D =P E*7.(1)15ʎ (2)20ʎ (3)øE D C =12øB A D ,理由略13.3.1 等腰三角形(2)1.70,等腰 2.(1)30ʎ (2)30ʎ或75ʎ或120ʎ3.提示:由øD B C =øD C B ,得әB C D 是等腰三角形4.30海里5.øC =30ʎ,C D =3c m 6.ȵ øB =øC =12(180ʎ-øA ), ʑ A B =A C .ȵ B D =C E , ʑ A D =A E , ʑ øA D E =øA E D =12(180ʎ-øA ),ʑ øA D E =øB , ʑ D E ʊB C*7.(第7题)13.3.2 等边三角形(1)1.(1)0.5c m (2)3 2.D 3.90ʎ4.提示: ȵ әA D F ɸәB E D ɸәC F E , ʑ A D =B E =C F5.(1)ȵ әA B C 是等边三角形,ʑ AC =C B ,øA =øE C B =60ʎ.又AD =CE ,ʑ әA D C ɸәC E B (S A S ), ʑ øC B E =øA C D(2)øC F E =øC B E +øD C B =øA C D +øD C B =øA C B =60ʎ6.提示:可证明әA B D ɸәA C E (S A S ), ʑ A D =A E ,øD A E =øB A C =60ʎ,ʑ әA D E 是等边三角形13.3.2等边三角形(2)1.2402.30ʎ,4c m,2c m3.ȵ øA=90ʎ-60ʎ=30ʎ,øC=90ʎ, ʑ A B=2B C.又ȵ A B-B C=5c m, ʑ B C=5c m4.øB=15ʎ,øD A C=øB+øA C B=30ʎ,C D=12A C=12A B=25c m5.(1)略(2)(12+43)c m6.ȵ B'D=B'E, ʑ B B'平分øA B C, ʑ øB'B D=30ʎ,ʑ B B'=2B'D=5ˑ2=10c m7.根据әA B D的画法,有A B=A C=B C=C D,ʑәA B C是等边三角形, *øA B C=øA C B=60ʎ,øD=øC B D=12øA C B=30ʎ.ʑ øA B D=60ʎ+30ʎ=90ʎ, ʑ әA B D就是所要画的三角形13.3.2等边三角形(3)1.12.60,1203.74.әO D E是等边三角形.提示:证明øD O E=2øA O B=60ʎ,O D=O C=O E即可5.(1)15时30分(2)17时30分6.(1)连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可*(2)әD E F仍为等腰直角三角形.连接A D,证明әA D FɸәB D E,得到D E=D F,øA D F=øB D E即可13.4课题学习最短路径问题1.提示:作点O关于A B的对称点O',连接O'C,交A B于点P2.提示:作点O关于A B的对称点O',点M关于B C的对称点M',连接O'M',交A B,B C于点P和Q3.提示:利用平移,将点C移动到边C D上的点C'处,C C'=2c m,作点O关于A B对称点O',连接O'C',交A B于点P复习题1.C2.5c m,50ʎ3.18ʎ4.略5.ȵ E DʅB C, ʑ øE+øB=90ʎ,øD F C+øC=90ʎ.ȵ A B=A C, ʑ øB=øC.又øD F C=øA F E, ʑ øE=øA F E, ʑ A E=A F.ʑ әA E F是等腰三角形6.ȵ әA C E与әA D E关于直线A E对称, ʑ D E=E C,A D=A C=C B,ʑ D E+E B+D B=E C+E B+D B=C B+D B=10c m7.ȵ øA=60ʎ,A D=12A B=A C, ʑ әA C D是等边三角形,øD C B=90ʎ-øA C D=30ʎ.øA C E=90ʎ-øA=30ʎ,øE C D=30ʎ,ʑøA C E=øE C D =øD C B8.ȵ E B=E C, ʑ øE B C=øE C B. ȵ øA B E=øA C E,ʑ øA B C=øA C B, ʑ A B=A C.又ȵ E B=E C,ʑ 点A和E在B C的垂直平分线上. ʑ A DʅB C9.(1)a=2,b=3(2)(-6,-2)10.(第10题)11.(1)略(2)P(a,b)关于直线m对称的点的坐标为(-a-4,b);P(a,b)关于直线n对称的点的坐标为(b,a)12.(1)由әA B EɸәD B C(S A S),得A E=D C(2)成立(3)等边三角形第十四章 整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.(1)不正确.a6(2)正确(3)不正确.-79(4)不正确.-2102.(1)108(2)1211(3)-127(4)5103.(1)m6(2)x2m+1(3)a6(4)-x54.1020次5.(1)(a+b)3(2)(x-y)7(3)b9(4)(a-b)56.1.2ˑ1011m 14.1.2幂的乘方14.1.3积的乘方1.B2.(1)26(2)b9(3)1012(4)-x153.(1)不正确.8x3(2)不正确.a3b6(3)不正确.9a6(4)不正确.-127x3y64.(1)-a6(2)9ˑ1010(3)a12b6(4)-8x6y35.54a2,27a36.5.14ˑ108k m214.1.4整式的乘法(1)1.(1)15a5(2)-72a3b6(3)6ˑ107(4)-3x5y42.(1)不正确.3x3y2(2)不正确.-2x2-2x y3.(1)2x2+2x(2)6x2-18x y(3)-2a+2b-2c(4)-15a4+43a34.a b-b25.3x3-5x2+6x,-146.(1)2x y,4x y-2y(2)15x y+y14.1.4整式的乘法(2)1.(1)x2+3x+2(2)2x2-x-12.(1)x2-4(2)6x2+x-1(3)x2+4x y-21y2(4)6x2+11x y-10y23.(1)x2-y2(2)4x2-9(3)x2+2x y+y2(4)4x2-12x+94.(1)3m2-m n-5m+2n-2(2)6x-9,35.(a-b)(a-2b)=a2-3a b+2b26.小丽说得对,理由略14.1.4整式的乘法(3)1.(1)a2(2)a2(3)a3b3(4)12.C3.(1)100(2)a6(3)-b3(4)-a b4.(1)1(2)-1(3)1(4)15.(1)a4(2)-m3(3)1(4)2a76.104s14.1.4整式的乘法(4)1.(1)2a(2)-5y2(3)-2ˑ103(4)r32.自上而下:-x3y,6x z,-12x3.D4.(1)-14a b(2)3x+1(3)3a+4(4)-6x+2y-15.(1)-y+2x y2(2)-2a2+4a+8,26.(8.47ˑ1010)ː(2.75ˑ103ˑ105)=308年14.2乘法公式14.2.1平方差公式1.(1)a2-1(2)y-32.(1) (2) (3) (4) (5)ˑ3.(1)a2-4(2)9a2-b2(3)y2-0.09x2(4)a2-14b24.(1)(100+3)(100-3)=9991(2)(60-0.2)(60+0.2)=3599.965.(1)二,去括号后未变号(2)略6.(1)-8a2(2)5x2-34y2(3)-2a2+7a+27.(1)a2-b2(2)a-b,a+b,(a-b)(a+b)(3)(a-b)(a+b)=a2-b2 *(4)略14.2.2 完全平方公式(1)1.D2.(1)9+6x +x 2(2)y 2-14y +49 (3)x 2-10x +25 (4)9+2t +19t 23.(1)10000 (2)38809 4.(1)14x 2-2x y +4y 2 (2)-4a 2-12a -95.(1)略 (2)(a -b )2+4a b =(a +b )2(3)69 ʃ11 6.8a b14.2.2 完全平方公式(2)1.D 2.(1)y +z (2)y -z (3)2b -c ,2b -c3.(1)4x 2+12x y +9y 2 (2)4x 2-4x +14.(1)4x 2+y 2+z 2-4x y +4x z -2y z (2)a 2-4b 2+4b -15.x 2-3,1 6.(1)a 5+5a 4b +10a 3b 2+10a 2b 3+5a b 4+b 5(2)24314.3 因式分解14.3.1 提公因式法1.C2.(1)3 (2)x (3)2a 2(4)a -b 3.(1)2x 2(x +3) (2)3p q (q 2+5p 2) (3)x y (x +y -1) (4)-2a b 3(4a -3c )4.(1)(a -b )(2a -2b -1) (2)(x -y )2(3-x +y )(3)(a -b )(7+a )5.-24 6.(1)998 (2)-1020197.2r h +12πr 2,分解因式得r 2h +12πr,64πm 214.3.2 公式法(1)1.B2.(1)2x ,3y ,(2x +3y )(2x -3y )(2)5b ,4a ,(5b +4a )(5b -4a )(3)x 2-y 2,x y (x +y )(x -y )3.(1)(x +1)(x -1) (2)3(2+a )(2-a ) (3)(a +b +c )(a +b -c )(4)(a 2+9b 2)(a +3b )(a -3b )4.(1)2013 (2)-15.a 2-4b 2=(a +2b )(a -2b )=128c m26.(1)34 (2)23 (3)58 (4)10120014.3.2 公式法(2)1.D 2.(1)3a +2 (2)9y 2,3y (3)-2m n 3.(1)(x -3)2 (2)(2a +b )2 (3)-(3x -2y )2 (4)a +12b24.(5x+y)2,4255.(1)-3x(x-1)2(2)(2a+b-4)2(3)(a+2b)2(a-2b)2(4)(a+2)(a-2)6.(1)1ˑ104(2)1ˑ1047.(1)(x+2y-1)2(2)(a+b-2)2*复习题1.D2.(1)3x4y4(2)-4a b3.a2+4a b+4b2,a2-4b2,4b2-a2,-a2-4a b-4b24.(1)2a3b3c3+12a3b c3(2)-3a b+8b(3)14x2-16a2(4)16m2+8m+15.②6.(1)(x+2)(x-2)(2)(8-a)2(3)(x-y)(2+a)(4)(0.7x+0.2y)(0.7x-0.2y)7.(1)2x5(2)-7x3y2+2x2(3)-4x-12(4)x-y8.(1)(x-y)(5x-4y)(2)-a2(b-1)2(3)4a(x+2y)(x-2y)(4)(x-2)(x-3)(x+3)9.吃亏了,少了25m2,理由略10.(1)(a+2b)(2a+b)=2a2+5a b+2b2(2)如图(3)答案不唯一.如图,(a+2b)(a+b)=a2+3a b+2b2[第10(2)题][第10(3)题]11.原式=(2-1)ˑ(2+1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22-1)ˑ(22+1)ˑ(24+1)ˑ(28+1)ˑ ˑ(22048+1)=(22048-1)ˑ(22048+1)=24096-112.(1)C(2)(x-2)4(3)设x2-2x=y,原式=y(y+2)+1=(y+1)2=(x2-2x+1)2=(x-1)4第十五章 分式15.1 分式15.1.1 从分数到分式1.(1)3t (2)nm +12.m ,x 5,13a 2b ,23,5π整式集合 2a ,x x -3,x 2-x +1y,x +1x -1分式集合3.(1)x ʂ0 (2)x ʂ2 (3)x ʂ0且x ʂ1 (4)x ʂʃ34.(1)m +n x +y千克 (2)b45a 5.(1)x =43 (2)x =-12 (3)-3 6.x -5x 2-3615.1.2 分式的基本性质(1)1.(1)x (2)3a 2-3a b (3)y -2 (4)1 2.(1)ˑ (2) (3)ˑ (4)ˑ 3.(1)12x (2)-x 3y(3)2a5b 4.(1)相等.因为把第一个分式的分子㊁分母同乘以3x 就是第二个分式(2)相等.因为把第一个分式的分子㊁分母同乘以3b 2就是第二个分式5.(1)5x -103x +20 (2)x -23x -1 6.(1)A (2)3y (答案不唯一) 15.1.2 分式的基本性质(2)1.B 2.A 3.(1)c b (2)-4x 5y (3)34(x -y )4.(1)x +2x -2 (2)1m (m -2) (3)x +2x -25.(1)x +2y 4x ,34 (2)a +3a -3,46.答案不唯一,例如:x 2-1x 2+x=x -1x ,1215.1.2 分式的基本性质(3)1.(1)5a (2)a 2b 22.D3.(1)412x 2与5x 12x 2 (2)3b c a 2b 2与2a c a 2b 2 (3)5a 2c 21a c 与35c 21a c (4)3a b 23b 2与a 3b24.(1)a c +c (a -1)(a +1)与a c -c (a -1)(a +1) (2)2y 2x y (y +1)与3x 2x y (y +1)5.(1)a -2a 与a 2-2a a (2)x 2-y 2x +y 与2y 2x +y6.(1)c -a (a -b )(b -c )(c -a ),a -b (a -b )(b -c )(c -a )与c -b(a -b )(b -c )(c -a )(2)2a (a -3)(a +3)(a -3)2与3(a +3)(a +3)(a -3)215.2 分式的运算15.2.1 分式的乘除(1)1.C 2.(1)不正确.-3x (2)不正确.8x 23a 2 3.(1)1 (2)-5a14x 4.(1)-1a c (2)1a (a -2) (3)2x -2x +2 (4)-13m5.s a ːm s b =b a m6.300x ㊃2x m =600m 个15.2.1 分式的乘除(2)1.B2.(1)a b (2)a 2b 2 (3)(x -1)2(4)4a 2c 4 (5)4c 2d 2a 2b 6 (6)(2a +b )2(a -b )23.(1)3c a b (2)49x 2y 2 (3)m 2n 24.(1)1b (2)-y (x +y )5.32倍15.2.2 分式的加减(1)1.(1)3x (2)x -y a (3)1 (4)-b a2.C3.(1)5y -4x 6x 2y 2 (2)3b c 3+2a36a 2b 2c 24.(1)2 (2)a b a -b (3)3x +4 (4)4x +25.(1)2a a +2 (2)1m -1 (3)2a 2a -2 6.3000a -30003a =2000a时15.2.2 分式的加减(2)1.D 2.(1)2 (2)-1a 3.(1)b 2a3 (2)1a -2 (3)1x +1 (4)1x -14.aa -3,a 可选除0,2,3以外的任意数5.方法一:原式=2x (x +4)(x -2)(x +2)㊃x 2-4x =2x +8;方法二:原式=3x x -2㊃x 2-4x -x x +2㊃x 2-4x =2x +8*6.(1)100(x +y ),100x +100y ,x +y 2,2xy x +y(2)乙购买粮食的方式更合算,理由略15.2.3 整数指数幂(1)1.(1)25,1,125 (2)25,1,1252.(1)不正确.1 (2)不正确.-1 (3)不正确.19 (4)正确3.(1)1100 (2)127 (3)1000 (4)94 4.(1)6a2c 4 (2)y 2x 6z45.(1)8m 8n 7 (2)b 138a 8 6.原式=y -9x 3,8915.2.3 整数指数幂(2)1.C 2.A3.(1)1.0ˑ105 (2)1.0ˑ10-5 (3)-1.12ˑ105 (4)-1.12ˑ10-44.(1)75 (2)3.6ˑ10-135.(1)0.00001 (2)0.000236.3.1ˑ10-315.3 分式方程(1)1.C 2.(1)x =73(2)x =4 3.m =14 4.(1)x =12 (2)x =35.(1)x =1 (2)x =-1*6.设原分式为x -16x ,则x -15x +1=12,解得原分数为153115.3 分式方程(2)1.A 2.90x +6=60x 3.设乙单独做,x 天完成,则46+4x=1,解得x =124.120元5.设原计划每天铺设x m 管道,则3000x -3000(1+25%)x =30,解得x =20,(1+25%)x =25.实际每天铺设管道25m 6.(1)70m /m i n (2)李明能在联欢会开始前赶到学校15.3 分式方程(3)1.10 2.B 3.35.6mm4.设乙每分钟输入x 名学生的成绩,则26402x =2640x-2ˑ60,解得x =11,2x =22.乙每分钟输入11名学生的成绩,甲每分钟输入22名学生的成绩5.设货车的速度是x km /h ,由题意得14401.5x +6=1440x,解得x =80.货车的速度是80k m /h ,客车的速度是120k m /h *6.255p -1元 复习题1.B2.C3.C4.3ˑ10-4微米 5.(1)1.2ˑ104 (2)10-46.(1)y 29x 6 (2)x -5 7.(1)x =1 (2)无解 8.设甲的速度为x k m /h ,则8-0.5x x =122x,解得x =4,所以甲的速度是4k m /h ,乙的速度是8k m /h9.设该市去年居民用水的价格为x 元/米3,则今年居民用水的价格为(1+25%)x元/米3.根据题意,得36(1+25%)x -18x=6,解得x =1.8,(1+25%)x =2.25.该市今年居民用水的价格为2.25元/米310.王师傅这次运输所花时间为180v h ,180v ˑ29v +14+180v ˑ20=176,解得v =45.王师傅这次运输的平均速度为45k m /h 11.(1)取a =1,b =1,得M =N =1;取a =2,b =12,得M =N =1.猜想:M =N (2)M =a a +1+b b +1=a a +a b +b b +a b =1b +1+1a +1=N ,因此M =N 总复习题1.C2.C3.D4.B5.A6.1.83ˑ10-77.538.5409.所有图案都是轴对称图形,图略10.(1)3x2-20x+26(2)-111.(1)2x(3-2y)(2)y(y+2x)(y-2x)(3)(a+3)2(a-3)2(4)(a-b)(2a-2b+3)(2a-2b-3)12.(1)无解(2)x=-713.ȵ øA=50ʎ,øB D C=85ʎ,ʑøA B D=35ʎ.又ȵB D平分øA B C,D EʊB C,得øB D E=35ʎ, ʑ øBE D=110ʎ. ʑ әB D E各内角度数分别为35ʎ,35ʎ,110ʎ14.әA B C,әA B D,әA C D;øB=36ʎ15.B E=A B-A E=7c m,在әB E F中,øB E F=øG E F=øA E G=60ʎ,得E F=2B E=14c m16.øA B C=øA D C.提示:连接B D,证明øA D B=øA B D,øC D B=øC B D,得øA D B+øC D B=øA B D+øC B D,即øA D C=øA B C17.设甲公司单独完成需要x天,则12x+121.5x=1,解得x=20,1.5x=30.甲㊁乙两公司单独完成此项工程,分别需要20天和30天18.(1)在R tәA D B与R tәC E A中,A B=A C,øB A D=øA C E, ʑ әA D BɸәC E A, ʑ A D=C E,A E=B D. ʑ D E=B D+C E(2)D E=B D+C E(3)D E=C E-B D19.(1)øA+øD=øB+øC(2)6(3)øP=45ʎ(4)øP=øB+øD2,理由略20.(1)32(2)ʃ321.略期末综合练习1.D2.D3.A4.A5.B6.D7.B8.C9.C 10.A 11.4.2ˑ10-712.23b13.3x(x+2y)(x-2y)14.ʃ4 15.116.917.= 18.24ʎ19.20ʎ或35ʎ或80ʎ或50ʎ20.2 21.a+1,选取a=2,所求的值为322.略23.提示:(1)由әB O DɸәC O E可得(2)提示:证明A B=A C,得点A,O都在B C的垂直平分线上24.(1)甲工程队每月修建绿道1.5k m,乙工程队每月修建绿道1k m(2)甲工程队至少修建绿道8个月25.(1)①30 ②|60ʎ-2α|(2)①略 ②|8-2n|。

浙教版八年级上册数学作业本答案

浙教版八年级上册数学作业本答案

浙教版八年级上册数学作业本答案篇一:浙教版数学八年级上作业本标准答案(全)- 1 -- 2 -- 3 -- 4 -- 5 -篇二:八年级上册数学作业本答案篇三:八年级上册数学作业本答案八年级上作业本同步练答案〔人教版〕跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。

下面是小编整理的八年级上册数学作业本答案,供大家参考。

八年级上数学作业本[人教版]答案,浙教版也可以用,参考答案第1章平行线【1.1】1.4,4,2,52.2,1,3,BC3.C4.2与3相等,3与5互补.理由略5.同位角是BFD和DEC,同旁内角是AFD和AED6.各4对.同位角有B与GAD,B与DCF,D与HAB,D与ECB;内错角有B与BCE,B与HAB,D与GAD,D与DCF;同旁内角有B与DAB,B与DCB,D与DAB,D与DCB【1.2〔1〕】1.〔1〕AB,CD〔2〕3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.,B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是ADE和ABC的角平分线,得ADG=12ADE,ABF=12ABC,那么ADG=ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2〔2〕】1.〔1〕2,4,内错角相等,两直线平行〔2〕1,3,内错角相等,两直线平行2.D3.〔1〕a∥c,同位角相等,两直线平行〔2〕b∥c,内错角相等,两直线平行〔3〕a∥b,因为1,2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由BCD=120,CDE=30,可得DEC=90.所以DEC+ABC=180,AB∥DE〔同旁内角互补,两直线平行〕5.〔1〕180;AD;BC〔2〕AB与CD不一定平行.假设加上条件ACD=90,或1+D=90等都可说明AB∥CD6.AB∥CD.由可得ABD+BDC=1807.略【1.3〔1〕】1.D2.1=70,2=70,3=1103.3=4.理由如下:由1=2,得DE∥BC〔同位角相等,两直线平行〕,3=4〔两直线平行,同位角相等〕4.垂直的意义;;两直线平行,同位角相等;305.=44.∵ AB∥CD,=6.〔1〕B=D〔2〕由2x+15=65-3x解得x=10,所以1=35【1.3〔2〕】1.〔1〕两直线平行,同位角相等〔2〕两直线平行,内错角相等2.〔1〕〔2〕3.〔1〕DAB〔2〕BCD4.∵ 1=2=100,m∥n〔内错角相等,两直线平行〕.4=3=120〔两直线平行,同位角相等〕5.能.举例略6.APC=PAB+PCD.理由:连结AC,那么BAC+ACD=180.PAB+PCD=180-CAP-ACP.10.〔1〕BE∥DC.理由是ABE=B=90=D又APC=180-CAP-ACP,APC=PAB+PCD〔2〕由BE∥DC,得BEB=C=130.【1.4】AEB=AEB=12BEB=651.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,ABn,CDn,知AB=CD,ABE=CDF=90.1.B∵ AE∥CF,AEB=CFD.△AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;ADC;DAC,C;AD,DC;ACAE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AMl5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BNl3于N,那么△ABM≌△BCN,得AB=BC6.〔1〕略〔2〕CF=15cm7.AP平分BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP〔SSS〕.1.502.〔1〕4〔2〕3〔3〕1BAP=CAP〔第5题〕3.〔1〕B,两直线平行,同位角相等【2.2】〔2〕5,内错角相等,两直线平行〔3〕BCD,CD,同旁内角互补,两直线平行1.〔1〕70,70〔2〕100,402.3,90,503.略4.〔1〕90〔2〕604.B=40,C=40,BAD=50,CAD=505.40或705.AB∥CD.理由:如图,由1+3=180,得6.BD=CE.理由:由AB=AC,得ABC=ACB.〔第又∵3=72=25题〕BDC=CEB=90,BC=CB,△BDC≌△CEB〔AAS〕.BD=CE6.由AB∥DF,得1=D=115.由BC∥DE,得1+B=180.〔此题也可用面积法求解〕B=657.A+D=180,C+D=180,B=D【2.3】8.不正确,画图略1.70,等腰2.33.70或409.因为EBC=1=2,所以DE∥BC.所以AED=C=704.△BCD是等腰三角形.理由如下:由BD,CD分别是ABC,ACB的平50分线,得DBC=DCB.那么DB=DC【2.5〔1〕】5.DBE=DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45,45,63.5∵ △ADE和△FDE重合,ADE=FDE.4.∵ B+C=90,△ABC是直角三角形∵ DE∥BC,ADE=B,FDE=DFB,5.由可求得C=72,DBC=18B=DFB.DB=DF,即△DBF是等腰三角形.6.DEDF,DE=DF.理由如下:由可得△CED≌△CFD,同理可知△EFC是等腰三角形DE=DF.ECD=45,EDC=45.同理,CDF=45,7.〔1〕把120分成20和100〔2〕把60分成20和40EDF=90,即DEDF【2.4】【2.5〔2〕】1.〔1〕3〔2〕51.D2.333.A=65,B=254.DE=DF=3m2.△ADE是等边三角形.理由如下:∵ △ABC是等边三角形,A=B=C=60.∵ DE∥BC,ADE=B=60,5.由BE=12AC,DE=12AC,得BE=DE6.135mAED=C=60,即ADE=AED=A=603.略【2.6〔1〕】4.〔1〕AB∥CD.因为BAC=ACD=601.〔1〕5〔2〕12〔3〕槡52.A=225〔2〕ACBD.因为AB=AD,BAC=DAC5.由AP=PQ=AQ,得△APQ是等边三角形.那么APQ=60.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,B=BAP=30.同理可得C=QAC=30.4.槡22cm〔或槡8cm〕5.169cm26.18米BAC=1207.S梯形BCCD=1〔CD+BC〕BD=1〔a+b〕2,6.△DEF是等边三角形.理由如下:由ABE+FCB=ABC=60,22ABE=BCF,得FBC+BCF=60.DFE=60.同理可S梯形BCCD=S△ACD+S△ACC+S△ABC=ab+12c2.得EDF=60,△DEF是等边三角形由1〔a+b〕2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6〔2〕】1.〔1〕不能〔2〕能2.是直角三角形,因为满足m2=p2+n23.符合4.BAC,ADB,ADC都是直角〔第7题〕5.连结BD,那么ADB=45,BD=槡32.BD2+CD2=BC2,BDC=90.ADC=135第3章直棱柱6.〔1〕n2-1,2n,n2+1〔2〕是直角三角形,因为〔n2-1〕2+〔2n〕2=〔n2+1〕2【3.1】【2.7】1.直,斜,长方形〔或正方形〕2.8,12,6,长方形1.BC=EF或AC=DF或A=D或B=E2.略3.直五棱柱,7,10,34.B3.全等,依据是HL5.〔答案不唯一〕如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,AEB+DEC=90.6.〔1〕共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形AEC=90,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ADB=BCA=Rt,又AB=AB,AC=BD,〔2〕9条棱,总长度为〔6a+3b〕cmRt△ABD≌Rt△BAC〔HL〕.CAB=DBA,7.正多面体顶点数〔V〕面数〔F〕棱数〔E〕V+F-EOA=OB正四面体6.DF4462BC.理由如下:由可得Rt△BCE≌Rt△DAE,正六面体B=D,从而D+C=B+C=9086122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72,72,48.槡79.6410.∵ AD=AE,ADE=AED,ADB=AEC.【3.2】又∵ BD=EC,△ABD≌△ACE.AB=AC1.C11.482.直四棱柱3.6,712.B13.连结BC.∵ AB=AC,ABC=ACB.4.〔1〕2条〔2〕槡55.C又∵ ABD=ACD,DBC=DCB.BD=CD6.外表展开图如图.它的侧面积是14.25〔15+2+2.5〕3=18〔cm2〕;15.连结BC,那么Rt它的外表积是△ABC≌Rt△DCB,ACB=DBC,从而OB=OC16.AB=10cm.AED=C=Rt,AE=AC=6cm,DE=CD.18+121522=21〔cm2〕可得BE=4cm.在Rt△BED中,42+CD2=〔8-CD〕2,解得CD=3cm【3.3】〔第6题〕1.②,③,④,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.〔1〕面F〔2〕面C〔3〕面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图〔第11题〕〔第7题〕第4章样本与数据分析初步【4.1】〔第1.抽样调查5题〕〔第6题〕2.D3.B4.〔1〕抽样调查〔2〕普查〔3〕抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1530534=27〔cm2〕5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦时5.8625题〔第5题〕〔第6题〕6.小王得分705+503+80210=66〔分〕.同理,小孙得745分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.〔1〕平均身高为161cm12〔平方环〕.八年级二班投中环数的同学的投飞标技术比拟稳定〔2〕这10位女生的身高的中位数、众数分别是1615cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组〔3〕答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分〔包括80分〕的甲组有33人,乙组有作为参加方队的人选.如果不够,那么挑选身高与162cm比拟接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172〔平方分〕,S2乙=女生,直至挑选到40人为止256〔平方分〕.S2甲<S2乙,甲组成绩比拟稳定〔波动较小〕;从高分看,高于6.〔1〕甲:平均数为96年,众数为8年,中位数为85年;乙:平均数为9480分的,甲组有20人,乙组有24人;其中总分值人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好〔2〕甲公司运用了众数,乙公司运用了中位数6.〔1〕x甲=15〔cm〕,S2甲=2〔cm2〕;x乙=15〔cm〕,S2乙=35〔cm2〕.〔3〕此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比拟接近,产品质量相比照拟好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些〔2〕每个台阶高度均为15cm〔原平均数〕,那么方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更适宜出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比拟合理,因选取的样本具有代表性7.〔1〕3.平均数为144岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.286.D7.A8.A9.10,32004年〔万元〕5126268.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年〔万元〕65303011.3上水平,要看他的成绩是否大于中位数〔2〕可从平均数、中位数、众数、标准差、方差等角度进行分析〔只要有道理即可〕分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.〔1〕三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大〔2〕甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.〔1〕表中甲的中位数是75,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.〔1〕18千克〔2〕27000元别是7,7,04.八年级一班投中环数的方差为3〔平方环〕,八年级二班投中环数的方差〔2〕从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【〔5.3〔1〕】3〕答案不唯一,只要分析有道理即可1.①⑥ 2.C第5章一元一次不等式3.〔1〕x>3〔2〕x<-3〔3〕无数;如x=9,x槡=3,x=-3等8【5.1】〔4〕x槡-24.〔1〕x1〔2〕x<45.x>2.最小整数解为31.〔1〕>〔2〕>〔3〕<〔4〕<〔5〕2.〔1〕x+2>0〔2〕x2-7<5〔3〕5+x3x〔4〕m2+n22mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.〔1〕<〔2〕>〔3〕<〔4〕>〔5〕>【5.3〔2〕】4.1.〔1〕x0〔2〕x<43〔3〕x<3〔第4题〕2.〔1〕x>2〔2〕x<-73.〔1〕x5〔2〕x<-35.C56.〔1〕80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3〔2〕当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.〔1〕x<165〔2〕x<-1【6.〔1〕买普通门票需540元,买团体票需480元,买团体票廉价5.2】〔2〕设x人时买团体票廉价,那么30x>302008,解得x>16.所以171.〔1〕〔2〕〔3〕〔4〕〔5〕人以上买团体票更廉价2.〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕【5.3〔3〕】3.〔1〕x<22,不等式的根本性质2〔2〕m-2,不等式的根本性质3〔3〕x2,不等式的根本性质2〔4〕y<-1,不等式的根本性质1.B2.设能买x支钢笔,那么5x324,解得x644335.所以最多能买64支3.设租用30座的客车x辆,那么30x+45〔12-x〕450,解得x6.所以304.-45x+3>-45y+35.a2座的客车至多租6辆6.正确.设打折前甲、乙两运动鞋的价格分别为每双x元,y元,那么4.设加工服装x套,那么200+5x1200,解得x200.所以小红每月至少加4工服装200套506y06x<06y,45yx<y5.设小颖家这个月用水量为x〔m3〕,那么515+2〔x-5〕15,解得x55数学八年级上875.至少为875m33750.所以商店应确定电脑售价在3334至3750元之间6.〔1〕140-11x95.设该班在这次活动中计划分x组,那么3x+105〔x-1〕,{解得3x+105〔x-1〕+1,〔2〕设甲厂每天处理垃圾x时,那么550x+495140-11x7x7.5.即分7个组,该班共有学生31人97370,解得x6.设购置A型x台,B型〔10-x〕台,那么10012x+10〔10-x〕105,解得6.甲厂每天至少处理垃圾6时0x25.x可取0,1,2,有三种购置:①购A型0台,B型10台;7.〔1〕设购置钢笔x〔x>30〕支时按乙种方式付款廉价,那么②购A型1台,B型9台;③购A型2台,B型8台3045+6〔x-30〕>〔3045+6x〕09,解得x>757.〔1〕x>2或x<-2〔2〕-2x0〔2〕全部按甲种方式需:3045+610=1410〔元〕;全部按乙种方式需:〔3045+640〕09=1431〔元〕;先按甲种方式买30台计算复习题器,那么商场送30支钢笔,再按乙种方式买10支钢笔,共需3045+61009=1404〔元〕.这种付款方案最省钱1.x<122.7cm<x<13cm3.x24.82【5.4〔1〕】5.x=1,2,3,46.0,17.〔1〕3x-2<-1〔2〕y+12x0〔3〕2x>-x21.B2.〔1〕x>0〔2〕x<13〔3〕-2x<槡3〔4〕无解8.〔1〕x>73.〔1〕1x<11/ 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
7.如果2(x-2 )3=6 A.
1 23 4Biblioteka ,则 x 等于1 2
B.
7 2
C.

7 2
D.以上答案都不对
[来源:学#科#网]
8.下列多项式中不含因式(x-1)的是 A.x3-x2-x+1 B.x2+y-xy-x C.x2-2x-y2 +1 D.(x2+3x)2-(2x+2)2 9.化简 3 13 2 13 4 13 8 1 得 A. 3 8 1 B. 3 8 1 C. 316 1 D.
D. ) C.5 到 6 之间 D.6 到 7 之间
5.下列计算正确的是( A. C.
B. D.
6.下列计算正确的是( A. a a a
2 3 6
)
[来源:学|科|网 Z|X|X|K]
B. a a a
6 3
2
C. ( a ) a
2 3
6
D. ( a 2 )( a 2 ) a 2
一.选择题 1.下列运算中,结果正确的是( A. B. ) C. D.
2.下列各曲线中,不能表示 y 是 x 的函数的是( )
A 3..下列计算错误的是 ( A.
B ) B.
C
D
[来源:]
[来源:Z+xx+]
C. 4. 估计 2+ A.3 到 4 之间 的运算结果应在( B.4 到 5 之间 )
2 2
1 2
3
16
1

10.父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗: “同辞家 门赴车站,别时叮咛语千万,学子满 载信心去,老父怀抱希望还。 ”如果用纵轴 y 表示父亲和学子在行进中离家的距离,横轴 t 表 示离家的时 间,那么下面与上述诗意大致相吻的图象是
1
PS:双击获取文档,ctrl+a,ctrl+c,然后粘贴到word即可。 未能直接提供word文档,抱歉。
相关文档
最新文档