选修4-4参数方程的概念
选修4-4 第五节几种常见的参数方程

x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
曲线的参数方程

②在普通方程xy=1中,令x = tan,可以化为参数方程
x t an , (为参数) y cot .
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
y 500
o
x
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
y 500
解:物资出舱后,设在时刻t,水平位移为x,
o
x 100t , 1 2 2 ( g=9.8m/s ) y 500 gt . 2 令y 0, 得t 10.10s. x 代入x 100t, 得 x 1010m. 所以,飞行员在离救援点的水平距离约为1010m时投放物资,
6 3t , 2 a 2 t 1.
训练1:
2 x 1 t 1、曲线 与x轴的交点坐标是( B ) ( t 为参数) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
x sin (为参数) 所表示的曲线上一点的坐标是 2、方程 y cos
垂直高度为y,所以
可以使其准确落在指定位置.
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
二、由物理知识可知,物体的位置由时间t唯 一决定,从数学角度看,这就是点M的坐标 x,y由t唯一确定,这样当t在允许值范围内连 续变化时,x,y的值也随之连续地变化,于是 就可以连续地描绘出点的轨迹。 三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。
2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。
3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。
4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。
二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。
难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。
三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。
一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。
知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。
人教版高数选修4-4第2讲:参数方程(学生版)

参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个. 6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655 D .0 11.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
高中数学:2.1《参数方程的概念》教案(新人教A版选修4-4)

1. 参数方程的概念一)目标点击:1. 理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3. 能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4. 能了解参数方程中参数的意义,运用参数思想解决有关问题; 二)概念理解: 1、例题回放:问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦,交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程。
书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,),由⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x ) 解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k(直线的斜率),间接地求出了x 与y 的关系式,从而求得M点的轨迹方程。
实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式。
方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程。
由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k ,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法。
问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律,得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:【例1】 形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,) 和时间t 的对应关系.【例2】 我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈(*)与曲线C 满足以下条件:(1) 对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(0t g t f )都在曲线C 上;(2) 对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式. 问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系.曲线的参数方程⎩⎨⎧==)()(t g y t f x(t 为参数,t D ∈)是表示一条确定的曲线;含参数的方程),,(t y x F =0却表示具有某一共同属性的曲线系,两者是有原则区别的. 三)基础知识点拨:例1:已知参数方程⎩⎨⎧==θθsin 2cos 2y x ∈θ[0,2π)判断点A (1,3)和B (2,1)是否在方程的曲线上。
参数方程
参数方程ZHI SHI SHU LI 知识梳理 1.参数方程的概念如果曲线C 上任意一点P 的坐标x 和y 都可以表示为某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).反过来,对于t 的每个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t ),所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ),叫做曲线C 的参数方程,变量t 是参数.2.圆锥曲线的参数方程(1)圆心为(a ,b ),半径为r 的圆的参数方程为__⎩⎪⎨⎪⎧y =a +r cos θ,y =b +r sin θ(θ为参数)___.(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为__⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)___.(3)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为__⎩⎪⎨⎪⎧x =a cos θ,y =b tan θ(θ为参数)___.(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).3.直线的参数方程过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为__⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)___,其中t表示直线上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的__数量___.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当t =0时,M 与M 0重合.SHUANG JI ZI CE双基自测1.参数方程⎩⎪⎨⎪⎧x =cos 2θy =sin θ(θ为参数)所表示的曲线为( A )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线[解析] y 2+x =1,∵x ∈[0,1],y ∈[-1,1],∴是抛物线的一部分.2.(2019·北京西城期末)已知M 为曲线C :⎩⎪⎨⎪⎧x =3+cos θy =sin θ(θ为参数)上的动点,设O 为原点,则|OM |的最大值为( D ) A .1 B .2 C .3D .4[解析] 由题意知|OM |=x 2+y 2=(3+cos θ)2+sin 2θ=10+6cos θ≤4(θ=2k π(k ∈Z )时取等号),故选D .3.(2019·西宁模拟)直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则线段AB 的中点坐标为( D ) A .(3,-3) B .(-3,3) C .(3,-3)D .(3,-3)[解析] 将直线方程代入圆的方程,得(1+12t )2+(-33+32t )2=16,整理,得t 2-8t +12=0,则t 1+t 2=8,t 1+t 22=4,故其中点坐标满足⎩⎨⎧x =1+12×4,y =-33+32×4,解得⎩⎪⎨⎪⎧x =3,y =- 3.4.直线⎩⎨⎧x =1+45t ,y =-1-35t (t 为参数)被曲线ρ=2cos(θ+θ4)所截的弦长为__75___.[解析] 将方程⎩⎨⎧x =1+45t ,y =-1-35t ,ρ=2cos(θ+π4)分别化为普通方程3x +4y +1=0,x 2+y 2-x +y =0,圆心C (12,-12),半径为22,圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 5.(2018·天津高考)已知圆x 2+y 2-2x =0的圆心为C ,直线⎩⎨⎧x =-1+22t ,y =3-22t (t 为参数)与该圆相交于A ,B 两点,则△ABC 的面积为__12___.[解析] 圆C 的标准方程为(x -1)2+y 2=1,消去参数t 得直线的普通方程为x +y -2=0.圆心C (1,0)到直线的距离d =|1+0-2|2=22,|AB |=212-(22)2=2,所以△ABC 的面积为12|AB |·d =12×2×22=12. 6.(2019·湖北模拟)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,则|AB |=__25___.[解析] 直线l 的直角坐标方程为y -3x =0,曲线C 的普通方程为y 2-x 2=4.由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4得x 2=12,即x =±22,则|AB |=1+k 2AB |x A -x B |=1+32×2=2 5.考点1 参数方程与普通方程的互化例1 (2019·宁夏模拟)选修4-4:坐标系与参数方程.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =5cos α-1y =5sin α+2(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ+π4)=322.(1)求曲线C 的普通方程与直线l 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线l 的距离的最大值. [解析] (1)曲线C 的普通方程为(x +1)2+(y -2)2=5. 因为ρcos(θ+π4)=322.所以22ρ(cos θ-sin θ)=322,所以直线l 的直角坐标方程为x -y -3=0.(2)设M (5cos α-1,5sin α+2),则点M 到直线l 的距离 d =|5cos α-5sin α-6|2=|10cos (α+π4)-6|2.所以d max =32+ 5. 名师点拨 ☞将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参.如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. 〔变式训练1〕(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . [解析] (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.考点2 参数方程的应用例2 (2018·课标Ⅱ卷)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解析] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时, l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α.故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2. 名师点拨 ☞(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等. (2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论;过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2.①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0;②|M 0M 1||M 0M 2|=|t 1t 2|. 〔变式训练2〕(2019·南京模拟)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,a ∈[0,π)).以原点O为极点,以x 轴的正半轴为极轴,建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围; (2)若直线l 与曲线C 交于不同的两点A ,B ,求|AB |的最小值.[解析] (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ,化为直角坐标方程,得x 2=4y . ∵M (x ,y )为曲线C 上任意一点,∴x +y =x +14x 2=14(x +2)2-1,∴x +y 的取值范围是[-1,+∞).(2)将⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α代入x 2=4y ,得t 2cos 2α-4t sin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4t sin α-4=0的两个根为t 1,t 2, 则t 1+t 2=4sin αcos 2α,t 1t 2=-4cos 2α,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB |取得最小值4.考点3 极坐标方程与参数方程的综合例3 (2019·安徽模拟)已知直线l 的参数方程为⎩⎨⎧x =4+22t ,y =22t(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=4cos θ,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求△ABP 的面积的最大值. [解析] (1)由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2-4x =0,所以圆C 的直角坐标方程为(x -2)2+y 2=4. 设A ,B 对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆C :(x -2)2+y 2=4,并整理得t 2+22t =0, 解得t 1=0,t 2=-2 2.所以直线l 被圆C 截得的弦AB 的长为|t 1-t 2|=2 2. (2)由题意得,直线l 的普通方程为x -y -4=0.圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),可设圆C 上的动点P (2+2cos θ,2sin θ), 则点P 到直线l 的距离d =|2+2cos θ-2sin θ-4|2=⎪⎪⎪⎪2cos (θ+π4)-2, 当cos(θ+π4)=-1时,d 取得了最大值,且d 的最大值为2+ 2.所以S △ABP =12×22×(2+2)=2+22,即△ABP 的面积的最大值为2+2 2. 名师点拨 ☞极坐标方程与参数方程综合问题的解题策略(1)求交点坐标、距离、线段长.可先求出直角坐标方程,然后求解. (2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.(3)求参数方程与极坐标综合的问题.一般是先将方程化为直角坐标方程,利用直角坐标方程来研究问题. 〔变式训练3〕(2019·盐城模拟)已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)直接写出直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.[解析] (1)由⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数),得l 1的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线l 1的极坐标方程为2ρcos θ+ρsin θ-6=0,由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4,所以曲线C 的直角坐标方程为x 2+y 24=1. (2)由(1)知直线l 1的普通方程为2x +y -6=0,设曲线C 上任意一点P (cos α,2sin α),点P 到直线l 1的距离d =|2cos α+2sin α-6|5.由题意得|P A |=dsin60°=415⎪⎪⎪⎪2sin (α+π4)-315,∴当sin(α+π4)=-1时,|P A |取得最大值,最大值为415(3+2)15.。
选修4-4 第2讲 参数方程
例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
选修4-4 第二讲 参数方程 复习课
反思与感悟 (1)关于折线段的长度和或长度差的最大值或最小值的求 法,常常利用对称性以及两点之间线段最短解决. (2)有关点与圆、直线与圆的最大值或最小值问题,常常转化为经过圆 心的直线、圆心到直线的距离等.
跟踪训练 3 已知曲线 C:x42+y92=1,直线 l:yx==22-+2t,t (t 为参数). (1)写出曲线C的参数方程,直线l的普通方程;
解答
(2)直线
l
的参数方程是xy= =ttcsions
α, α
(t 为参数),l 与圆 C 交于 A,B 两点,
|AB|= 10,求 l 的斜率.
解答
解 方法一 在(1)中建立的极坐标系中,直线l的极坐标方程为θ=
α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方 程,得ρ2+12ρcos α+11=0.
(3)椭圆 中心在原点,对称轴为坐标轴的椭圆b2x2+a2y2=a2b2(a>b>0)的参数方程 为(4)_双__曲__xy线_= =__ab_csio_ns_φ_φ_,___(_φ__为__参_.数) 中心在原点,对称轴为坐标轴的双曲线b2x2-a2y2=a2b2(a>0,b>0)的参 数方程为____xy_= =__ab_st_aen_c_φφ_,____(φ__为__参__数. )
解
曲线
C
的参数方程为xy==23csions
θ, θ
(θ 为参数).
直线l的普通方程为2x+y-6=0.
解答
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最
大值与最小值.
解 曲线 C 上任意一点 P(2cos θ,3sin θ)到 l 的距离为 d= 55|4cos θ+3sin θ-6|,
高二数学选修4-4:第二讲 一 曲线的参数方程 1.参数方程的概念
首页
上一页
下一页
末页
结束
求曲线参数方程的主要步骤 (1)画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画 图时要注意根据几何条件选择点的位置,以利于发现变量之 间的关系. (2)选择适当的参数.参数的选择要考虑以下两点:一是 曲线上每一点的坐标 x,y 与参数的关系比较明显,容易列出 方程;二是 x,y 的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选 旋转角为参数.此外,离某一定点的“有向距离”、直线的 倾斜角、斜率、截距等也常常被选为参数. (3)根据已知条件、图形的几何性质、问题的物理意义等, 建立点的坐标与参数的函数关系式,证明可以省略.
首页
上一页
下一页
末页
结束
求曲线的参数方程
[例 2] 如图,△ABP 是等腰直角三角形, ∠B 是直角,腰长为 a,顶点 B,A 分别在 x 轴、y 轴上滑动,求点 P 在第一象限的轨迹的 参数方程.
[思路点拨] 解决此类问题关键是参数的选取.本例中由 于 A,B 的滑动而引起点 P 的运动,故可以 OB 的长为参数, 或以角为参数,此时不妨取 BP 与 x 轴正向夹角为参数来求解.
则其对应的参数 t 的值为________.
解析:由 t+1t=2,解得 t=1. 答案:1
首页
上一页
下一页
末页
结束
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a. 解:∵点 M(5,4)在曲线 C 上,∴45==a1+ t2,2t, 解得ta==21,. ∴a 的值为 1.
首页Biblioteka 上一页下一页末页结束
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:取投放点为原点,飞机飞行航线 评 所在直线为x轴,过原点和地心的直线为y
轴建立平面直角坐标系,得到被投放物资 的轨迹方程为
x 100t , 1 2 (t是参数,表示时间) y gt . 2
令x 1000, 解得t 10 1 2 当t =10时,y=- g 10 500 2
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
投放点
?
救援点
导
y 500
解:物资出舱后,设在时刻t,水平位移为x, 垂直高度为y,所以
(x,y )
x 100t , 1 2 2 ( g=9.8m/s ) y 500 gt . 2
o
x
观察,上面方程有什么特征? 1、有三个变量 2、任意一点的x,y坐标都可以用第三个变量表示 3、给定一个t值,由方程可以唯一确定x,y的值
□讲完还不太懂
2、完善解题过程,并总结题目类型
3、整理参数方程t ,(t为参数) 与x轴的交点坐标是( B ) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
的一个点的坐标是 ( C ) 1 1 1 1 A、 (2,7) B、 ( , ),C、 ( , ), D(1,0) 3 2 2 2
x sin 2、方程{ (为参数)表示的曲线上 y cos 2
四、参数方程求法: (1)建立直角坐标系, 设曲线上任一点P坐标 (2)选取适当的参数 (3)根据已知条件和图形的几何性质, 物理意义, 建立点P坐标与参数的函数式 (4)证明这个参数方程就是所求的曲线的方程
检
○一做就错
请拿出你的红笔:
1、先对提纲中的题目对出合理分析,并加上适当 的提醒符号.★重点内容 △典型题目
导
一、学什么?
1、曲线的参数方程2、圆锥曲线的参数方程
3、直线的参数方程4、渐进线与摆线
二、为什么学?
在过去的学习中我们已经掌握了一些求曲线 方程的方法。有时直接确定曲线上点的坐标 x,y的关系不容易,利用某个参数作为联系 的桥梁,会很方便。
导
引例
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
关于参数几点说明: 参数是联系变数x,y的桥梁, 1. 参数方程中参数可以是有物理意义, 几何意义, 也可以没有明 显意义。 2.同一曲线选取参数不同, 曲线参数方程形式也不一样 3.在实际问题中要确定参数的取值范围
评
三、参数方程与普通方程的区别与联系
区别:1、方程形式不同,参数方程经常是方程组 2、普通方程反映了曲线上x,y的直接关系 联系:1、两种方程是同一曲线的不同形式 2、两种方程之间可以进行互化
即飞机投放物资时飞行的高度为500米
评 一般地, 在平面直角坐标系中,如果曲线上任意一点的
一、参数方程的概念:
坐标x, y都是某个变数t的函数 x f (t ), (2) y g ( t ). 并且对于t的每一个允许值, 由方程组(2) 所确定的点 M(x,y)都在这条曲线上, 那么方程(2) 就叫做这条曲线的 参数方程, 联系变数x,y的变数t叫做参变数, 简称参数. 二、普通方程:相对于参数方程而言,直接给出 点的坐标间关系的方程叫做普通方程。
合作学习
组议: 讨论1:结合例题总结参数方程与普通方程的区 别和联系. 讨论2:参数的意义是什么?参数方程求法?
要求: 组长负责全员参与,分工协作。 先比对答案,然后探讨解题思路,总结解题规律方法。
展
要求:大声,规范,清晰,迅速
(黑板展示需在2—3分钟内书写完)
请同学们认真聆听,用红笔记录重点、疑惑点,并主动 进一步完善和补充,质疑。