热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律
热学课后习题答案

第一章温度1-1 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。
此时管内水银面到管顶的距离为。
问当此气压计的读数为时,实际气压应是多少。
设空气的温度保持不变。
题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1-25一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。
解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。
热学(李椿+章立源+钱尚武)习题解答_第1章 温度

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
解:根据已知冰点。
1-4用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。
试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。
解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。
设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。
解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
热学答案第二版(完整版)解析-李椿-章立源等著

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
解:根据已知冰点。
1-4用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。
试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。
解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。
设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。
解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律
![热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律](https://img.taocdn.com/s3/m/581192a543323968001c927e.png)
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
秦允豪《热学》答案+思考题答案

题 1-18 图
解:设截面积为 S,原闭管内气柱长为 R 大气压为 P 闭管内水银面下降后,其内部压强为。 对闭管内一定质量的气体有:
以水银柱高度为压强单位:
取正值,即得
1-19 一端封闭的玻璃管长
,贮有空气,气体上面有一段长为
的水
银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再
(2)设 解:根据
,当摩尔体积增大到 时,气体的温度是多高?
理想气体状态方程
和过程方程
有
(1)
(2) 而
,则
1-24 图 1-24 为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水 银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提瓶R,
水银就进入两根相同的毛细管 和 内,当 中水银面的高度差
,步骤(2)中罩内压强为
,步骤(4)中,罩内压强为
作过程中温度可视不变,则根据玻-马定律知
,假设操
未放矿石时:
放入后:
解联立方程得
1-26 一抽气机转速
转/分,抽气机每分钟能够抽出气体 ,设容器的容积
,问经过多少时间后才能使容器的压强由
降到
。
解:设抽气机每转一转时能抽出的气体体积为 ,则
当抽气机转过一转后,容器内的压强由 抽出压强为 的气体 ,因而有
,设容器
的容积为
,毛细管直径
,求待测容器中的气压。
题 1-24 图
解:设 管体积 ,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测
容器的气体压强相等。以B内气体为研究对象,当R继续上提后, ,由于温度可视为不变,则根据玻-马定律,有
热学第三章 气体分子速率和能量统计分布律

第三章 气体分子速率和能量统计分布律
概率统计基础知识
对于由大量分子 组成的热力学系 统从微观上加以 研究时,必须用 统计的方法 .
f (v) 4π(
m
)3
2
mv 2
e 2kT
v2
2πkT
dN 4π(
m
)3
2
mv 2
e 2kT
v2dv
N
2πkT
反映理想气体在热动平衡
波尔兹曼常量
f (v) dN Ndv
f (v)
条件下,气体分子按速率
分布的规律 .
o
v
三 三种统计速率
1)最概然速率 v p
f (v)
f max
df (v) 0 dv vvp
S
速率位于 v v dv内分子数:
o
v1 v2 v
dN Nf (v)dv
速率位于 v1
v2
区间的分子数
N
v2
v1
N
f
(v)dv
速率位于 v1 v2 区间的分子数占总数的百分比
S
N (v1 N
v2 )
v2
v1
f
(v)dv
例1
N 个假想的气体分子,其速率分布如图所示,(1)根据
N 和 v0 求 a 的值;(2)求速率在 2v0 到 3v0 间隔内的分子 数;(3)求分子的平均速率。 N f(v)
即:在任一瞬时,一个气体 分子在速度空间中与一个代
表点相对应,气体的N 个分子 对应有N 个代表点。这样就
热学(李椿+立源+钱尚武)习题解答_第四章气体内的输运过程

热学(李椿+⽴源+钱尚武)习题解答_第四章⽓体内的输运过程第四章⽓体内的输运过程4-1.氢⽓在,时的平均⾃由程为×m,求氢分⼦的有效直径。
解:由=得:=代⼊数据得:(m)4-2.氮分⼦的有效直径为,求其在标准状态下的平均⾃由程和连续两次碰撞间的平均时间。
解:=代⼊数据得:-(m)=代⼊数据得:=(s)4-3.痒分⼦的有效直径为3.6×m,求其碰撞频率,已知:(1)氧⽓的温度为300K,压强为1.0atm;(2)氧⽓的温度为300K,压强为1.0×atm解:由=得==代⼊数据得:=6.3×()()4-4.某种⽓体分⼦在时的平均⾃由程为。
(1)已知分⼦的有效直径为,求⽓体的压强。
(2)求分⼦在的路程上与其它分⼦的碰撞次数。
解:(1)由得:代⼊数据得:(2)分⼦⾛路程碰撞次数(次)4-5.若在下,痒分⼦的平均⾃由程为,在什么压强下,其平均⾃由程为?设温度保持不变。
解:由得4-6.电⼦管的真空度约为HG,设⽓体分⼦的有效直径为,求时单位体积内的分⼦数,平均⾃由程和碰撞频率。
解:(2)(3)若电⼦管中是空⽓,则4-7.今测得温度为压强为时,氩分⼦和氖分⼦的平均⾃由程分别为和,问:(1)氩分⼦和氖分⼦的有效直径之⽐是多少?(2)时,为多⼤?(3)时,为多⼤?解:(1)由得:(2)假设氩分⼦在两个状态下有效直径相等,由得:(3)设氖⽓分⼦在两个状态下有效直径相等,与(2)同理得:4-8.在⽓体放电管中,电⼦不断与⽓体分⼦相碰撞,因电⼦的速率远远⼤于⽓体分⼦的平均速率,所以后者可以认为是静⽌不动的。
设电⼦的“有效直径”⽐起⽓体分⼦的有效直径来可以忽略不计。
(1)电⼦与⽓体分⼦的碰撞截⾯为多⼤?(2)证明:电⼦与⽓体分⼦碰撞的平均⾃由程为:,n为⽓体分⼦的数密度。
解:(1)因为电⼦的有效直径与⽓体分⼦的有效直径相⽐,可以忽略不计,因⽽可把电⼦看成质点。
⼜因为⽓体分⼦可看作相对静⽌,所以凡中⼼离电⼦的距离等于或⼩于的分⼦都能与电⼦相碰,且碰撞截⾯为:(2)电⼦与⽓体分⼦碰撞频率为:(为电⼦平均速率)4-9.设⽓体分⼦的平均⾃由程为试证明:⼀个分⼦在连续两次碰撞之间所⾛路程⾄少为x的⼏率是解:根据(4.6)式知在个分⼦中⾃由程⼤于x的分⼦占总分⼦数的⽐率为=由⼏率概念知:对于⼀个分⼦,⾃由程⼤于x的⼏率为,故⼀个分⼦连续两次碰撞之间所⾛路程⾄少为x的⼏率是。
李椿热学答案及部分习题讲解部分习题的参考答案

“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。
第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。
解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。
解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯=T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。
解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTmN V KT m∆⋅⋅⋅-22232)2(4ππ∵ V p2=2KTm,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=1.24)代入计算得:△N=1.86×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。
解: 取分子速率为V 1=3000m/s V 2=1500m/s, △V 1=△V 2=10m/s 由5题计算过程可得: △V 1=12212214V V V p ppe V V VN∆--⋅⋅π△N 2=2222214V V V pppe V V VN∆--⋅⋅π∴ △N/△N 2=2121)(21)(21)()(pppV V V V p e V V e V V --⋅其中V P =331018.210257331.82⨯=⨯⨯⨯-m/s v 1v p =1.375,v 2v p=0.687∴ 969.0687.0375.122687.02375.1221≅⨯⨯=∆∆--ee N N 解法2:若考虑△V 1=△V 2=10m/s 比较大,可不用近似法,用积分法求△N 1,△N 2dN=dVV V V p PeV N2234--⋅π△N 1=⎰⎰⎰-=1221V V V V dN dN dN△N 2=⎰⎰⎰-=3443V V V V dN dN dN令X i =v iv pi=1、2、3、4利用16题结果:22)([0i ix i i V e x x erf N dN --=⎰π∴ △N 1=]2)([]2)([2122112x x i e x x erf N e x x erf N -----ππ(1)△N 2=]2)([]2)([23243344x x e x x erf N e x x erf N -----ππ(2)其中V P =s m RT/10182.223⨯=μ375.111==P V V x 379.122==PV Vx 687.033==P V V x 6722.044==P V V x查误差函数表得:erf(x 1)=0.9482 erf(x 2)=0.9489 erf(x 3)=0.6687 erf(x 4)=0.6722将数字代入(1)、(2)计算,再求得:703.021=∆∆N N3-7 试就下列几种情况,求气体分子数占总分子数的比率: (1) 速率在区间v p ~1.0v p 1内 (2) 速度分量v x 在区间v p ~1.0v p 1内(3) 速度分量v p 、v p 、v p 同时在区间v p ~1.0v p 1内解:设气体分子总数为N ,在三种情况下的分子数分别为△N 1、△N 2、△N 3(1) 由麦氏速率分布律: △ N=⎰⎰⎰-=1221V V V V dN dN dN令v 2=1.01v p ,v i =v p ,p i i v v x =,则111==pv vx ,01.122==p v v x ,利用16题结果可得;2122112212)(2)(x x e x x erf e x x erf N N --+--=∆ππ 查误差函数表:erf (x 1)=0.8427 erf (x 2)=0.8468 ∴008.01=∆NN (2) 由麦氏速率分布律:x v v px dv ev NdN px221--=π∴x v v v p x v v v p dv ev Ndv ev NN px px 2122)(1)(012----⎰⎰-=∆ππ)(])(exp[1)(])(exp[12020212px p x v v p x p x v v v v d v v v v d v v N N p p ⎰⎰---=∆ππ令p x v v x =, 111==pv vx ,01.122==p v v x ∴dx e dx e N N x x x x ⋅-=∆--⎰⎰2122211ππ利用误差函数:dx x xp e x erf x)(2)(20-=⎰π%21.0]8427.08468.0[21)()([21122=-=-=∆x erf x erf N N(3)令pxv v x =,由麦氏速度分布律得: z y x v v v v p dv dv dv e v N dN pzy x ⋅=++--2222331ππ833230033108.0)002.0()(][)1(211222---⨯==∆=-=∆⎰⎰NN dx e dx e N N x x x x π3-8根据麦克斯韦速率分布函数,计算足够多的点,以dN/dv 为纵坐标,v 为横坐标,作1摩尔氧气在100K 和400K 时的分子速率分布曲线。
解:由麦氏速率分布律得:22232)2(4v e KTm N dv dN v KTm-=ππ 将π=3.14,N=N A =6.02×1023T=100K m=32×10-3代入上式得到常数:A=e KTmN A 23)2(4ππ KT m B 2=∴22V Ae dvdNBV ⋅=- (1) 为了避免麻烦和突出分析问题方法,我们只做如下讨论:由麦氏速率分布律我们知道,单位速率区间分布的分子数随速率的变化,必然在最可几速率处取极大值,极大值为: 令22V Ae dvdNy BV ⋅==-则 0)]2(2[222=-⋅+⋅=--BV e V V e A dvdyBV BV 得BV V P 1==又在V=0时,y=0,V →∞时,y →0 又mKT B V P 11121==mKT B V P 22221== ∵T 1=100K <T 2=400K ∴1P V <2P V 由此作出草图3-9根据麦克斯韦速率分布律,求速率倒数的平均值v1。
解:VKT m e mKTKT m V KTmd Ve m KT KT m VdVeKTmdv V f Vv KTmV KT mKTmv ππππππππ42)()2(4)2()()2(4)2(4)(110223220223223022==⋅-⋅=-⋅⋅-===∞-∞-∞-∞⎰⎰⎰3-10一容器的器壁上开有一直径为0.20mm 的小圆孔,容器贮有100℃的水银,容器外被抽成真空,已知水银在此温度下的蒸汽压为0.28mmHg 。
(1) 求容器内水银蒸汽分子的平均速率。
(2) 每小时有多少克水银从小孔逸出?解:(1))/(1098.11020114.337331.88823s m RTV ⨯=⨯⨯⨯⨯==-πμ(2)逸出分子数就是与小孔处应相碰的分子数,所以每小时从小孔逸出的分子数为:t s V n N ⋅⋅=41其中KTVP V n ⋅=4141是每秒和器壁单位面积碰撞的分子数,2)2(d s π=是小孔面积,t=3600s ,故t s V KTPN ⋅⋅⋅=41,代入数据得: N=4.05×1019(个)∴)(1035.11005.41002.610201219233g N N m N M A--⨯=⨯⨯⨯⨯===μ3-11如图3-11,一容器被一隔板分成两部分,其中气体的压强,分子数密度分别为p 1、n 1、p 2、n 2。
两部分气体的温度相同,都等于T 。
摩尔质量也相同,均为μ。
试证明:如隔板上有一面积为A 的小孔,则每秒通过小孔的气体质量为:)(221P P A RTM -=πμ证明:设p 1>p 2,通过小孔的分子数相当于和面积为A 的器壁碰撞的分子数。
从1跑到2的分子数:t A V n N ⋅⋅=11141从2跑到1的分子数:t A V n N ⋅⋅=22241实际通过小孔的分子数:(从1转移到2))221121(41V n V n At N N N -=-=∆ 因t=1秒,KTPn =,πμRTV 8=T 1=T 2=T∴)(2)(841)(841212121P P A RTP P RTRTA KT P KT PRT Am n m M -=-=-==∆=πμπμμπμ若P 2>P 1,则M <0,表示分子实际是从2向1转移。
3-12 有N 个粒子,其速率分布函数为)0()(0〉〉==v v C NdvdNv f )(0)(0v v v f 〈=(1)作速率分布曲线。
(2)由N 和v 0求常数C 。
(3)求粒子的平均速率。
解:(1) )0()(0〉〉=v v C v f )(0)(0v v v f 〈= 得速率分布曲线如图示(2)∵1)(0=⎰∞dv v f∴10)(0==⎰⎰∞v cdv dv v f即10=cv 01v c =(3)02002121)(v cv dv v vf v ===⎰∞3-13 N 个假想的气体分子,其速率分布如图3-13所示(当v >v 0时,粒子数为零)。