【新人教】2012年高考数学总复习《函数》 (2)
2012高考数学一轮复习--函数的图象2

值范围,即 等价于 0<a≤kOB, 而 kOB= 2k1+1.
∴0<a≤ 2k1+1, (其中kN+)
5/12/2019
13
§2.9.2 函数的图象(二)
y
例4.利用函数图象解不等式 4-x2 > -x-1.
2
A
解: 圆心,
令 y= 4-x2 , 它的图象是以原点为
2 为半径的半圆.
-2
xA
-1
过来, 满足 y=f(x) 的每一组对应值 x, y 为坐标的点 (x, y), 均在其图象上.
5/12/2019
2
§2.9.2 函数的图象(二)
2、函数作图基本思路
1)讨论函数的定义域及函数的基本性质; 2)若函数的图象与图象变换有关, 则应考虑用 图象变换作出图象; 3)作函数的图象必须准确描出关键的点线(如图象 与 x, y 轴的交点, 极值点, 对称轴, 渐近线等).
④y=f(x) 与 y=f(|x|)
⑤ y=f(x) 与 y=|f(x)|
关于 y 轴对称 关于 x 轴对称 关于原点对称
保留 y 轴右边图象, 去掉左边图象, 再作关于 y 轴的对称图象. 保留 x 轴上方图象, 将 x 轴下方图 象翻折上去.
5/12/2019
7
§2.9.2 函数的图象(二)
4、函数图象的对称性
5/12/2019
3
§2.9.2 函数的图象(二)
3、函数图象的画法
函数图象的画法有两种常见的方法: 一是描点法; 二是图象变换法.
1)描点法
描点法作函数图象是根据函数解析式, 列出函 数中 x, y 的一些对应值表, 在坐标系内描出点, 然后 用平滑的曲线将这些点连接起来. 利用这种方法作 图时, 要与研究函数的性质结合起来.
【新人教】2012年高考数学总复习《函数》

函数测试卷一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点A. (2,-2)B. (2,2)C. (-4,2)D. (4,-2)2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解读式是A .121()2y x x =->B .121y x =-C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为xy 2=的图像,则)(x f y =的函数表达式为A. 22+=x y B. 22+-=x yC. 22--=x y D. )2(log 2+-=x y7.当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)ab a b +>+C.2)1()1(b b a a ->- D.(1)(1)a ba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是A.1[,)2-+∞B.[)+∞,0C.[)+∞,1D.2[,)3+∞ 9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
【新人教】2012年高考数学总复习专题训练函数训练

2012年高考数学总复习函数一、填空题:(每题4分,共44分)1.函数y=lg(x -1)的定义域为. 2. 函数y =cos (2x +4π)的最小正周期是 3.等比数列{a n }中,2,211-==q a ,则a 3= 4.直线3x -y +1=0的倾斜角为 5.椭圆22x +y 2=1的长轴长为6.已知向量a =(1,2), b =(-2,1),则a 与b 的夹角的大小为 7.若a >0,b >0,ab =4,则a+b 的最小值为. 8.511213x y i i i+=---,x 、y ∈R,则x y +=. 9.设函数f (x )=x 2+x ,若f (a )<0,则f (a +1)与0的大小关系是f (a +1)0(填“>”或“<”) 10.()f x 表示6x -+和2246x x -++中较小者,则函数()f x 的最大值是 11.已知函数()sin(ω+)f x x =ϕ(πω0,||2>ϕ<),给出下列四个论断: ①()f x 的图象关于直线π12x =对称。
②()f x 的图象关于点π(,0)3对称。
③()f x 的周期为π。
④()f x 在π[,0]6-上是增函数,试以其中两个为条件,另两个为结论,写出一个你认为正确的命题(填序号即可).二、选择题:(每题4分,共16分)12.已知a 、b 是两条不同的直线,α是平面,且a ⊥α,设命题p :b //α;命题q :a ⊥b ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件题号1-1112-15161718192021总分得分13.过原点的直线与圆x 2+y 2-4x +3=0相切,若切点在第四象限,则该直线的方程是 ( ) A .y =3xB .y =33x C .y =-3x D .y =-33x 14.在△ABC 中,若a =2b cosC ,则△ABC 的形状是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形15.设函数()y f x =是定义在R 上奇函数,且满足(2)()f x f x -=-对一切x R ∈都成立,又当[]1,1x ∈-时3()f x x =则下列四个命题:①函数()y f x =是以4为周期的周期函数②当[]1,3x ∈时3()(2)f x x =-③函数()y f x =图像的对称轴中有x=1④当[]3,5x ∈时3()(2)f x x =-其中正确的命题个数为 ( )A 1B 2C 3D 4 三、解答题:(满分90分)16.(12分)如图,在直三棱柱ABC —A 1B 1C 1 中,AB =AC =1,AA 1 =2,AB ⊥AC .求异面直线BC 1与AC 所成角的度数. .17.(14分)已知等差数列{}n a 中,21531=++a a a ,94=a ,求:(1)首项1a 和公差d ; (2)该数列的前8项的和8S 的值.(第16题)A 1A BB 1CC 118.(14分)已知函数()sin(θ)cos(θ)f x x x =++-的定义域为R. (1)当πθ=2时,求()f x 的单调增区间。
【新人教】2012年高考数学总复习《函数2》

2012年高考数学总复习函数一、选择题(本大题共60分,每小题5分)1. 已知集合}2,1,1{-=M ,集合},|{2M x x y y N ∈==,则N M 是 ( )A . }3,2,1{B . }4,1{C . }1{D . Φ 2. “3x >”是“24x >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.下列各图中,可表示函数y =f (x )的图象的只可能是( )4.已知y =f (x )是奇函数,当x >0时,f (x )=x (1+x ),那么,当x <0时,f (x )的解读式是( )A .x (1+x )B .x (1-x )C .-x (1-x )D .-x (1+x ) 5.设函数x xx f =+-)11(,则)(x f 的表达式为() A .x x -+11B . 11-+x x C .x x +-11D .12+x x 6.在区间(0,)+∞上不是增函数的是 ( )A.21y x =+B.21y x =+C.3y x =D.2221y x x =++ 7.函数2651()()3x x f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞8.已知函数21)(x x f =,x x g )21()(=,则在[)+∞,0上( ) A. )(x f 和)(x g 都是增函数 B. )(x f 是减函数,)(x g 是增函数C. )(x f 和)(x g 都是减函数D. )(x f 是增函数,)(x g 是减函数9.如果命题“p 或q ”与命题“非p ”都是真命题,那么( )A.命题q 一定是真命题B.命题q 不一定是真命题C.命题p 不一定是真命题D.命题p 与命题q 真值相同10.二次函数c bx x y ++-=2在区间]2,(-∞上是增函数,则实数b 的取值集合是( )(A ){}4|≥b b (B ){}4 (C ){}4|≤b b (D ){}4- 11.函数2121x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数12. 已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为A .3B .2C .-2D .-3二、填空题(本大题共30分,每小题5分)13.、函数21y x x =++在[—1,1]上的最小值和最大值分别是14.()f x = 15.满足{}0,1,2⊆{0,1,2,3,4,5}A ⊆和集合A 的个数是_______个。
2012高考数学二轮复习分类汇编 函数总结

2012高考数学二轮复习分类汇编:函数总结一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和 y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
2012年高考数学 二轮专题复习 专题11第2讲 函 数课件

解析 ①两个函数的定义域不同;②可以通过在函数图
象上取点证明;③可以证明 y=f(x)是以 4 为f(x)=|x+1|+|x-a|的图象关于直线 x=1 对称,则 a 的值为____3____. 解析 f(x)关于 x=1 对称,则 f(x)=f(2-x)=|x-3|+|x+a -2|,∴当 a-2=1,即 a=3 时,符合要求.
(3)由 fxx12=f(x1)-f(x2)知,f93=f(9)-f(3), 而 f(3)=-1,所以 f(9)=-2. 由于函数 f(x)在区间(0,+∞)上是单调递减函数, ∴f(|x|)<-2=f(9),∴|x|>9, ∴x>9 或 x<-9. 因此不等式的解集为{x|x>9 或 x<-9}.
x与 x
y=ln
tan
x2是同一函数;
②若函数 y=f(x)与 y=g(x)的图象关于直线 y=x 对称;则 函数 y=f(2x)与 y=12g(x)的图象也关于直线 y=x 对称;
③若奇函数 f(x)对定义域内任意 x 都有 f(x)=f(2-x),则
f(x)为周期函数. 其中所有真命题是__②__③____.(填正确命题的序号)
10.已知定义在区间(0,+∞)上的函数 f(x)满足 fxx12=f(x1) -f(x2),且当 x>1 时,f(x)<0. (1)求 f(1)的值; (2)判断 f(x)的单调性; (3)若 f(3)=-1,解不等式 f(|x|)<-2.
解 (1)令 x1=x2>0, 代入得 f(1)=f(x1)-f(x1)=0,故 f(1)=0. (2)任取 x1,x2∈(0,+∞),且 x1>x2, 则xx12>1,由于当 x>1 时,f(x)<0,所以 fxx12<0, 即 f(x1)-f(x2)<0,因此 f(x1)<f(x2), 所以函数 f(x)在区间(0,+∞)上单调递减.
【新课标】2012年高考数学专题冲刺复习专题一第2讲 函数、基本初等函数的图象与性质

6.指数函数与对数函数的图象和性质 指数函数 形如 y=ax (a>0 且 定义 a≠1)的函数叫指数 函数 对数函数 形如 y=logax(a>0 且 a≠1) 的函数叫对数函数
图象
定义域 值域
R {y|y>0}
{x|x>0} R
过定点
(0,1) 调递减; 递增 0<a<1,
(1,0) 上单调递减; 单调递增 0<a<1, 当 0<x<1 时,y>0 当 0<x<1 时,y<0
探究提高 本小题主要考查对数函数的性质、函数的单调 性、函数的值域,在做本题时极易忽视 a 的取值范围,而 利用基本不等式求得 a+2b,从而错填 2 2,这也是命题 者的用心良苦之处.
变式训练 1 已知函数 f(x)=|log2x|,正实数 m,n 满足 m<n, 且 f(m)=f(n),若 f(x)在区间[m2,n]上的最大值为 2,则 n 5 +m=________. 2 解析 因为 0<m<n 且 f(m)=f(n), 1 所以 0<m<1<n,且 m= . n
4.函数图象是函数的一种直观形象的表示,是函数部分运用 数形结合思想方法的基础,要掌握好画图、识图、用图三 个基本问题. 5.函数图象的对称性 (1)若函数 y=f(x)满足 f(a+x)=f(a-x),即 f(x)=f(2a-x), 则 f(x)的图象关于直线 x=a 对称. (2)若 f(x)满足 f(a+x)=f(b-x),则函数 f(x)的图象关于直 a+b 线 x= 对称. 2 (3)若函数 y=f(x)满足 f(x)=2b-f(2a-x), 则该函数图象关 于点(a,b)成中心对称.
【新人教】高考数学总复习《函数2》2013

2012年高考数学总复习函数一、选择题(本大题共60分,每小题5分)1. 已知集合}2,1,1{-=M ,集合},|{2M x x y y N ∈==,则N M 是 ( )A . }3,2,1{B . }4,1{C . }1{D . Φ2. “3x >”是“24x >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.下列各图中,可表示函数y =f (x )的图象的只可能是( )4.已知y =f (x )是奇函数,当x >0时,f (x )=x (1+x ),那么,当x <0时,f (x )的解析式是( )A .x (1+x )B .x (1-x )C .-x (1-x )D .-x (1+x ) 5.设函数x x x f =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x 6.在区间(0,)+∞上不是增函数的是 ( )A.21y x =+B.21y x =+C.3y x =D.2221y x x =++ 7.函数2651()()3x x f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞8.已知函数21)(x x f =,x x g )21()(=,则在[)+∞,0上( ) A. )(x f 和)(x g 都是增函数 B. )(x f 是减函数,)(x g 是增函数C. )(x f 和)(x g 都是减函数D. )(x f 是增函数,)(x g 是减函数9.如果命题“p 或q ”与命题“非p ”都是真命题,那么( )A.命题q 一定是真命题B.命题q 不一定是真命题C.命题p 不一定是真命题D.命题p 与命题q 真值相同10.二次函数c bx x y ++-=2在区间]2,(-∞上是增函数,则实数b 的取值集合是( )(A ){}4|≥b b (B ){}4 (C ){}4|≤b b (D ){}4-11.函数2121x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数12. 已知⎩⎨⎧>-<+=0404)(x x x x x f ,则)3([-f f ]的值为A .3B .2C .-2D .-3二、填空题(本大题共30分,每小题5分)13.、函数21y x x =++在[—1,1]上的最小值和最大值分别是14.()f x =的定义域是 15.满足{}0,1,2⊆{0,1,2,3,4,5}A ⊆和集合A 的个数是_______个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数测试题一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点A. (2,-2)B. (2,2)C. (-4,2)D. (4,-2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =->B .121y x =-C .11()212y x x =>-D .121y x =-4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为A. 22+=x yB. 22+-=x yC. 22--=x yD. )2(log 2+-=x y 7. 当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)a b a b +>+C.2)1()1(b b a a ->- D.(1)(1)aba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是A.1[,)2-+∞B. [)+∞,0C. [)+∞,1D.2[,)3+∞9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3 C.1[,1)7 D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
洗浴时,已知每分钟放水34升,在放水的同时按4升/分钟的匀加速度自动注水。
当水箱内的水量达到最小值时,放水程序自动停止,现假定每人洗浴用水量为65升,则该热水器一次至多可供 A .3人洗浴 B .4人洗浴 C .5人洗浴 D .6人洗浴二、填空题(共25分)11.已知偶函数()f x 在[]0,2内单调递减,若()()0.511,(log ),lg 0.54a fb fc f =-==,则,,a b c 之间的大小关系为 。
12. 函数log a y x =在[2,)+∞上恒有1y >,则a 的取值范围是 。
13. 若函数14455ax y a x +⎛⎫=≠ ⎪+⎝⎭的图象关于直线y x =对称,则a = 。
14.设()f x 是定义在R 上的以3为周期的奇函数,若23(1)1,(2)1a f f a ->=+,则a 的取值范围是 。
15.给出下列四个命题:①函数x y a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同;②函数3y x =与3xy =的值域相同;③函数11221x y =+-与2(12)2x xy x +=⋅都是奇函数;④函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是_____________。
(把你认为正确的命题序号都填上)三、解答题(共75分)(本大题共6小题,共75分,解答应写出文字说明,证明过程,或演算步骤)16.(本小题满分12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+=(1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<17.(本题满分12分) 已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+. (1)当a =2时,求A B ; (2)求使B ⊆A 的实数a 的取值范围.18.(本小题满分12分)函数xax x f -=2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;(3)函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值.19.(本题满分12分) 已知函数)(x f 的图象与函数21)(++=xx x h 的图象关于点A (0,1)对称.(1)求函数)(x f 的解析式(2)若)(x g =)(x f +xa,且)(x g 在区间(0,]2上的值不小于6,求实数a 的取值范围.20.(本小题满分13分)某出版公司为一本畅销书定价如下:()***12(124,)11(2548,)10(49,)n n n N C n n n n N n n n N ⎧≤≤∈⎪=≤≤∈⎨⎪≥∈⎩.这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元)(1)有多少个n,会出现买多于n 本书比恰好买n 本书所花钱少? (2)若一本书的成本价是5元,现有两人来买书,每人至少买1本,两人共买60本,问出版公司至少能赚多少钱?最多能赚多少钱?21.(本小题满分14分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立;②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
(1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当x ∈[]1,m 时,就有()f x t x +≤成立。
荆门市实验高中高三第一轮复习《函数》测试题 答案一、1.D 2. B 3.C 4.C 5.A 6.B 7. D 8.D 9.D 10.B 二.11. c a b >> 12. 1(,1)(1,2)213.-5 14. (-1,32) 15. ⑴⑶ 三.解答题16.解:(1)()()()()()()9332,27933f f f f f f =+==+=(2)()()()()889f x f x f x x f +-=-<⎡⎤⎣⎦而函数f(x)是定义在()0,+∞上为增函数08089(8)9x x x x x >⎧⎪∴->⇒<<⎨⎪-<⎩即原不等式的解集为(8,9)17. 解:(1)当a =2时,A =(2,7),B =(4,5)∴ A B =(4,5).………4分(2)∵ B =(a ,2a +1),当a <13时,A =(3a +1,2) ………………………………5分 要使B ⊆A ,必须223112a a a ≥+⎧⎨+≤⎩,此时a =-1;………………………………………7分当a =13时,A =Φ,使B ⊆A 的a 不存在;……………………………………9分当a >13时,A =(2,3a +1)要使B ⊆A ,必须222131a a a ≥⎧⎨+≤+⎩,此时1≤a ≤3.……………………………………11分综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}……………………………12分 18. 解:(1)显然函数)(x f y =的值域为),22[∞+; ……………3分 (2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可, …………………………5分 由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a ,故a 的取值范围是]2,(--∞; …………………………7分 (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当1=x 时取得最小值a -2;当02<<-a 时,函数)(x f y =在].0(22a -上单调减,在]1,[22a -上单调增,无最大值,当2a x -=时取得最小值a 22-. …………………………12分19. 解:(1)设)(x f 图象上任一点坐标为),(y x ,点),(y x 关于点A (0,1)的对称点)2,(y x --在)(x h 的图象上………… 3分,1,212x x y x x y +=∴+-+-=-∴即x x x f 1)(+= …… 6分(2)由题意 x a x x g 1)(++= ,且61)(≥++=xa x x g ∵∈x (0,]2 ∴ )6(1x x a -≥+,即162-+-≥x x a ,………… 9分令16)(2-+-=x x x q ,∈x (0,]2,16)(2-+-=x x x q 8)3(2+-x =-,∴∈x (0,]2时,7)(max =x q …11′∴ 7≥a ……………… 12分 方法二:62)(+-='x x q ,∈x (0,]2时,0)(>'x q即)(x q 在(0,2]上递增,∴∈x (0,2]时,7)(max =x q ∴ 7a ≥20.解(1)由于C (n )在各段上都是单调增函数,因此在每一段上不存在买多于N 本书比恰好买n 本书所花钱少的问题,一定是在各段分界点附近因单价的差别造成买多于n 本书比恰好买n 本书所花钱少的现象.C (25)=11⨯25=275,C (23)=12⨯23=276,∴C (25)<C (23)……..1分 C (24)=12⨯24=288,∴ C (25)<C (24)…………………..…………..2分 C (49)=49⨯10=490,C (48)=11⨯48=528,∴ C (49)<C (48) C (47)=11⨯47=517,∴ C (49)<C (47) C (46)=11⨯46=506,∴ C (49)<C (46)C (45)=11⨯45=495,∴ C (49)<C (45)……….. ……….………..……..5分 ∴这样的n 有23,24,45,46,47,48 …….………..……….. ……………6分 (2)设甲买n 本书,则乙买60-n 本,且n ≤30,n *N ∈(不妨设甲买的书少于或等于乙买的书)①当1≤n ≤11时,49≤60-n ≤59出版公司赚得钱数()1210(60)5602300f n n n n =+--⨯=+…….. …7分 ②当12≤n ≤24时,36≤60-n ≤48,出版公司赚得钱数()1211(60)560360f n n n n =+--⨯=+ ③当25≤n ≤30时,30≤60-n ≤35,出版公司赚得钱数()1160560360f n =⨯-⨯=……..……….. ………9分∴2300,111()360,1224360,2530n n f n n n n +≤≤⎧⎪=+≤≤⎨⎪≤≤⎩……..………………………………..10分∴当111n ≤≤时,302()322f n ≤≤ 当1224n ≤≤时,372()384f n ≤≤当2530n ≤≤时,()360f n ≤…….………. .………. .………. .………...……..12分 故出版公司至少能赚302元,最多能赚384元…….. .………. .……….………..13分21. 解: (1)在②中令x=1,有1≤f(1)≤1,故f(1)=1 (3)分(2)由①知二次函数的关于直线x=-1对称,且开口向上故设此二次函数为f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=41∴f(x)= 41(x+1)2 (7)分(3)假设存在t ∈R,只需x ∈[1,m],就有f(x+t)≤x.f(x+t)≤x ⇒41(x+t+1)2≤x ⇒x 2+(2t-2)x+t 2+2t+1≤0.令g(x)=x 2+(2t-2)x+t 2+2t+1,g(x)≤0,x ∈[1,m].40(1)0()011t g g m t m t -≤≤⎧≤⎧⎪⇒⎨⎨≤--≤-+⎪⎩⎩∴m ≤1-t+2t -≤1-(-4)+2)4(--=9t=-4时,对任意的x∈[1,9]恒有g(x)≤0, ∴m的最大值为9. (14)分。