(9)渐进法及超静定结构的影响线
超静定结构影响线

A 0.123 0.346 B 0.151 C 0.108 D
0.497 0.281 0.389 0.520
§9.6 连续梁的最不利荷载分布及内力包络图
q=2kN/m A C 2 4 B A MC 的影响线
A
B
C
FQK
δ 11
D
E
F
FQK 的影响线
A
B
FQK右δ 11 C
D
E
F
FQC右的影响线 A B FQK左 C δ 11 D E F
FQC左的影响线
三、确定影响线的量值举例:求MB的影响线
x1 PP =1 A 6 B 6 x2 PP =1 C 6 x3 PP =1 D
A
MA θA x y L
MB B θB
x A
PP =1 B Z1
C
x A x A
PP =1 B Z1 PP =1 B δ PP δ 1P B δ 11 Z1 =1
C
C
A
δ P1
C
机动法做影响线的步骤:
1、撤掉所求量值响应的约束条件,代上约 束力; 2、使体系沿约束力的正方向发生位移,作 出体系的挠度图,就是影响线的形状图; 3、挠度图每个位置都除以δ11,就确定了影 响线的量值; 4、横坐标以上图形为正号,横坐标以下图 形为负号
图示连续梁的弯矩影响线的形状的最不利布置最小m的最不利布置最大m的最不利布置最小m将连续梁等分成若干段计算各等分点的最大弯矩值和最小弯矩值kmaxkmin
§9.5 超静定结构的影响线
• 单位荷载沿杆件轴线移动时,支座反力和内力的某个 量值随荷载位置的变化规律,称为影响线。 一、静力法:用力法、位移法力矩分配法等求出量值与 荷载位置的函数关系: x PP =1 • 求Z1的影响线: A B C
“结构力学I”课程标准

“结构力学I”课程标准课程名称:结构力学I英文名称:Structural Mechanics I课程代码:课程类别:专业教育必修课程(专业核心课程)课程学时:56课程学分:3.5适用专业:土木工程先修课程:高等数学、理论力学、材料力学等授课学院:建筑工程学院教研室:土木工程教研室制定人:赵腾飞、袁立群、孟昭博审定人:张绪涛、孟昭博、崔诗才一、课程性质《结构力学I》是土木工程专业必修的专业核心课程之一,将为后续专业课程学习打下良好的基础。
通过本课程的学习,学生在理论力学和材料力学的基础上可以进一步掌握分析计算杆件体系的基本原理和方法,了解各类结构的受力性能,培养学生结构分析与计算的能力,为学习有关专业课程及进行结构设计和科学研究打下基础,并能够应用结构力学基本理论和方法解决工程实际问题。
二、目标要求(一)总体目标掌握结构在荷载、支座移动等因素作用下结构强度、刚度等的分析、计算方法;掌握结构的合理组成形式及分析方法;熟悉结构力学相关的基本概念,了解近似计算方法、了解计算结构力学的相关分析方法。
在头脑中初步建立结构的力学思维方式,能正确应用力学知识对结构的强度、刚度以及结构合理组成进行分析。
(二)具体目标1.知识目标(1)能理解结构力学的一般概念及结构受力、变形等特点;(2)能正确建立力学相关计算模型并对其进行结构几何组成分析;(3)能正确利用多种方法对结构进行受力分析、绘制相应的内力图;(4)能正确通过虚功法求解结构的位移,并能大致绘制结构的变形图。
2.能力目标(1)能熟练计算、绘制静定结构、超静定结构的内力;(2)能熟练求出指定截面的广义位移;(3)能判别平面杆系结构的几何组成合理性。
3.素质目标(1)能将力学知识应用于实际工程中,着力培养工程实践能力;(2)引入前延、后续课程,做好课程衔接,形成课程体系,为后学专业课学习打好基础;(3)培养学生的受力概念、直观受力感觉和力学意识,勇于担当结构安全和经济两大重任。
结构力学第9章__力矩分配法(新)

9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7
结构力学-渐近法和超静定影响线

M
18 / 57
第十二章 渐近法和超静定影响线
练习:用力矩分配法求图示结构弯矩图。
40 kN
q = 10 kN/m
A EI
4m
μ
MF
分 配 传 递
M
B
4m
EI C
6m
19 / 57
第十二章 渐近法和超静定影响线
例题:用力矩分配法求图示结构弯矩图(EI=常
数) 。q
结点 B A
1
C
B
1
C
2ql
l
Al
k
M1A 传递系数
∑ M 1i =
S1i S1k
M
= μ1i M
=
M
μ 1i
传递弯矩
k
M
C i1
=
C
ቤተ መጻሕፍቲ ባይዱ
1i
M
μ 1i
分配弯矩
9 / 57
第十二章 渐近法和超静定影响线 第二节 力矩分配法基本运算
注 意:
① 结点集中力偶M按指定方向为正。 ② 分配系数表示近端承担结点外力偶的比率,它等于该
杆近端的转动刚度与交与结点1的各杆转动刚度之和 的比值。 ③ 只有分配弯矩才能向远端传递。 ④ 分配弯矩是杆端转动时产生的近端弯矩,传递弯矩是 杆件近端转动时产生的远端弯矩。
10 / 57
第十二章 渐近法和超静定影响线 第二节 力矩分配法基本运算
2、单结点结构在跨间荷载作用下的计算
q
变形过程想象成两个阶段进行
B
1
C
固定+放松
A
q
R1P
• 固端弯矩引 B
1
起不平衡力
固定
C
矩R1P
结构力学教程——第12章 渐进法和超静定结构的影响线

性质,可得到柱子两端弯矩。
知识点 12.5-3
柱间有水平荷载作用时的计算
I=∞
A
C
q
i1 h1
B
i2 h2 D
I=∞
A
C
q
i1 h1
i2 h2
B
+
D
A
i1 h1 B
I=∞ C
i2 h2 D
P 单跨梁计算
P 力矩分配法
知识点
12.6 用机动法绘制连续梁的影响线
力法基本方程
11 Z1 1P 0
SBA 1 5
CBA 1
例2:作图示刚架的弯矩图
解 (1)固端弯矩
M
F AB
M
F BA
1 4 kN 3.3m 2
= 6.6kN m
M
F BC
M
F CB
1 (4 8.5)kN 3.6m 2
= 22.5kN m
(2)分配系数
SBA iBA 3.5 SBC iBC 5 SBE 3iBE 162
(http://structuremechanics/index1.htm)
1. 课程导入
连续梁桥
q
多跨连续梁
2. 结点力矩下单结点力矩分配
2.1 力矩分配法概念的提出 回顾位移法
例1:若梁线刚度 i 相同,求梁各杆端弯矩。
M
M
B
A
MBA MBC
M BA 4iB
B
θB
C
M AB 2iB
M BC 3iB
SCB 4 SCF 2 SCD 3
CB 0.445 CD 0.333 CF 0.222
解(1)转动刚度和分配系数
EI0=1
考研结构力学知识点梳理

第一章结构的几何构造分析1.瞬变体系:本来是几何可变,经微小位移后,又成为几何不变的体系,成为瞬变体系。
瞬变体系至少有一个多余约束。
2.两根链杆只有同时连接两个相同的刚片,才能看成是瞬铰。
3.关于无穷远处的瞬铰:(1)每个方向都有且只有一个无穷远点,(即该方向各平行线的交点),不同方向有不同的无穷远点。
(2)各个方向的无穷远点都在同一条直线上(广义)。
(3)有限点都不在无穷线上。
4.结构及和分析中的灵活处理:(1)去支座去二元体。
体系与大地通过三个约束相连时,应去支座去二元体;体系与大地相连的约束多于4个时,考虑将大地视为一个刚片。
(2)需要时,链杆可以看成刚片,刚片也可以看成链杆,且一种形状的刚片可以转化成另一种形状的刚片。
5.关于计算自由度:(基本不会考)(1) ,则体系中缺乏必要约束,是几何常变的。
(2)若 ,则体系具有保证几何不变所需的最少约束,若体系无多余约束,则为几何不变,若有多余约束,则为几何可变。
(3) ,则体系具有多与约束。
是保证体系为几何不变的必要条件,而非充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.第二章静定结构的受力分析1.静定结构的一般性质:(1)静定结构是无多余约束的几何不变体系,用静力平衡条件可以唯一的求得全部内力和反力。
(2)静定结构只在荷载作用下产生内力,其他因素作用时,只引起位移和变形。
(3)静定结构的内力与杆件的刚度无关。
(4)在荷载作用下,如果仅靠静定结构的某一局部就可以与荷载维持平衡,则只有这部分受力,其余部分不受力。
(5)当静定结构的一个内部几何不变部分上的荷载或构造做等效变换时,其余部分的内力不变。
(6)静定结构有弹性支座或弹性结点时,内力与刚性支座或刚性节点时一样。
解放思想:计算内力和位移时,任何因素都可以分别作用,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院里的应用条件是:用于静定结构内力计算时应满足小变形,用于位移计算和超静定结构的内力计算时材料还应服从胡克定律,即材料是线弹性的。
10(超)静定结构的影响线解析

§9-5 超静定力的影响线1、影响线的特征与求解方法1)影响线的特征静定结构——反力、内力影响线均为直线;位移影响线为曲线。
超静定结构——各量值的影响线均为曲线。
2)影响线的求作方法静力法——利用静力平衡条件求影响线方程,进而绘制影响线。
但对超静定力的影响线须解超静定问题,复杂、少用。
机动法——利用影响线与移动载荷作用点位移(挠度)图的比拟关系,快速绘制影响线轮廓。
简便、实用。
2、机动法求作超静定力影响线以图9-14连续梁(超静定梁)M K的影响线为例,说明用机动法求作超静定力影响线的方法。
1)取基本结构(超静定、几何不变体系)图b——去掉与XK 相应的约束,代之以(暴露出)约束反力XK ;A B C D EF P=1K(a)原结构A B C D EF P=1X K(M K)(下拉为正)(b)基本结构图9-14§9-5 超静定力的影响线2)建立力法典型方程k kk kp X δδ+=1()kp k pk kk kkX x δδδδ∴=-=-⋅()()pk kp x x δδ=ABCD EF P =1K ABCD E F P =1X K (M K )(下拉为正)(b)基本结构§9-5 超静定力的影响线K 截面相对转角为0式中δkk ——常数,不随X 而变化。
δpk ——载荷F P =1位置参数X 的函数,即δPK =δPK (x),其位移图如图9-14c 所示。
互等定理图9-14ABCDEX K (M K )(下拉为正)θB(c)挠度图⏹写成更明确的形式:()()1pk kkk x x X δδ=-ABCD EK+图9-15X k (M k )的影响线结论:X k 与δpk 成正比;挠度图即为影响线轮廓线图9-14ABCDEX K (M K )(下拉为正)θB(c)作用挠度图1kM=§9-5 超静定力的影响线X k 向上为正δpk 以向下为正(与p=1同向)X k 与δpk 反向3、求做超静定力影响线的步骤⏹1)撤去与所求约束力(或量值)相应的约束,代之以反力X K ;●2)使体系沿X K 正方向发生位移,作出移动载荷作用点的挠度δPK =δPK (x)(位移)图即为影响线X K (x)的形状;●3)将δPK 图除以常数δKK 使可确定影响线的具体数值;●4)横坐标以上图形为正号,横坐标以下图形为负号。
理学结构力学渐进法

§9-2 力矩分配法的基本原理
力矩分配法:适用于连续梁和无结点线位移的刚架计算。
一、转动刚度S: SAB=4i
1
4i
1
转动刚度 (劲度系数) 杆件AB(如图)的A端转动单 位角时,A端(近端)的弯矩 MAB称为该杆端的劲度系数,用 SAB表示。
转动刚度 (劲度系数)标志该杆端 抵抗转动能力的大小。与杆件 的线刚度有关,与杆件另一端 (远端)的支承情况有关。
取一半结构计算,如图d。
由于假设H点无水平位移,此时竖杆均为无侧移杆,所有横梁都是剪 力静定杆→可用无剪力分配法求解。
§9-4 无剪力分配法
计算过程如图a。
§9-4 无剪力分配法
弯矩图如图b。
求F点的竖向位移时,静定的基本体系如图c。
ΔFy
1 EI
Fl [ 1523l 10000 2
1 3
2l 3
§9-4 无剪力分配法 • 用于计算有侧移刚架。 • 要求刚架仅由剪力静定杆和无侧移杆组成。
无侧移杆
无侧移杆
剪力静定杆
剪力静定杆
无侧移杆
剪力静定杆
§9-4 无剪力分配法
剪力静定杆的转动刚度、传递系数和固端弯矩
剪力静定 杆
M
F AB
ql 2 3
;SLeabharlann A iMF BAql 2 6
CBA 1
剪力静定杆可看成一端固定,一端滑动的单跨超静定梁
配并传递,如图。
§9-3 用力矩分配法计算连续梁和无侧移刚架
例9-2 试用力矩分配法计算图a 所示连续梁,并绘制弯矩图。
解:EF的内力是 静定可去掉。
1、计算分配系数 设i=2EI/8m。
DC BC
4i 0.625 4i 3 0.8i