含硫氨基酸分离

合集下载

含硫氨基酸的测定_概述说明以及解释

含硫氨基酸的测定_概述说明以及解释

含硫氨基酸的测定概述说明以及解释1. 引言1.1 概述本文旨在对含硫氨基酸的测定方法进行综述与解释。

含硫氨基酸是一类重要的生物分子,在许多生物过程中扮演着关键角色,如蛋白质合成、酶活性以及细胞信号传导等。

因此,精确测定含硫氨基酸的浓度对于理解生物系统的功能和调控机制具有重要意义。

1.2 文章结构本文将分为以下几个部分来介绍含硫氨基酸的测定方法及其应用。

首先,我们将给出包括概述、文章结构和目的在内的引言部分。

接着,在第二部分中,我们将简要介绍含硫氨基酸的定义和分类,并阐述为什么测定这些化合物非常重要。

同时,我们还将回顾现有的测定方法以及它们的优缺点。

然后,在第三部分中,我们会详细解释光谱测定法、色度测定法和气相色谱测定法这三种常见方法,并讨论它们之间的异同以及适用范围。

在第四部分中,我们将描述实验条件、样品准备和测量结果的处理方法,并进行数据分析,以便更好地理解含硫氨基酸的存在和含量。

最后,在第五部分中,我们将总结研究的主要发现,并探讨当前研究的局限性以及未来进一步深入研究的方向。

1.3 目的通过本文的撰写,旨在为读者提供有关含硫氨基酸测定方法的全面概述和详细解释。

希望能够帮助读者理解为什么测定含硫氨基酸是重要且有挑战性的,并为科学家们在这一领域开展研究提供指导和启示。

同时,希望通过介绍不同测定方法及其优缺点,对读者在实验设计和数据分析方面提供一些参考和借鉴,进一步推动该领域的发展与创新。

2. 含硫氨基酸的测定概述2.1 含硫氨基酸简介含硫氨基酸是一类具有硫原子的氨基酸,包括半胱氨酸(Cys)和甲硫氨酸(Met)。

它们在生物体内发挥着重要的生理功能,如参与蛋白质合成、维持细胞结构稳定性以及抗氧化等作用。

因此,准确测定含硫氨基酸的含量对于了解其在生物过程中的角色起着关键的作用。

2.2 测定含硫氨基酸的重要性精确测定含硫氨基酸的含量在许多领域具有重要意义。

首先,在食品工业中,对食品中含硫氨基酸进行测定可以评估膳食蛋白质质量,并为产品开发提供参考。

《氨基酸工艺学》7 氨基酸分离提取和精制

《氨基酸工艺学》7 氨基酸分离提取和精制

1、常规过滤
➢ 常规过滤时,固体颗粒被截留在多孔性介质表面形成滤饼,液 体在推动力的作用下穿过滤饼和多孔性介质的微孔,从而获得 澄清的过滤液。
➢ 由于操作阻力较大,且固体颗粒的粒径越小,操作阻力越大, 因此,常规过滤适用于悬浮颗粒粒径在10-100μm范围内的悬浮 液。
➢ 在氨基酸工业中,常采用板框压滤机和真空转鼓式过滤机过滤 预处理后的发酵液。
1、离子交换的基本概念
➢ 树脂颗粒吸附过程大致分为5个阶段:
① 发酵液中的氨基酸阳离子扩 散至树脂颗粒表面(外扩散); ② 氨基酸阳离子穿过树脂颗粒 表面向树脂颗粒内部扩散(内 扩散); ③ 氨基酸阳离子与树脂颗粒中 的H+交换(离子交换);④ 交换产生的游离H+从树脂颗粒 内部向树脂表面扩散(内扩 散); ⑤ 游离的H+进一步扩散至发 酵液中(外扩散)。
聚糖、明胶、骨胶等天然有机高分子聚合物。 ➢ 化学合成聚合物包括有机高分子聚合物和无机高分子聚合物,
其中,常见的有机高分子聚合物有聚丙烯酰胺类衍生物、聚丙 烯酸类和聚苯乙烯类衍生物等,常见的无机高分子聚合物有聚 合铝盐和聚合铁盐等。 ➢ 氨基酸发酵液絮凝操作过程中,影响絮凝效果的因素很多,主 要有絮凝剂的种类和相对分子质量、絮凝剂用量、发酵液pH值、 搅拌速率和搅拌时间等因素。
离子型。 ➢ 离子型絮凝剂带多价电荷,且长链线状结构上的电荷密度会显
著影响其的絮凝效果。 ➢ 通过絮凝预处理过程,可将氨基酸发酵液中的微生物细胞和碎
片、菌体和蛋白质等胶体粒子聚集形成粗大絮凝团,从而提高 氨基酸发酵液的过滤速率和滤液质量。
5、絮凝
➢ 高分子絮凝剂的吸附架桥过程:
5、絮凝
➢ 高分子絮凝剂可分为天然聚合物和化学合成聚合物。 ➢ 天然聚合物包括聚糖类胶粘物、海藻酸钠、壳聚糖、脱乙酰壳

氨基酸分离提纯的主要方法及其应用

氨基酸分离提纯的主要方法及其应用

氨基酸分离提纯的主要方法及其应用姓名:陈福全,学号:1042032112关键字:氨基酸分离提纯应用氨基酸是蛋白质组成的基本单元,氨基酸在国民经济尤其是医药方面尤为重要,分离提纯氨基酸的技术就成了医药领域重要的技术。

氨基酸的分离提纯方法主要有沉淀法、离子交换法、萃取法、电渗析等。

其中,最常用的是离子交换法,最古老的是沉淀法。

主要的提纯方法:离子交换法,根据氨基酸是两性电解质这一特征,以及目的氨基酸与杂质氨基酸pK、pI值的差异,利用离子交换树脂对各种氨基酸吸附能力的不同对氨基酸进行分离纯化。

离子交换法的分离步骤主要包括树脂的处理、装柱、平衡、加样、洗脱等步骤。

离子交换法的示意图:离子交换法应用广泛,如味精厂采用强酸性阳离子交换树脂对L-谷氨酸阳离子进行选择性吸附,使发酵液中影响L-谷氨酸晶的杂质得以分离,日本味之素公司采用逆流多级交换,大大减少了树脂用量和洗涤树脂用水量;732阳离子交换树脂可用来分离纯化L-苯丙氨酸;分离纯化L - 谷氨酰胺基本上都采用阴阳双柱离子交换法;将胱氨酸发酵液通过732阳离子交换柱分离出精氨酸、组氨酸和赖氨酸;采用离子交换热参数泵从水解液和制革废水中浓缩分离氨基酸;采用Diaion SK1B 强酸性阳离子交换树脂从发酵液中吸附L-赖氨酸,等等的方法。

离子交换法也有自身的局限性,由于离子交换法是利用氨基酸等电点的不同,所以当两个或者多个氨基酸的等电点相近时,便无法分离,另外,氨基酸在树脂当中扩散速度较快,就要求料液的流速也相对较慢,这样自然造成了分离的缓慢,离子交换本身的生产原理也决定了反应难以连续还进行,这给工厂自动化生产带来影响,难以大规模地推广。

沉淀法,沉淀法是历史最悠久的分离纯化方法,目前仍在工业上发挥着重大的作用。

氨基酸工业中常用沉淀法有等电点沉淀法,特殊试剂沉淀法和有机溶剂沉淀法。

沉淀法原理是根据某些氨基酸可以与某些有机或者无机化合物结合而形成沉淀,可以利用这种性质向溶液中加入特定的沉淀剂,使目标氨基酸沉淀,与其他氨基酸分离,在分离后再将氨基酸与沉淀剂分离即可。

氨基酸分离——精选推荐

氨基酸分离——精选推荐

植物提取物中游离氨基酸的分离定性和定量检测1、引言在过去的二十年,制药业和美容业广泛的使用植物提取物。

植物中有生物活性的活性物质的分离鉴定和定量检测对研究结构和功能的关系很有趣。

可以通过色谱方法寻找活性物质,这种方法可以对一些活性物质进行定位例如:丹宁酸,糖类,多肽,有机酸,黄酮,氨基酸等等。

这些方法也可以鉴定代谢物和它们没有表现出生物活性的中间产物。

它们的薄层层析通常用来分离和鉴定植物中的氨基酸。

这个方法有许多益处,例如,大量的样品可以同时分析,要求时间越短,检测范围越小。

作为固定相硅胶,改良硅胶或聚酰胺可以使用,最常用的流动相是丁醇—乙酸—水,苯酚—水,丁醇—乙酸—丙酮—水。

基于C18作为固定相的反相液相色谱,使用基于醋酸盐,磷酸盐,柠檬酸盐或硼酸盐的乙腈缓冲液作为移动相。

邻苯二甲酸酐、丹磺酰氯衍生作用后通过荧光检测或紫外检测。

一些氨基酸可以转化为羟肟物质,它们可以用含有0.1 M FeCl3溶剂的0.1mHCL喷洒。

氨基酸定量检测的最佳结果使用气象色谱得到。

这篇研究展现了样品TLC,高效液相色谱和气质联用的结果。

这些植物的氨基酸含量还没有确定。

2、实验2.1游离氨基酸的提取氨基酸的分离通过对干物质采取不同的提取方法进行。

之前的研究提到了如下的方法:用5%NaCl溶剂提取,75%乙醇,0.25%NaCl,0.25m HCl,metasiliconic acid或CH3COOH–HCl –H2O混合物。

在我们的实验中用10ml1%HCl溶剂对0.5g干物质进行提取。

然后,Na3P(W3O10)4溶剂通过沉淀提取物中的沉淀来去除蛋白质。

离心后溶剂经过离子交换树脂IR 120H柱子。

柱子用40ml10%氨水洗提。

得到的溶剂蒸干,残渣溶解在1ml含有30%丙醇的水溶液中。

2.2TLC我们使用20 cm*20 cm纤维素板,厚度0.1mm。

17种主要氨基酸的标准溶剂和提取溶剂用微量吸液管处理。

来自提取液的游离氨基酸的分离和鉴定通过TLC两次洗提得到。

高效液相色谱-柱前衍生化法测定饲料中的含硫氨基酸

高效液相色谱-柱前衍生化法测定饲料中的含硫氨基酸

高效液相色谱-柱前衍生化法测定饲料中的含硫氨基酸于淑新;冯思;孙元社;唐涛;韩晶;王丰琳;李彤【摘要】A method of quantitative analysis of sulfur amino acids in feedstuffs by high performance liquid chromatography coupled with pre-column derivatization was developed. Before the feedstuffs were hydrolyzed under acidic condition, the cystine and methionine in the feedstuffs were oxidized to cysteic acid and methionine suffone respectively by performic acid, and then derivatized by 2,4-dinitrofiuorobenzene. The separation was performed on an Elite AAK C18 column ( 250 mm × 4. 6 mm, 5 μm ) by the gradient elution of 0.05 mol/L sodium acetate and acetonitrile-water (50: 50, v/v) as the mobile phase with a flow rate of 1.2 mL/min at 31 ℃.The detection wavelength was set at 360 nm. The linearities of cystine and methionine were good in the ranges of 0. 4 - 16.0 mg/L and 0. 7 - 29.6 mg/L with the correlation coefficients of 0. 999 9 and 0. 999 8, respectively. The quantification limits (S/N= 10) were 2.6 μg/kg, 3.1 μg/kg, and the recoveries were 100. 28% - 102.00% and 105.72% - 107.89%, respectively. The method can be adapted to the accurate quantification of the suffur amino acids in feedstuffs.%发展了一种饲料中含硫氨基酸的检测方法.样品经过甲酸氧化,特其中的胱氨酸和蛋氨酸分别氧化为磺基丙氨酸和蛋氰酸砜;再经酸水解后,采用2,4-二硝基氟苯进行柱前衍生化,衍生物经高效液相色谱分析.使用EliteAAK C18色谱柱(250 mm×4.6 mm,5 μm)分离;以0.05 mol/L乙酸钠和乙腈-水(50∶50,v/v)为流动相,梯度洗脱,流速为1.2 mL/min;检测波长为360 nm;柱温为31 ℃.结果表明,胱氨酸在0.4~16.0 mg/L、蛋氨酸在0.7~29.6 mg/L范围内的线性相关系数分别为0.999 9、0.999 8;胱氨艘和蛋氨酸的定量限(信噪比(S/N)=10)分别为2.6μg/kg和3.1 μg/kg;3次样品平行测定的胱氨酸和蛋氨酸含量的相对标准偏差(RSD)分别为0.79%和2.56%,加标回收率分别为100.28%~102.00%和105.72%~107.89%.该方法分析成本低,测定结果准确,灵敏度高,符合倒料中含硫氨基酸的检测要求.【期刊名称】《色谱》【年(卷),期】2011(029)003【总页数】5页(P239-243)【关键词】高效液相色谱;柱前衍牛化;2,4-二硝基氟苯;胱氨酸;蛋氨酸;饲料【作者】于淑新;冯思;孙元社;唐涛;韩晶;王丰琳;李彤【作者单位】大连依利特分析仪器有限公司,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;辽宁大连依利特分析仪器工程技术研究中心,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;辽宁大连依利特分析仪器工程技术研究中心,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;大连依利特分析仪器有限公司,辽宁,大连,116023;辽宁大连依利特分析仪器工程技术研究中心,辽宁,大连,116023【正文语种】中文【中图分类】O658含硫氨基酸通常包括胱氨酸、半胱氨酸、蛋氨酸,是禽畜生长过程中所必需的基本氨基酸。

半胱氨酸液相检测方法

半胱氨酸液相检测方法

半胱氨酸(Cysteine)是一种含硫氨基酸,其液相检测方法主要有以下几种:高效液相色谱法(HPLC):通过HPLC分离半胱氨酸,并采用荧光检测器进行检测。

该方法准确可靠,且对样品的处理较为简单。

但需要专业的仪器设备和操作技能。

紫外光谱法(UV):利用半胱氨酸在紫外光下的吸收特征,通过紫外光谱检测半胱氨酸的含量。

该方法需要高纯度的半胱氨酸标准品作为对照,对样品的处理要求较高。

气相色谱法(GC):通过气相色谱将半胱氨酸与某种适宜的载气进行分离,并通过偶联质谱等技术进行检测。

该方法对样品的处理和分离要求较高,适用于分析半胱氨酸含量较低的样品。

需要注意的是,以上方法都需要在实验室条件下进行,且实验前应根据具体需要选择合适的检测方法,并根据仪器设备和操作规范进行操作。

如果您需要更具体的信息,建议咨询化学或生物技术相关的专业人士。

氨基酸的分离原理

氨基酸的分离原理

氨基酸的分离原理
氨基酸的分离原理主要是基于它们在不同条件下的溶解性、酸碱性和极性的差异。

以下是常用的氨基酸分离方法:
1. 薄层层析法:将氨基酸溶液均匀涂布在薄层层析板上,通过上机进行高效层析分离。

根据氨基酸在固定相和流动相中的相互作用力的不同,氨基酸在薄层上的迁移距离也不同,从而实现分离。

2. 离子交换色谱法:利用带电的树脂固定相对氨基酸进行分离。

树脂可以选择正离子交换树脂或阴离子交换树脂,根据氨基酸的酸碱性质进行选择。

溶液中的氨基酸通过与固定相发生离子交换,从而实现分离。

3. 气相色谱法:利用气相色谱仪将氨基酸蒸发后送入色谱柱进行分离。

根据氨基酸在固定相和载气中的分配系数不同,氨基酸在色谱柱中的保留时间也不同,从而实现分离。

4. 高效液相色谱法:利用高效液相色谱仪将氨基酸在流动相中进行分离。

根据氨基酸与固定相之间的亲疏水性差异,通过调节流动相组成及流速,实现氨基酸的分离。

综上所述,氨基酸的分离原理主要是利用它们在不同条件下的物理化学性质的差异,通过各种色谱方法实现分离。

氨基酸分离提取的一般流程

氨基酸分离提取的一般流程

氨基酸分离提取的一般流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!氨基酸分离提取是一道复杂的工艺过程,涉及多种技术和方法。

下面是一般的氨基酸分离提取流程:1. 样品处理首先,需要将样品进行预处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

This article was downloaded by: [East China University of Science and Technology]On: 09 April 2015, At: 00:27Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UKClick for updatesJournal of Liquid Chromatography & Related TechnologiesPublication details, including instructions for authors and subscription information:/loi/ljlc20Separation of Enantiomers of Selected Sulfur-Containing Amino Acids by Using Serially Coupled Achiral-Chiral ColumnsZuzana Deákováab, Zde ňka Ďura čkováb, Daniel W. Armstrong c& Jozef LehotayaaInstitute of Analytical Chemistry , Faculty of Chemical and Food T echnology , Slovak University of T echnology , Bratislava, SlovakiabInstitute of Medical Chemistry , Biochemistry and Clinical Biochemistry , Faculty of Medicine, Comenius University , Bratislava, SlovakiacDepartment of Chemistry , University of T exas at Arlington, Arlington, T exas, USA Accepted author version posted online: 13 Nov 2014.Published online: 30 Jan 2015.PLEASE SCROLL DOWN FOR ARTICLEJournal of Liquid Chromatography &Related Technologies ,38:789–794,2015Copyright #Taylor &Francis Group,LLC ISSN:1082-6076print/1520-572X online DOI:10.1080/10826076.2014.968666Separation of Enantiomers of Selected Sulfur-Containing Amino Acids by Using Serially Coupled Achiral-Chiral ColumnsZUZANA DE ÁKOV Á,1,2ZDE ŇKA ĎURA ČKOV Á,2DANIEL W.ARMSTRONG,3and JOZEF LEHOTAY 11Institute of Analytical Chemistry,Faculty of Chemical and Food Technology,Slovak University of Technology,Bratislava,Slovakia 2Institute of Medical Chemistry,Biochemistry and Clinical Biochemistry,Faculty of Medicine,Comenius University,Bratislava,Slovakia 3Department of Chemistry,University of Texas at Arlington,Arlington,Texas,USAHomocysteine is an important indicator of human health.Increased levels of plasma homocysteine are associated with a higher risk of cardiovascular,cerebrovascular,and peripheral arterial disease.Homocysteine is naturally occurring amino acid and it is formed during the methionine metabolism.It can be either transsulfurated to cysteine or remethylated to methionine.Therefore,the simultaneous monitoring of homocysteine,cysteine,and methionine is often desirable.Many studies are focused on the achiral separations of these amino acids,but no one has considered their chiral separations.In this work,HPLC method has been developed for enantiomeric separations of homocysteine,cysteine,and methionine by using teicoplanin columns.Keywords:amino acids,columns,electrochemical detection,enantiomers,HPLC,teicoplaninIntroductionMacrocyclic antibiotics are popular chiral selectors in HPLC [1,2,3]and capillary electrophoresis.[2,4]They include the ansamycins,glycopeptides,and polypeptides.More chiral ana-lytes have been resolved by using the glycopeptides.The most frequently utilized glycopeptides are vancomycin,ristocetin,avoparcin,and teicoplanin.[2]One important property of the gly-copeptides is that they are complementary to one another.[5,6]Especially,teicoplanin columns have unique enantioselectivity for amino acids.[6,7]The presence of D-cysteine (Cys )or D-homocysteine (HCy )in the human body has not been recorded yet.Some studies have indicated that D-methionine (Met )is poorly utilized and excreted in the urine.[8]Met is an essential amino acid that par-ticipates in protein synthesis.Met is continuously converted to HCy and adenosine.Significant amounts of Met are subse-quently regenerated via the remethylation of HCy.This enzy-matic reaction is catalyzed by methionine synthase.The majority of HCy is not remethylated but catabolized with serine to form cystathionine.This reaction is catalyzed by cystathio-nine-β-synthase.Cystathionine is metabolized to Cys and α-ketobutyrate.[91011]The conversion of Met to Cys is an irre-versible process.Cys is essential for glutathione production in human cells.[12]Enhanced levels of HCy are associated with increased lipid peroxidation and aging.Also,it is an independent indicator of cardiovascular diseases and Alzheimer 's disease.[13,14]The participation of HCy in cardiovascular risk is not clearly understood.Many studies are focused on the chiral separations of these amino acids,but no one has considered their chiral separations.Chiral aspect of methionine metabolism may be required.Enantiomeric separations of HCy,Cys,and Met have not been the subject of many studies.However,the simul-taneous enantioseparations of these amino acids have not been reported yet.The aim of this work was to propose HPLC method with serially coupled achiral –chiral columns using electrochemical detection for enantioseparation of HCy,Cys,and Met.C18column was used for amino acid separation and enantiomers were separated by using teicoplanin columns in on-line coupled system.ExperimentalChemicalsAcetonitrile,sodium phosphate monobasic monohydrate,1-octanesulfonic acid sodium salt (OSA ),L-Met,D-Met,DL-Met,L-HCy,DL-HCy,L-Cys,D-Cys,and DL-Cys were purchased from Sigma-Aldrich (USA ).Methanol and triethyla-mine were obtained from Merck (Germany ).Ortho-phosphoric acid was purchased from Fluka Biochemika (Switzerland ).Preparation of Standard SolutionsAll standard solutions were prepared in water.Doubly deionized water (<18M Ohm cm À1)was used.Working solutions (0.1mg mL À1)of these analytes were obtained by mixing the stock solutions (1mg mL À1).Stock solutions were stored atAddress correspondence to:Jozef Lehotay,Institute of Analytical Chemistry,Faculty of Chemical and Food Technology,Slovak University of Technology,Radlinsk ého 9,81237Bratislava,Slovakia.E-mail:jozef.lehotay@stuba.skColor versions of one or more of the figures in the article can be found online at /ljlc .D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015À80°C but left to equilibrate at room temperature (25°C )before use.Working solutions were prepared weekly.Instrumentation and Chromatographic ConditionsThe chromatographic system consisted of two isocratic pumps (DeltaChrom SDS 030,Watrex,Praha,Czech Republic )and electrochemical detector (Coulochem II,ESA,Chelmsford,UK ).Detector was composed of guard cell Model 5020and ana-lytical cell Model 5010A (ESA,Chelmsford,UK ).Analytical cells had potential þ0.9V (E1)and þ1.2V (E2),while the potential of the guard cell was þ1.4V (E0).The detector gain was set to 5µA.However,the initial potentials were set to þ0.65V (E1),þ0.9V (E2)and þ1.4V (E0)according to Garaiova et al.[15]Enantioseparations of selected amino acids were realized by using serially coupled achiral-chiral columns.Achiral separa-tions were performed on column Purosher RP-18endcapped 250–254mm (5µm )(Merck,Darmstadt,Germany )used together with a guard column Purospher STAR RP-18e (5µm )(Merck,Darmstadt,Germany ).Enantiomeric separations were performed on teicoplanin (Chirobiotic T )or teicoplanin agly-cone (Chirobiotic TAG )columns (ASTEC,USA ).Pump 1delivered a mobile phase A through the achiral column and pump 2sent a mobile phase B to a mixing chamber where they were mixed one another.The mixed mobile phase flowed through the chiral column.A mobile phase A contained 50mmol L À1phosphate buffer,1mmol L À1OSA (pH 2.5)and acetonitrile with ratio 94:6(v /v ).A mobile phase B contained triethylamine and methanol with a ratio 9:1(v /v ).The flow rate was 0.3mL min À1(pump 1)and 0.3mL min À1(pump 2).A nylon filter (47mm in diameter )was used for the mobile phases filtering.The columns were thermostated with an JET STREAM II Plus HPLC Column Thermostat (WO Industrial Electronics,Austria )at 25°C.All measurements were per-formed in replicate (3x ).The elution of L-form was followed by D-form in all cases.The resolution (Rs )of first and second eluting enantiomers is calculated by ratio of difference between retention times t R1and t R2to peak widths at half peak height w 051and w 052as follow:Rs ¼1.18*(t R2-t R1)/(w 051þw 052).Results and DiscussionDirect combined enantiomeric separations of HCy,Cys,and Met are complicated because of their similar chemical structures and the absence of any chromophore or fluorophore.Their chemical structures are shown in Figure 1.In this work,we focused mainly on the selection of suitable chromatographic conditions necessary to HCy,Cys,and Met enantiomers separation.Choice of Chromatographic ConditionsEnantiomeric Separations of Amino Acids in Water /Organic SolventInitially,enantiomeric separations of the individual amino acids were optimized in a mobile phase (MP )composed of water and organic solvent (methanol or acetonitrile ).This was firstperformed on the Chirobiotic T column.Table 1shows that retention of enantiomers increased with increasing methanol (MeOH )content in the MP.This occurs because of the higher solubility of the selected amino acids in water in comparison to organic solvent.Data of DL-Cys are not shown because the standard had not been delivered yet.Figure 2shows the depen-dence of retention factor k on the amount of MeOH and aceto-nitrile (ACN )for Met enantiomers.The resolution of D-and L-Met was higher in the MP containing MeOH in comparison to ACN.This is presumably due to differences in the chemical properties of the organic solvents (MeOH as proton-donor and ACN as proton acceptor ).It can be supposed that the solvation properties of MeOH and the formation of hydrogen bond may increase the selectivity.Retention increased when the content of organic solvent was higher than 60%.The retention of the HCy and Met enantiomers on the Chirobiotic T column was similar and this necessitated the addition of a means to separate these two amino acids from one another.Secondly,the Fig. 1.Chemical structure of methionine,homocysteine and cysteine.[16]Table 1.Retention factors (k ),Separation factors (a ),and Resolution (Rs )as a function of methanol content in the mobile phaseMethanol %5102040507085Cysteine k L 1.6 1.6 1.7 1.8 1.9 2.5 3.9Homocysteine k L 1.9 2.01.92.0 2.1 2.5–k D 2.4 2.5 2.63.0 3.44.8–a 1.2 1.2 1.3 1.5 1.6 1.9–Rs 1.3 1.0 1.9 3.3 4.0 6.1–Methionine k L 2.4 2.3 2.1 2.1 2.2 2.6 3.5k D 2.9 2.9 2.8 3.2 3.5 4.57.1a 1.2 1.2 1.3 1.5 1.6 1.7 2.0Rs 0.71.05.35.16.46.88.8Conditions:MP:water and methanol;SP:Chirobiotic T;column temperature:25°C;flow rate:0.6mL min À1.790Z.Deákováet al.D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015Chirobiotic TAG column was used.Chirobiotic TAG has comp-lementary separation properties to Chirobiotic T.[2]We assumed that the mixture of amino acids could be separated,but it could not.The MP composed of water and organic solvent were not suitable for the separation of amino acid mixture.Therefore,the connection of achiral column was considered.Enantiomeric Separations of Amino Acids in Phosphate Buffer /Organic SolventChoice of a Mobile Phase for Achiral Column.The separation of both the amino acids and their enantiomers a complex achiral –chiral column system was considered.A mobile phase for the achiral column separation was composed according to Garaiova et al.[15]The mobile phase was tested at different pH values (2.5,2.7,3.8,4.5,5.4,6.4).The amino acid mixture was separated in all cases.However,the amino acids eluted too close to each another at pH ≥3.8.The pH 2.5was selected for subsequent experiments.The necessity of an ion-pairing reagent was also considered.The mixture of amino acids was separated better when an ion-pairing reagent was present.The mobile phase composed of 50mmol L À1phosphate buffer (pH 2.5),1mmol L À1OSA,and ACN (94:6,v /v )was selected for optimal results.The total time of analysis was 20min.Choice of a Chiral Stationary Phase.Chirobiotic T and TAG columns can be used at pH range 3.8(3.0)–6.8.[7]In this step,only the off-line separations were performed on the chiral stationary phases (SPs ).In an effort to increase the pH of the element on the chiral column,triethylamine (TEA ),and MeOH (9:1,v /v )was added into the MP after the achiral column separation.The role of MeOH was tested on amino acid enantioseparation.Measure-ments were also made in the MP containing ACN.Figure 3shows the comparison of enantioseparation of HCy and Met in the two MPs.Enantiomers were separated better (higher Rs value )in the MP containing MeOH in comparison to ACN.Resolution of HCy (Rs 1.5)and Met (Rs 3.0)enantiomers wasachieved.Fig.2.Dependence of retention factor on methanol (MeOH )or acetonitrile (ACN )content for methionine enantiomers (0.1mg mL À1).Conditions:MP:water and organic solvent (MeOH or ACN );SP:Chirobiotic T;column temperature:25°C;flow rate:0.6mL min À1.Fig.3.Chiral separation of amino acids in the mobile phase 1(A,B )and in the mobile phase 2(C,D ).Conditions:MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA,acetonitrile (94:6v /v )and TEA in water (pH 8),methanol (9:1v /v )with 1:1(v /v );MP 2:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA,acetonitrile (94:6v /v ),and TEA in water (pH 8),acetonitrile (9:1v /v )with 1:1(v /v );SP:Chirobiotic T;column temperature:25°C;flow rate:0.6mL min À1;mass concentration of standards:0.1mg mL À1.Selected Sulfur-Containing Amino Acids 791D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015Enantiomeric separations on Chirobiotic TAG column were also realized.Figure 4shows the comparison of amino acid enantioseparations by using Chirobiotic T and TAG columns.Baseline separation of HCy (Rs 3.2),Met (Rs 3.0),and Cys (Rs 1.4)enantiomers were recorded by using a Chirobiotic TAG column.Enantiomers of Cys were not separated by using the Chirobiotic T column and,therefore,TAG was preferred for the next set of experiments.Influence of TEA Addition and Methanol Content on the Enantiomeric Separation.The pH of water was measured after addition of TEA.Different pH values (pH 8–10)were tested.This had not a significant influence on the enantiomeric separa-tions (Rs values were not changed ).However,the TEA addition made the peaks narrower.The pH value of water with TEA addition (pH 8)was chosen.The MP 1and MP 2ratio was also monitored.Table 2shows that the best separations of Cysenantiomers and the baseline separations of HCy and Met enan-tiomers were achieved in the MP 1:MP 2(1:1,v /v ).The amount of added methanol was also tested (Table 3).From the results it can be conclude that the best separations of Cys enantiomers and baseline separations of HCy and Met enantiomers were obtained in the MP containing 10%MeOH.Enantiomeric Separations in the Achiral-Chiral System After those chromatographic conditions were selected in off-line mode,on-line enantioseparation of amino acids was realized.Figure 5shows the chromatogram of amino acid mixture enan-tiomeric separations by using serially coupled achiral –chiral columns.The amino acids were eluated in the order of Cys (1),HCy (2),and Met (3).The total time of analysis was 40min.parison of DL-HCy,DL-Cys,and DL-Met enantiomeric separations by using Chirobiotic T (A,B,C )and TAG columns (D,E,F ).Conditions:MP 1:MP 2(1:1v /v );MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA:ACN (94:6v /v );MP 2:TEA in water (pH 8):MeOH (9:1v /v );column temperature:25°C;flow rate:0.6mL min À1;mass concentration of standards:0.1mg mL À1.792Z.Deákováet al.D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015Table 2.Effects of mobile phase ’s ratio on resolution of amino acid enantiomersCompound AB C D t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs DL-Cys 14.10.40.614.90.60.614.10.60.914.00.70.714.60.615.60.814.90.514.90.9DL-HCy 21.90.7 1.120.90.7 1.421.10.8 1.520.40.8 1.623.50.923.0 1.023.5 1.123.2 1.3DL-Met32.60.6 1.330.90.6 1.530.60.6 1.829.10.6 2.133.90.732.70.732.60.731.50.7A -MF1;B -MF1:MF2(2:1);C -MF1:MF2(1:1);D -MF1:MF2(1:2).Conditions:MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA:ACN (94:6v /v );MP 2:TEA in water pH 8:MeOH (9:1v /v ).SP:Chirobiotic TAG;mass concentration of standards:0.1mg mL À1;column temperature:25°C;flow rate:0.6mL min À1.Table 3.Effects of methanol content in the MP 2on resolution of amino acid enantiomersCompound AB C D E t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs t R [min ]w 05[min ]Rs DL-Cys 14.50.40.814.30.50.813.90.50.913.70.60.713.20.60.815.30.615.00.614.70.614.40.714.10.7DL-Hcy 23.20.7 1.522.10.7 1.520.50.7 1.618.90.7 1.617.60.7 1.825.3 1.024.3 1.022.7 1.021.3 1.020.0 1.0DL-Met37.40.8 1.334.80.7 1.430.60.6 1.726.60.5 1.923.30.5 2.239.20.936.60.832.40.728.50.725.30.6MP 1:MP 2(1:1v /v );MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA:ACN (94:6v /v ).MP 2:A:TEA in water pH 8:MeOH (98:2v /v );B:TEA in water pH 8:MeOH (95:5v /v );C:TEA in water pH 8:MeOH (9:1v /v );D:TEA in water pH 8:MeOH (85:15v /v );E:TEA in water pH 8:MeOH (8:2v /v ).Conditions:SP:Chirobiotic TAG;mass concentration of standards:0.1mg mL À1;column temperature:25°C;flow rate:0.6mL min À1.Fig. 5.Enantiomeric separations of amino acid standards:(1)DL-Cys,(2)DL-HCy,and (3)DL-Met.Conditions:MP:mixture MP 1:MP 2(1:1v /v )(MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA:ACN (94:6v /v )and MP 2:TEA in water pH 8:MeOH (9:1v /v ));SP:C18and Chirobiotic TAG;mass concen-tration of standards:0.1mg mL À1;column temperature:25°C;flow rate:0.3mL min À1(pump 1)and 0.3mL min À1(pump 2).Fig.6.Peak area of DL-HCy,DL-Cys,and DL-Met as a function of voltage.Conditions:MP:mixture MP 1:MP 2(1:1v /v )(MP 1:50mmol L À1phosphate buffer pH 2.5,1mmol L À1OSA:ACN (94:6v /v )and MP 2:TEA in water pH 8:MeOH (9:1v /v ));SP:C18;mass concentration of standards:0.1mg mL À1;column temperature:25°C;flow rate:0.6mL min À1;potential of guard cell:þ1.4V.Selected Sulfur-Containing Amino Acids793D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015Choice of Electrode PotentialsThe choice of cell potentials was obtained from the peak area versus potential curves.To select appropriate potentials,the standard mixture of amino acids (0.1mg mL À1)and achiral col-umn were used.The guard cell that oxidized the MP was set to þ1.4V.The different potentials of analytical cell were tested (from þ0.5to þ1.2V with increment 0.05V ).The response of HCy,Cys,and Met increased with increasing cell potential.The response of Met enantiomers was observed from þ0.7V.The hydrodynamic voltammogram reached the plateau for Cys (HCy )under þ1.1V.The maximum response of Met was achieved at þ1.2V (Figure 6).Therefore,potential of þ0.9V (E1)and þ1.2V (E2)were chosen for detection.ConclusionsIn this work,HPLC method with electrochemical detection was proposed for simultaneous separation of HCy,Cys,and Met enantiomers.Chiral columns (Chirobiotic T and Chirobiotic TAG )could not separate amino acid mixtures in a single run without the achiral column connection.Enantiomeric separa-tions were achieved by using serially coupled achiral –chiral col-umns.The amino acid mixtures were separated by using the achiral column.Their enantiomers were separated on a chiral column.Chirobiotic TAG column was more suitable than Chirobiotic T for enantiomeric separation of selected amino acids.This work mainly focused on the determination of suitable separation conditions.FundingThis work was supported by grant number [VEGA 1/0499/14].References1.Xiao,T.L.;Armstrong,D.W.Enantiomeric Separations by HPLC Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases.Chiral Sep.Method.Mol.Biol.2004,243,113–171.2.Ward,T.J.;Farris III,A.B.Chiral Separations Using the Macrocyclic Antibiotics:A Review.J.Chromatogr.A 2001,906(1–2),73–89.3.Ilisz,I.;Berkecz,R.;P éter,A.HPLC Separation of Amino Acid Enantiomers and Small Peptides on Macrocyclic Antibiotic-Based Chiral Stationary Phases:A Review.J.Sep.Sci.2006,29(10),1305–1321.4.Armstrong,D.W.;Nair,U.B.Capillary Electrophoretic Enantiosepara-tions Using Macrocyclic Antibiotics as Chiral Selectors.Electrophoresis 1997,18(12–13),2331–2342.5.Ilisz,I.;Berkecz,R.;P éter, A.Retention Mechanism of High-Performance Liquid Chromatographic Enantioseparation on Macrocyclic Glycopeptide-Based Chiral Stationary Phases.J.Chromatogr.A 2009,1216(10),1845–1860.6.Poplewska,I.;Kramarz,R.;Piatkowski,W.;Seidel-Morgenstern,A.;Antos,D.Behavior of Adsorbed and Fluid Phases Versus Retention Properties of Amino Acids on the Teicoplanin Chiral Selector.J.Chromatogr.A 2008,1192(1),130–138.7.Astec a.s.,Chirobiotic Handbook:A Guide to Using Macrocyclic Gly-copeptide Bonded Phases for Chiral Separations ,5th ed.;Advanced Separation Technologies Inc.,2004./etc/medialib/docs/Sigma/General_Information/chirobiotic_handbook.Par.0001.File.tmp/chirobiotic_handbook.pdf (accessed Dec 12,2013).8.Stegink,L.D.;Bell,E.F.;Filer,L.J.;Ziegler,E.E.;Andersen,D.W.;Seligson äž, E.H.Effects of Equimolar Doses of L-Methionine,D-Methionine and L-Methionine-dl-Sulfoxide on Plasma and Urinary Amino Acid Levels in Normal Adult Humans.J.Nutr.1986,116(7),1185–1192.9.Visser,W. F.;Verhoeven-Duif,N.M.;Ophoff,R.;Bakker,S.;Klomp,L.W.;Berger,R.;de Koning,T.J.A Sensitive and Simple Ultra-High-Performance-Liquid Chromatography –Tandem Mass Spec-trometry Based Method for the Quantification of D-Amino Acids in Body Fluids.J.Chromatogr.A 2011,1218(40),7130–7136.10.Kuo,H.K.;Sorond, F. A.;Jen-Hau Chen,J.H.;Hashmi, A.;Milberg,W.P.;Lipsitz,L.A.The Role of Homocysteine in Multisystem Age-Related Problems:A Systematic Review.J.Gerontol.2005,60(9),1190–1201.11.Miner,S.E.S.;Evrovski,J.;Cole,D.E.C.Clinical Chemistry andMolecular Biology of Homocysteine Metabolism:An Update.Clin.Biochem.1997,30(3),189–201.12.Brosnan,J.T.;Brosnan,M.E.The Sulfur-Containing Amino Acids:An Overview.Am.Soc.Nutr.2006,136(6),1636–1640.13.Amarnath,K.;Amarnath,V.;Amarnath,K.;Valentine,H.L.;Valentine,W.M.A Specific HPLC /UV Method for Determination of Cysteine and Related Aminothiols in Biological Samples.Talanta 2003,60(6),1229–1238.14.de Sounza Venancio,L.;Burini,R.C.;Yoshida,W.B.Level ofHomocysteine in Patients with Peripheral Arterial Disease Treated at a Public Health Care Facility.J.Vascul.Brasil.2009,8(4),318–326.15.Garaiova,I.;Muchov á,J.;Nagyov á,Z.;Mi šľanov á,C.;Oravec,S.;Duk át,A.;Wang,D.;Plummer,S.F.;Ďura čkov á,Z.Effect of a Plant Sterol,Fish Oil and B Vitamin Combination on Cardiovascular Risk Factors in Hypercholesterolemic Children and Adolescents:A Pilot Study.Nutr.J.2013,12(7),1–8.16.Brosnan,J.T.;Brosnan,M.E.The Sulfur-Containing Amino Acids:An Overview.J.Nutr.2006,136,1634–1640.794Z.Deákováet al.D o w n l o a d e d b y [E a s t C h i n a U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y ] a t 00:27 09 A p r i l 2015。

相关文档
最新文档