人教版高中数学必修二《空间几何体》基础知识要点总结
高中数学必修2知识点总结归纳整理

高中数学必修二·空间几何体1.1空间几何体的构造 棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。
圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。
圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。
高中数学必修2知识点总结:第一章_空间几何体

高中数学必修2知识点总结:第一章_空间几何体高中数学必修2知识点总结第一章空间几何体1.1柱、锥、台、球的结构特征12空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于轴的线长度变半,平行于,轴的线长度不变;(3)画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图13空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积r2r23圆锥的表面积SrrS22224圆台的表面积SrrRR5球的表面积S4R2(二)空间几何体的体积1柱体的体积VS底h2锥体的体积1VS底h33台体的体积V(S上S上S下S下h4球体的体积VR313扩展阅读:高中数学必修2知识点总结:第一章空间几何体高中数学必修2知识点总结第一章空间几何体1.1柱、锥、台、球的结构特征12空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于轴的线长度变半,平行于,轴的线长度不变;(3)画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积r2r3圆锥的表面积S22Srr2224圆台的表面积SrrRR5球的表面积S4R2(二)空间几何体的体积1柱体的体积V13S底hVS底h2锥体的体积3台体的体积1V(S上3S上S下S下h4球体的体积V43R3。
高中复习数学必修2《空间几何体》知识点

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
高中数学必修二__空间几何体知识点知识分享

空间几何体(川诚.樊培整理)一·空间几何体结构1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
(图如下)底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
侧面:棱柱中除底面的各个面.侧棱:相邻侧面的公共边叫做棱柱的侧棱。
顶点:侧面与底面的公共顶点叫做棱柱的顶点。
棱柱的表示:用表示底面的各顶点的字母表示。
如:棱柱ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥. (图如下)底面:棱锥中的多边形面叫做棱锥的底面或底。
侧面:有公共顶点的各个三角形面叫做棱锥的侧面顶点:各个侧面的公共顶点叫做棱锥的顶点。
侧棱:相邻侧面的公共边叫做棱锥的侧棱。
棱锥可以表示为:棱锥S-ABCD底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥---4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱的轴:旋转轴叫做圆柱的轴。
圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。
圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。
圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示.如:圆柱O’O注:棱柱与圆柱统称为柱体5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
轴:作为旋转轴的直角边叫做圆锥的轴。
底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。
侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
顶点:作为旋转轴的直角边与斜边的交点母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
高中数学必修2空间几何体知识点归纳总结

中学数学必修2空间几何体学问点归纳总结中学数学空间几何体的学习始终是中学数学教学的重、难点,学生要重点驾驭相关学问点,下面给大家带来中学数学必修2空间几何体学问点,希望对你有帮助。
中学数学必修2空间几何体学问点考点要求:1.几何体的绽开图、几何体的三视图仍是高考的(热点).2.三视图和其他的学问点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点驾驭以三视图为命题背景,探讨空间几何体的结构特征的题型.4.要熟识一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.学问结构:1.多面体的结构特征(1)棱柱有两个(面相)互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是随意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特殊地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相像多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形态和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:"长对正,宽相等,高平齐',即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要留意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取相互垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy=45或135,已知图形中平行于x轴、y轴的线段,在直观图中平行于x轴、y轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴,也垂直于xOy平面,已知图形中平行于z轴的线段,直观图中仍平行于z 轴且长度不变.中学数学必修2学问点1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。
高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳整理高中数学必修二空间几何体1.1 空间几何体的结构棱柱棱柱是由两个平行的底面和若干个四边形侧面组成的几何体。
底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。
棱柱可以用各顶点的字母表示,例如五棱柱ABCDE或用对角线的端点字母表示,例如ABCDE。
棱柱的几何特征是:两底面是对应边平行的全等多边形;侧面和对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥棱锥是由一个多边形底面和若干个三角形侧面组成的几何体。
底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。
棱锥可以用各顶点的字母表示,例如五棱锥P-ABCDE。
棱锥的几何特征是:侧面和对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台棱台是由一个平行于底面的平面截取棱锥而成的几何体。
底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。
棱台可以用各顶点的字母表示,例如四棱台ABCD-A'B'C'D'。
棱台的几何特征是:上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点。
圆柱圆柱是由一个矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆柱的几何特征是:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。
圆锥圆锥是由直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆锥的几何特征是:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。
圆台圆台是由一个平行于圆锥底面的平面截取圆锥而成的几何体。
圆台的几何特征是:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。
球体球体是由半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
球体的几何特征是:球的截面是圆;球面上任意一点到球心的距离等于半径。
1.2 空间几何体的三视图和直观图1.中心投影与平行投影中心投影是指把光由一点向外散射形成的投影。
高中学必修二知识点空间几何体【共10页】

高中学必修二知识点空间几何体-----------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-------------- 高中数学必修2知识点第一章空间几何体1、1柱、锥、台、球的结构特征1、2空间几何体的三视图和直观图1 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2 画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1)、平行于坐标轴的线依然平行于坐标轴;(2)、平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3)、画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1、3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积第二章直线与平面的位置关系2、1空间点、直线、平面之间的位置关系2、1、11 平面含义:平面是无限延展的2 平面的画法及表示 DC B A α (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为L A · α A∈LB∈L => L α A∈α B∈α 公理1作用:判断直线是否在平面内C · B · A · α (2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线 => 有且只有一个平面α,使A∈α、B∈α、C∈α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①侧棱不垂直于底的棱柱叫做斜棱柱。
②侧棱垂直于底的棱柱叫做直棱柱。
③底面是正多边形的直棱柱叫做正棱柱。
(3)棱柱的性质
①侧棱都平行且相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形;
③过不相邻的两条侧棱的截面是平行四边形。
(4)正棱柱的性质
①侧棱与底面垂直,侧面是全等的矩形,过不相邻的两条侧棱的截面是矩形。
③空间中到一定点的距离等于定长的点的轨迹叫做球面。
半圆的圆心、半径、直径,在球体中分别叫做球的球心、球的半径、球的直径,球的外表面叫做球面.
球面被经过球心的平面截得的圆叫做球的大圆。
球面被不过球心的截面截得的圆叫做球的小圆。
(2)球的性质
若球的半径为 ,用一个平面去截球,所得截面圆半径为 ,球心到截面圆的距离为 (即球心与截面圆心之间的距离),则 。
①原棱锥的底面与截面分别叫做棱台的下底面与上底面;②其余的各面叫做棱台的侧面;③相邻两个侧面的公共边叫做棱台的侧棱;④侧面与底的公共顶点叫做棱台的顶点。
(2)正棱台的概念
用正棱锥截得的棱台叫做正棱台。
正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高。
(3)正棱台的性质
①侧棱相等,各侧面是全等的等腰梯形,斜高相等。
8、简单组合体
(3)正棱锥的概念
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.
正棱锥的各侧面都是全等的等腰三角形,各等腰三角形底边上的高叫做正棱锥的斜高。
(4)正棱锥的性质
①侧棱相等,各侧面是全等的等腰三角形,斜高相等。
②正棱锥的高,斜高和斜高在底面上的射影组成一个直角三角形。
①旋转轴叫做圆锥的轴;②垂直于轴的直角边旋转而成的圆面叫做圆锥的底面;③直角三角形斜边旋转而成的曲面叫做圆锥的侧面;④无论旋转到什么位置,直角三角形的斜边都叫做圆锥的母线;⑥经过圆锥都是圆面。
②轴截面是全等的等腰三角形,等腰三角形的腰长等于圆锥的母线长,底长等于圆锥底面的直径。
旋转体
我们把一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
这条定直线叫做旋转体的轴。
1、棱柱
(1)结构特征
一般地,①有两个面相互平行,②其余各面都是四边形,③并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
①两个互相平行的面叫做棱柱的底面,简称底;②其余各面叫做棱柱的侧面;③相邻侧面的公共边叫做棱柱的侧棱;④侧面与底面的公共点叫做棱柱的顶点。
②两个底面与平行于底面的截面是全等的正多边形。
③侧面展开图为矩形。
④侧棱长等于此正棱柱的高。
(5)特殊的四棱柱
底面是四边形的棱柱叫做四棱柱。
底面的平行四边形的四棱柱叫做平行六面体。
侧棱垂直于底面的平行六面体叫做直平行六面体。
底面的矩形的直平行六面体叫做长方体。
底面是正方形的长方体叫做正四棱柱。
侧棱长等于底面边长的正四棱柱叫做正方体。
②正棱台的两底面中心连线,相应边心距和斜高组成一个梯形。
③正棱台的两底面以及平行于底面的截面是相似正多边形。
4、圆柱
(1)结构特征
以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
①旋转轴叫做圆柱的轴;②垂直于轴的边旋转而成的圆面叫做圆柱的底面;③平行于轴的边旋转而成的曲面叫做圆柱的侧面;④无论旋转到什么位置,不垂直于轴的边都叫做圆柱的母线;⑤经过圆柱的轴的截面称为圆柱的轴截面。
(2)圆台的性质
①平行于底面的截面都是圆面;
②圆台的轴截面是全等的等腰梯形,这些等腰梯形的底边长分别等于圆台上、下底面的直径,它们的腰长等于圆台的母线长;
③圆台的侧面展开图是扇环。
7、球
(1)结构特征
①以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球.
②空间中到一定点的距离小于等于定长的点的轨迹叫做球。
③正棱锥的高,侧棱和侧棱在底面上的射影组成一个直角三角形
(5)正四面体
正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。
正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面全等且都是等腰三角形就可以,不需要四个面全等且都是等边三角形。
3、棱台
(1)结构特征
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
第一章《空间几何体》基础知识小结
一、空间几何体的结构
空间几何体
如果我们只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体
多面体
一般地,我们把由若干个平面多边形转成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
(2)圆柱的性质
①平行于底面的截面与底面是大小相同的圆面;
②轴截面是全等的矩形,矩形的底边长等于圆柱底面的直径,高等于圆柱的母线长;
③圆柱的侧面展开图是矩形,矩形的底边长等于圆柱底面的周长,高等于圆柱的母线长。
5、圆锥
(1)结构特征
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
③圆锥的侧面展开图是扇形,扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线长。
6、圆台
(1)结构特征
①用平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.
②以直角梯形垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆台。
①旋转轴叫做圆台的轴;②垂直于轴的边旋转而成的圆面分别叫做圆台的上底面与下底面;③不垂直于底边的腰旋转而成的曲面叫做圆台的侧面;④无论旋转到什么位置,不垂直于底边的腰都叫做圆台的母线;⑥经过圆台的轴的截面称为圆台的轴截面。
2、棱锥
(1)结构特征
一般地,①有一个面是多边形,其余各面都是②有一个公共顶点的③三角形,由这些面围成的多面体叫做棱锥.
①这个多边形的面叫做棱锥的底面或底;②有公共顶点的各个三角形面叫做棱锥的侧面;③各侧面的公共顶点叫做棱锥的顶点;④相邻侧面的公共边叫做棱锥的侧棱。
(2)棱锥的性质
如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。