新课标高中数学必修二基础练习卷(答案)
高二数学选择性必修二同步练习与答案解析(基础训练)

高二数学选择性必修二同步练习《4.1数列的概念》同步练习(基础篇)一.选择题(共10小题,满分50分,每小题5分) 1.数列的一个通项公式是( )A .B .C .D .2.下列说法正确的是( ) A .数列中不能重复出现同一个数 B .与是同一数列 C .不是数列D .若两个数列的每一项均相同,则这两个数列相同3.已知数列的通项公式为,则257是这个数列的( )A .第6项B .第7项C .第8项D .第9项4.若数列{a n }的通项公式为a n =n(n -2),其中n ∈N *,则a 6=( ) A .8B .15C .24D .355.下列说法正确的是( )A .数列1,3,5,7可以表示为B .数列-2,-1,0,1,2与数列2,1,0,-1,-2是相同的数列C .数列若用图象表示,从图象看都是一群孤立的点D .数列的项数一定是无限的6.已知数列的前项依次为,,,,则数列的通项公式可能是( ) A . B .C .D .7.已知数列的前项和,则的值为( ) A .4B .6C .8D .102,22,222,2222,()21019n -101n -()2101n-108n -1,2,3,44,3,2,11,1,1,1{}n a 21nn a =+{}1,3,5,7{}n a 4261220{}n a 42n a n =-22(1)nn a n =+-2n a n n =+1321n n a n -=+-{}n a n 2n S n n =+4a8.一个正整数数表如表所示(表中下一行中数的个数是上一行中数的个数的2倍),则第9行中的第6个数是( )A .132B .261C .262D .5179.已知数列的通项公式为,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C .D .2,0,2,010.在数列中,,,则的值为( ) A . B .C .D .以上都不对二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.数列1,3,5,7,9,--的一个通项公式是___________12.已知数列{}n a 中,12aa …()2n a nn N *=∈,则9a=__________.13.已知数列{}n a 的前n 项和231n S n n =--,则n a =__________.14.填适当的数:1,(________),2(________)15.在数列110,,...,,...42n n -中,第3项是______;37是它的第______项. 16.函数()()2*2f x x x n n =-+∈N的最小值记为na,设()n n b f a =,则数列{}n a ,{}n b 的通项公式分别是=n a ________,=n b ________. 17.已知数列{}n a 的前n 项和为n S ,满足313a =,()()1112n n a a +++=,则1a =_______;12S =___________.{}n a ()111,2n na n N +*+-=∈11,0,,022{}n a 114a =-111(1)n n a n a -=->2014a 14-545三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.在数列{}n a 中,2*,n a n n n N λ=+∈.若{}n a 是递增数列,求λ的取值范围.19.已知数列{}n a 的前n 项和为2230.n S n n =-(1)当n S 取最小值时,求n 的值; (2)求出{}n a 的通项公式. 20.已知数列{}n a 中,111,1n n na a a n +==+. (1)写出数列{}n a 的前5项. (2)猜想数列{}n a 的通项公式.21.已知数列{}n a 的通项公式为1n a cn dn -=+,且232a =,432a =,求n a 和10a .22.已知数列{}n a 满足2(*)n n S n a n N =-∈. (1)计算1,a 2,a 3,a 4,a 5a ;(2)并猜想{}n a 的通项公式(不需要证明但要求简要写出分析过程). 答案解析一.选择题(共10小题,满分50分,每小题5分) 1.数列的一个通项公式是( )A .B .C .D .【答案】A 【解析】先写出的通项是, 数列的通项公式是. 故选:A .2.下列说法正确的是( )2,22,222,2222,()21019n -101n -()2101n-108n -9,99,999,9999,101n -∴2,22,222,2222,()21019n n a =-A .数列中不能重复出现同一个数B .与是同一数列C .不是数列D .若两个数列的每一项均相同,则这两个数列相同 【答案】D 【解析】由数列的定义可知,数列中可以重复出现同一个数,如,故A 不正确; B 中两数列首项不相同,因此不是同一数列,故B 不正确;由数列的定义可判断,是数列,即C 不正确;由数列定义可知,D 正确, 故选:D.3.已知数列的通项公式为,则257是这个数列的( )A .第6项B .第7项C .第8项D .第9项【答案】C 【解析】令,解得. 故选:C4.若数列{a n }的通项公式为a n =n(n -2),其中n ∈N *,则a 6=( ) A .8 B .15C .24D .35【答案】C 【解析】代入通项公式得,, 故选:C .5.下列说法正确的是( )A .数列1,3,5,7可以表示为B .数列-2,-1,0,1,2与数列2,1,0,-1,-2是相同的数列C .数列若用图象表示,从图象看都是一群孤立的点D .数列的项数一定是无限的1,2,3,44,3,2,11,1,1,11,1,1,11,1,1,1{}n a 21nn a =+25721n =+8n =66424a =⨯={}1,3,5,7【答案】C 【解析】A 中,表示集合,不是数列;B 中,两个数列中包含的数虽然相同,但排列顺序不同,不是相同的数列;D 中,数列的项数可以是有限的也可以是无限的. 故选:C .6.已知数列的前项依次为,,,,则数列的通项公式可能是( ) A . B .C .D .【答案】C 【解析】对于A ,,故A 错误. 对于B ,,故B 错误.对于C ,,故C 正确.对于D ,,故D 错误. 故选:C.7.已知数列的前项和,则的值为( ) A .4 B .6 C .8 D .10【答案】C 【解析】由已知.故选:C .8.一个正整数数表如表所示(表中下一行中数的个数是上一行中数的个数的2倍),则第9行中的第6个数是( ){}1,3,5,7{}n a 4261220{}n a 42n a n =-22(1)nn a n =+-2n a n n =+1321n n a n -=+-31012a =≠41662220a =+=≠22221234112,226,3312,4420a a a a =+==+==+==+=3549112a =+=≠{}n a n 2n S n n =+4a 22443(44)(33)8a S S =-=+-+=A .132B .261C .262D .517【答案】B 【解析】由题意知第行有个数,此行最后一个数为, ∴第八行的最后一个数为, ∴该数表中第9行的第6个数为261. 故选:B.9.已知数列的通项公式为,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C .D .2,0,2,0【答案】A 【解析】因为,所以分别取1,2,3,4, 可得. 故选:A .10.在数列中,,,则的值为( ) A . B .C .D .以上都不对【答案】A 【解析】n 12n -21n -821255-={}n a ()111,2n na n N +*+-=∈11,0,,022()111,2n na n N +*+-=∈n 1231010a a a a ====4,,,{}n a 114a =-111(1)n n a n a -=->2014a 14-545在数列中,,, , ,, 数列是周期为3的周期数列,,.故选:A二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.数列1,3,5,7,9,--的一个通项公式是___________【答案】1(1)(21)n n a n +=--,()n *∈N【解析】 因为数列1,3,5,7,9,--,所以通项公式可以为1(1)(21)n n a n +=--,()n *∈N故答案为:1(1)(21)n n a n +=--,()n *∈N12.已知数列{}n a 中,12a a …()2n a n n N *=∈,则9a=__________.【答案】8164【解析】当8n =时,有128...64a a a ⋅⋅⋅= ① 当9n =时,有129...81a a a ⋅⋅⋅= ② 由①÷②,可得98164a ={}n a 114a =-111(1)n n a n a -=->∴211514a =-=-314155a =-=4111445a =-=-∴{}n a 201467131=⨯+2014114a a ∴==-故答案为:816413.已知数列{}n a 的前n 项和231n S n n =--,则n a =__________.【答案】31242n n a n n -=⎧=⎨-≥⎩,,【解析】当1n =时,111313a S ==--=-,当2n ≥时,22131[(1)3(1)1]24n n n S n n n n a n S --=-------==-,当 1n =时,1242a -=-≠,所以31242n n a n n -=⎧=⎨-≥⎩,,,故答案为:31242n n a n n -=⎧=⎨-≥⎩,,14.填适当的数:1,(________),2(________)【解析】,. 15.在数列110,,...,,...42n n -中,第3项是______;37是它的第______项. 【答案】137 【解析】 令3n =,则13112233n n --==⨯,所以第3项是13;令1327n n -=,解得7n =,所以37是它的第7项.故答案为:13;7.16.函数()()2*2f x x x n n =-+∈N的最小值记为na,设()n n b f a =,则数列{}n a ,{}n b 的通项公式分别是=n a ________,=n b ________. 【答案】1n - 233n n -+ 【解析】当1x =时,()min (1)121f x f n n ==-+=-,即1n a n =-;将1x n =-代入()f x 得,22(1)(1)2(1)33n b f n n n n n n =-=---+=-+, 故答案为1n a n =-,233n b n n =-+17.已知数列{}n a 的前n 项和为n S ,满足313a =,()()1112n n a a +++=,则1a =_______;12S =___________.【答案】135 【解析】依题意,设1n n b a =+,则33431a b =+=,12n n b b +=,故23232b b ==, 12243b b ==,故1a =1113b -=; 因为12n n b b +=,143b =,232b =,故以此类推,n 是奇数,43n b =,故13n a =, n 是偶数,32n b =,故12n a =,所以()12121166532S a a ⎛⎫=+=⨯+= ⎪⎝⎭. 故答案为:13;5. 三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.在数列{}n a 中,2*,n a n n n N λ=+∈.若{}n a 是递增数列,求λ的取值范围.【答案】(3,)-+∞ 【解析】解析由{}n a 是递增数列得,1n n a a +<,即22(1)(1)n n n n λλ+<+++,整理得(21)n λ>-+,*n N ∈恒成立,解得3λ>-.∴λ的取值范围是(3,)-+∞.19.已知数列{}n a 的前n 项和为2230.n S n n =-(1)当n S 取最小值时,求n 的值; (2)求出{}n a 的通项公式.【答案】(1)7n =或8n =;(2)432n a n =- 【解析】(1)222152252302(15)222n S n n n n n ⎛⎫=-=-=--⎪⎝⎭, 因为n ∈+N ,所以当7n =或8n =时,n S 取最小值, (2)当1n =时,1123028a S ==-=-,当2n ≥时,221230[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-, 当1n =时,128a =-满足上式, 所以432n a n =-20.已知数列{}n a 中,111,1n n na a a n +==+. (1)写出数列{}n a 的前5项. (2)猜想数列{}n a 的通项公式. 【答案】(1)1234511111,,,,2345a a a a a =====;(2)1n a n= 【解析】(1)由111,1n n na a a n +==+,可得: 2111111122a a ==⨯=+,32221121323a a ==⨯=+,43331131434a a ==⨯=+,54441141545a a ==⨯=+ .(2)猜想:1n a n=21.已知数列{}n a 的通项公式为1n a cn dn -=+,且232a =,432a =,求n a 和10a .【答案】24n n a n =+,102710a =. 【解析】∵232a =,432a =,代入通项公式n a 中得32223424d c dc ⎧=+⎪⎪⎨⎪=+⎪⎩,解得14c =,2d =,∴24n n a n =+,∴101022741010a =+=. 22.已知数列{}n a 满足2(*)n n S n a n N =-∈. (1)计算1,a 2,a 3,a 4,a 5a ;(2)并猜想{}n a 的通项公式(不需要证明但要求简要写出分析过程). 【答案】(1)11a =.232a =,374a =,4158a =,53116a =.(2)121,2n n n a --=*n ∈N ,详见解析【解析】解:(1)当1n =时,1112a S a ==-,11a ∴=.当2n =时,122222a a S a +==⨯-,232a ∴=, 当3n =时,1233323a a a S a ++==⨯-,374a ∴=,当4n =时,12344424a a a a S a +++==⨯-,4158a ∴=,当5n =时,12345525a a a a a a ++++=⨯-,53116a ∴=.(2)11112112a --==,222132122a --==,333172142a --==,4441152182a --==,55513121162a --==,由此猜想121,2n n n a --=*n ∈N .《4.2等差数列》同步练习(基础篇)一.选择题(共10小题,满分50分,每小题5分)1.在等差数列{}n a 中,11a =,公差2d =,则8a 等于( ) A .13B .14C .15D .162.在等差数列{}n a 中,824a =,168a =,则24a =( ) A .24-B .16-C .8-D .03.已知等差数列{}n a 的前n 项和为n S ,且244,2a a ==,则5S =( ) A .0B .10C .15D .304.已知公差为2的等差数列{}n a 满足140a a +=,则7a =( ) A .5B .7C .9D .115.在等差数列{a n }中,若a 4=5,则数列{a n }的前7项和S 7=( ) A .15B .20C .35D .456.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n -B .32n +C .32n -D .31n +7.已知等差数列{}n a 的前5项和为25,且11a =,则7a =( ) A .10B .11C .12D .138.有穷等差数列5,8,11,…,()*311n n N +∈的项数是( )A .nB .311n +C .4n +D .3n +9.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为( ) A .184斤B .176斤C .65斤D .60斤10.已知{}n a 为等差数列,d 为公差,n S 为前n 项和,545676,,S S S S S S <=>,则下列说法错误的是( ) A .0d >B .60a =C .5S 和6S 均为n S 的最大值D .84S S >二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.1的等差中项是____________.12.数列{}n a 为等差数列,已知公差2d =-,110a =,则1a =_______. 13.已知等差数列{}n a 的前n 项和为n S ,若65210,6S a a =+=,则d =_______. 14.已知等差数列{}n a 中,11a =,35a =,则公差d =________,5a =________. 15.设等差数列{}n a 的前n 项和为n S ,若13a =,511a =-,则3a =______,5S =______. 16.我国古代《九章算术》一书中记载关于“竹九”问题:“今有竹九节,下三节容量四升,上四节容量三升,问五、六两节欲均容各多少?意思是下三节容量和为4升,上四节容量和为3升,且每一节容量变化均匀,问第五、六两节容量分别是多少?在这个问题中,最下面一节容量是______,九节总容量是______.17.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{}n a ,则1a=______;n a =______.(注:三三数之余二是指此数被3除余2,例如“5”)三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.已知等差数列{}n a 的前n 项和为n S ,且25a =,511a =. (1)求{}n a 的通项公式; (2)若120n S =,求n .19.在等差数列{}n a 中,(1)已知25121536a a a a +++=,求16S 的值; (2)已知620a =,求11S 的值.20.数列{a n }是首项为23,公差为整数的等差数列,且第6项为正,第7项为负. (1)求数列的公差;(2)求前n 项和S n 的最大值.21.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S 的最小值.22.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 答案解析一.选择题(共10小题,满分50分,每小题5分)1.在等差数列{}n a 中,11a =,公差2d =,则8a 等于( ) A .13 B .14C .15D .16【答案】C 【解析】81717215a a d =+=+⨯=,故选:C.2.在等差数列{}n a 中,824a =,168a =,则24a =( ) A .24- B .16-C .8-D .0【答案】C 【解析】{}n a 是等差数列,824162a a a ,248a .故选:C.3.已知等差数列{}n a 的前n 项和为n S ,且244,2a a ==,则5S =( ) A .0 B .10C .15D .30【答案】C 【解析】由等差数列性质可知:1524426a a a a +=+=+=()1555561522a a S +⨯∴=== 本题正确选项:C4.已知公差为2的等差数列{}n a 满足140a a +=,则7a =( ) A .5 B .7C .9D .11【答案】C 【解析】由题意知141230a a a d +=+=,因为2d =,可得13a =- 所以7163129a a d =+=-+=. 故选:C5.在等差数列{a n }中,若a 4=5,则数列{a n }的前7项和S 7=( ) A .15 B .20C .35D .45【答案】C 【解析】因为数列{}n a 是等差数列,故可得74735S a ==.故选:C .6.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n - B .32n + C .32n - D .31n +【答案】B 【解析】因为13n n a a +-=,所以数列{}n a 是以5为首项,3为公差的等差数列,则()*53132,n a n n n N =+-=+∈.故选:B7.已知等差数列{}n a 的前5项和为25,且11a =,则7a =( ) A .10 B .11C .12D .13【答案】D 【解析】因为123453525a a a a a a ++++==,所以35a =,则公差5122d -==, 故73413a a d =+=. 故选:D8.有穷等差数列5,8,11,…,()*311n n N +∈的项数是( )A .nB .311n +C .4n +D .3n +【答案】D 【解析】由等差数列中125,8a a ==,知3d =,5(1)332n a n n ∴=+-⨯=+,设()*311n n N+∈为数列中的第k 项,则31132n k +=+, 解得3k n =+, 故选:D9.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为( ) A .184斤 B .176斤C .65斤D .60斤【答案】A 【解析】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为{}n a ,公差为d ,前n 项和为n S ,第一个孩子所得棉花斤数为1a , 则由题意得,818717,8179962d S a ⨯==+⨯=, 解得165a =,()8181184a a d ∴=+-=. 故选:A10.已知{}n a 为等差数列,d 为公差,n S 为前n 项和,545676,,S S S S S S <=>,则下列说法错误的是( ) A .0d >B .60a =C .5S 和6S 均为n S 的最大值D .84S S >【答案】C 【解析】由5454500S S S S a <⇒-<⇒<,由5665600S S S S a =⇒-=⇒=,故选项B 说法正确;因为650a a d =+=,50a <,所以0d >,因此选项A 说法正确;因为0d >,所以等差数列{}n a 是单调递增数列,因此n S 没有最大值,故选项C 说法错误; 由7676700S S S S a >⇒->⇒>,因为8487657672()20S S a a a a a a a -=+++=+=>,所以84S S >,因此选项D 说法正确.故选:C二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.1的等差中项是____________.【解析】1=12.数列{}n a 为等差数列,已知公差2d =-,110a =,则1a =_______. 【答案】20 【解析】因为数列{}n a 为等差数列,公差2d =-, 所以111100a a d =+=, 解得120a =, 故答案为:2013.已知等差数列{}n a 的前n 项和为n S ,若65210,6S a a =+=,则d =_________.【答案】1 【解析】由266a a +=有43a =,而510S =∴结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:114.已知等差数列{}n a 中,11a =,35a =,则公差d =________,5a =________. 【答案】2 9 【解析】等差数列{}n a 中,11a =,35a =, 则公差3122a a d -==, 所以514189a a d =+=+=. 故答案为:2;915.设等差数列{}n a 的前n 项和为n S ,若13a =,511a =-,则3a =______,5S =______. 【答案】4- 20- 【解析】由题得15333112,42a a a a -+=∴==-; 51555()(311)20.22S a a =+=-=-故答案为:4;20--.16.我国古代《九章算术》一书中记载关于“竹九”问题:“今有竹九节,下三节容量四升,上四节容量三升,问五、六两节欲均容各多少?意思是下三节容量和为4升,上四节容量和为3升,且每一节容量变化均匀,问第五、六两节容量分别是多少?在这个问题中,最下面一节容量是______,九节总容量是______. 【答案】9566 20122【解析】设由下到上九节容量分别记为129,,...,a a a ,则129,,...,a a a 成等差数列,设公差为d ,且1234a a a ++=,67893a a a a +++=,即1231334a a a a d ++=+=,678914263a a a a a d +++=+=,所以19566a =,766d =-,故91982019222S a d ⨯=+=故答案为:9566;2012217.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{}n a ,则1a=______;n a =______.(注:三三数之余二是指此数被3除余2,例如“5”)【答案】8 157n -. 【解析】三三数之余二的正整数从小到大排列得到数列为:{}8,11,14,17,20,23,26,29,32,35,38;五五数之余三的正整数,从小到大排列,构成数列为:{}8,13,18,23,28,33,38.所以三三数之余二,五五数之余三的正整数,从小到大排列得到数列{}n a 为:{}8,23,38,数列{}n a 是以首项为8,公差为15的等差数列.空1:18a =;空2:1(1)8(1)15157n a a n d n n =+-=+-⋅=-. 故答案为:8;157n -三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.已知等差数列{}n a 的前n 项和为n S ,且25a =,511a =. (1)求{}n a 的通项公式; (2)若120n S =,求n .【答案】(1)21n a n =+;(2)10. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 因为25a =,511a =, 所以15a d +=,1411a d +=, 解得13a =,2d =.所以()()1132121n a a n d n n =+-=+-=+,*n ∈N , 所以{}n a 的通项公式为21n a n =+,*n ∈N . (2)由(1)知13a =,21n a n =+,因为120n S =, 所以()11202n n a a +=, 即()3211202n n ++=,化简得221200n n +-=, 解得10n =.19.在等差数列{}n a 中,(1)已知25121536a a a a +++=,求16S 的值; (2)已知620a =,求11S 的值. 【答案】(1)144;(2)220. 【解析】(1)由等差数列的性质可得()()()251215215512116236a a a a a a a a a a +++=+++=+=, 解得11618a a +=,因此,()1161616161814422a a S ⨯+⨯===;(2)由等差中项的性质和等差数列的求和公式得()11161161111211112022022a a a S a ⨯+⨯====⨯=.20.数列{a n }是首项为23,公差为整数的等差数列,且第6项为正,第7项为负. (1)求数列的公差;(2)求前n 项和S n 的最大值. 【答案】(1)4d =-;(2)78 【解析】(1)由已知,得6152350a a d d =+=+>,7162360a a d d =+=+<.解得232356d -<<-. 又d Z ∈,∴4d =-.(2)∵0d <,∴数列{}n a 是递减数列. 又∵60a >,70a <,∴当6n =时, n S 取得最大值,为()6656234782S ⨯=⨯+⨯-=. 21.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S 的最小值.【答案】(1)29n a n =-;(2)16-. 【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得2d =.所以{}n a 的通项公式为29n a n =-. (2)由(1)得()228416nS n n n =-=--.所以当4n =时,n S 取得最小值,最小值为16-. 22.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 【答案】(1)22n a n =+(2)22nn +【解析】(1)设等差数列{}n a 的公差为d ,则()11n a a n d +-=.因为37248,a a a a =⎧⎨=+⎩所以11112863a d a d a d a d +=⎧⎨+=+++⎩,解得14a =,2d =,所以数列{}n a 的通项公式为22n a n =+.(2)由题意知()1121n n b na n n ==+11121n n ⎛⎫=- ⎪+⎝⎭, 所以111111122231n S n n ⎛⎫=-+-++-= ⎪+⎝⎭1112122n n n ⎛⎫-= ⎪++⎝⎭.《4. 3等比数列》同步练习(基础篇)一.选择题(共10小题,满分50分,每小题5分)1.各项均为正数的等比数列{}n a 中,11a =,54a =,则3a =( )A .2B .-2CD .2.等比数列{}n a 中,已知12a =,416a =,数列{}n a 的公比为( ). A .12B .2-C .2D .12-3.在等比数列{}n a 中,11a =,2q ,则数列的前5项和等于( )A .31B .32C .63D .644. 2与2+ ) A .1B .1-C .2D .1-或15.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏6.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .67.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定8.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )A .32B .31C .16D .159.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( ) A .2B .4C .8D .1610.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,此表中各行均为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的若视力4.2的视标边长为a ,则视力5.1的视标边长为( )A .91010a -B .4510a -C .4510aD .91010a二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.已知等比数列{}n a 满足3432a a =且22a =,则1a =________. 12.已知公比为q 的等比数列{}n a 满足2432a a a +=,则q =____.13.从盛有1L 纯酒精的容器中倒出1L 3,然后用水填满,再倒出1 L 3,又用水填满…….连续进行了n 次后,容器中的纯酒精还剩下32L 243,则n =________. 14.在正项等比数列{}n a 中,若126a a +=,38a =,则q =______;n a =_____. 15.我国古代著作《庄子天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”其含义是:一尺长的木棍,每天截去它的一半,永远也截不完.那么,第6天截取之后,剩余木棍的长度是_________尺;要使剩余木棍的长度小于12018尺,需要经过________次截取. 16. n S 是正项等比数列{}n a 的前n 和,318a =,326S =,则1a =______.公比q =______.17.等差数列{}n a 的前n 项和为n S ,若11a =,36S a =,且3a ,6a ,k a 成等比数列,则n S =________,k =________.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.已知数列{}n a 的通项公式()26*n a n n N =-∈. (1)求2a ,5a ;(2)若2a ,5a 分别是等比数列{}n b 的第1项和第2项,求数列{}n b 的通项公式. 19.已知正项等比数列{}n a 的前n 项和为n S ,且12a =,38a =. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .20.在正项等比数列{}n a 中,416a =,且2a ,3a 的等差中项为12a a +. (1)求数列{}n a 的通项公式; (2)求数列{}n a n +的前n 项和为n S .21.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .22.设{}n a 是等比数列,其前n 项的和为n S ,且22a =,2130S a -=. (1)求{}n a 的通项公式;(2)若48n n S a +>,求n 的最小值. 答案解析一.选择题(共10小题,满分50分,每小题5分)1.各项均为正数的等比数列{}n a 中,11a =,54a =,则3a =( )A .2B .-2C D .【答案】A 【解析】因为各项均为正数的等比数列{}n a 中,11a =,54a =,所以23154a a a =⨯=,所以32a =(负值舍去) 故选:A.2.等比数列{}n a 中,已知12a =,416a =,数列{}n a 的公比为( ). A .12B .2-C .2D .12-【答案】C 【解析】数列{}n a 是等比数列,则11n n a a q -=⋅,(q 为数列{}n a 的公比),则3341162a a q q =⋅⇒=⋅,解得2q.故选:C.3.在等比数列{}n a 中,11a =,2q ,则数列的前5项和等于( )A .31B .32C .63D .64【答案】A 【解析】因为等比数列{}n a 中,11a =,2q,所以数列的前5项和()()55151********a q S q-⨯-===--,故选:A.4.2与2+ ) A .1 B .1-C .2D .1-或1【答案】D 【解析】由题意可设2与2m ,则2(21m =-+=,解得1m =-或1m =. 故选:D.5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏 B .9盏C .27盏D .81盏【答案】C 【解析】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-,解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C6.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .6【答案】C 【解析】由题意可得等比数列通项5111122n n n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C7.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4 B .-4 C .±4 D .不确定【答案】A 【解析】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A8.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )A .32B .31C .16D .15【答案】B 【解析】因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q,所以211a a q==,又因为1111nna q S qq,所以()551123112S -==-.故选:B.9.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( ) A .2 B .4 C .8 D .16【答案】D 【解析】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D.10.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,此表中各行均为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的若视力4.2的视标边长为a ,则视力5.1的视标边长为( )A .91010a - B .4510a -C .4510aD .91010a【答案】A 【解析】设第n 行视标边长为n a ,第1n -行视标边长为1n a -由题意可得:1101110nn n n a a a ---=⇔= 则数列{}n a 为首项为a ,公比为11010-的等比数列即101191010101010a a a ---⎛⎫== ⎪⎝⎭则视力5.1的视标边长为91010a - 故选:A二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.已知等比数列{}n a 满足3432a a =且22a =,则1a =________. 【答案】43【解析】因为3432a a =,所以4332a q a ==. 故由等比数列的通项公式得2124332a a q ===.故答案为:4312.已知公比为q 的等比数列{}n a 满足2432a a a +=,则q =_____. 【答案】1 【解析】因为{}n a 为等比数列,且2432a a a +=,所以321112a q a q a q +=,即212q q +=,解得1q =,故答案为:113.从盛有1L 纯酒精的容器中倒出1L 3,然后用水填满,再倒出1 L 3,又用水填满…….连续进行了n 次后,容器中的纯酒精还剩下32L 243,则n =________. 【答案】5 【解析】根据题意,连续进行了n 次后,容器中的纯酒精的剩余量组成数列{}n a , 则数列{}n a 是首项为23,公比为23的等比数列,则1222()()()333n nn a -=⨯=,若连续进行了n 次后,容器中的纯酒精还剩下32243L ,即232()3243n =,解得5n =, 故答案为:5.14.在正项等比数列{}n a 中,若126a a +=,38a =,则q =____;n a =______. 【答案】2 2n 【解析】由题意可知0q >,由题意可得()1212311680a a a q a a q q ⎧+=+=⎪==⎨⎪>⎩,解得122a q =⎧⎨=⎩,111222n n n n a a q --∴==⨯=.故答案为:2;2n .15.我国古代著作《庄子天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”其含义是:一尺长的木棍,每天截去它的一半,永远也截不完.那么,第6天截取之后,剩余木棍的长度是_________尺;要使剩余木棍的长度小于12018尺,需要经过________次截取. 【答案】16411 【解析】记第n 天后剩余木棍的长度{}n a ,则{}n a 是首项为12,公比为12的等比数列, 所以12n n a =,所以6611264a ==, 由1122018n n a =<得10n >,所以n 的最小值为11.所以第6天截取之后,剩余木棍的长度是164尺,要使剩余木棍的长度小于12018尺,需要经过11次截取. 故答案为:164;11. 16. n S 是正项等比数列{}n a 的前n 和,318a =,326S =,则1a =______.公比q =______.【答案】2 3 【解析】当1q =时,333S a ≠,不满足题意,故1q ≠;当1q ≠时,有()2131181261a q a q q ⎧=⎪-⎨=⎪-⎩,解之得:123a q =⎧⎨=⎩.故答案为:2;3.17.等差数列{}n a 的前n 项和为n S ,若11a =,36S a =,且3a ,6a ,k a 成等比数列,则n S =________,k =________.【答案】22n n+ 12【解析】设等差数列的公差为d ,则由36S a =得11335a d a d +=+,即3315d d +=+,解得1d =,则n a n =,(1)2n n n S n -=+=22n n+. 由3a ,6a ,k a 成等比数列得263k a a a =⋅,即263k =,解得12k =.故答案为:22n n+;12三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.已知数列{}n a 的通项公式()26*n a n n N =-∈. (1)求2a ,5a ;(2)若2a ,5a 分别是等比数列{}n b 的第1项和第2项,求数列{}n b 的通项公式.【答案】(1)22a =-,54a =;(2)(2)nn b =-.【解析】(1)因为()26*n a n n N =-∈,所以22a =-,54a =, (2)由题意知:等比数列{}n b 中,122b a ==-,254b a ==, 公比212b q b ==-∴等比数列{}n b 的通项公式111(2)(2)(2)n n n n b b q--=⋅=-⋅-=-19.已知正项等比数列{}n a 的前n 项和为n S ,且12a =,38a =. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .【答案】(1)*2,n n a n N =∈;(2)1*22,n n S n +=-∈N .【解析】(1)设等比数列{}n a 的公比为q ,则223128a a q q ===,所以2q 或2q =-(舍),所以112n nn a a q -==,*n N ∈.(2)由(1)得2nn a =,所以()()11121222112n n n n a q S q+--===---.20.在正项等比数列{}n a 中,416a =,且2a ,3a 的等差中项为12a a +. (1)求数列{}n a 的通项公式; (2)求数列{}n a n +的前n 项和为n S .【答案】(1)2nn a =;(2)()11222n n n nS ++⋅=+-.【解析】(1)设正项等比数列{}n a 的公比为(0)q q >,由题意可得3121111162()a q a q a q a a q ⎧=⎨+=+⎩,解得122a q =⎧⎨=⎩. ∴数列{}n a 的通项公式为1222n n n a -=⨯=;(2)()()()()()1121221211222122n n n n a a a n n nn nS +-+⋅=++++++⋅=+=++-+-.21.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .【答案】(1)n a n =,(2)1n nS n =+ 【解析】(1)设等差数列{}n a 的公差为d (0d ≠), 因为11a =,且139,,a a a 成等比数列,所以2319a a a =,即2(12)1(18)d d +=⨯+,解得0d =(舍去)或1d =, 所以n a n =,(2)由(1)可得11111(1)1n n a a n n n n +==-⋅++,所以111111+2231n n n S ⎛⎫⎛⎫⎛⎫=--+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭1111n n n =-=++ 22.设{}n a 是等比数列,其前n 项的和为n S ,且22a =,2130S a -=. (1)求{}n a 的通项公式;(2)若48n n S a +>,求n 的最小值. 【答案】(1)12n n a ;(2)6.【解析】(1)设{}n a 的公比为q ,因为2130S a -=,所以2120a a -=,所以212a q a ==, 又22a =,所以11a =,所以1112n n n a a q --==.(2)因为()11211n n n a q S q-==--,所以11212321n n n n n S a --+=-+=⋅-,由132148n -⋅->,得13249n -⋅>,即14923n ->,解得6n ≥, 所以n 的最小值为6.《4. 4数列的求和》同步练习(基础篇)一.选择题(共10小题,满分50分,每小题5分) 1.若数列{}n a 的通项公式是1(1)(41)n n a n +=-+,则111221a a a +++=( )A .45B .65C .69D .105-2.数列125⨯,158⨯,1811⨯,…,1(31)(32)n n -⨯+,…的前n 项和为( )A .32nn + B .64nn + C .364nn + D .12n n ++ 3.已知数列{}n a 为等差数列,且22a =,66a =,则12232021111a a a a a a ++⋅⋅⋅+=( ) A .1819B .1920C .2021 D .21224. ()12149161n n +-+-++-等于( )A .(1)2n n + B .-(1)2n n + C .()1(1)12n n n ++- D .()(1)12n n n +- 5.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +n -2D .2n +1+n 2-26.已知在等差数列{}n a 中,5=5a ,3=3a ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2019项和是( )A .20202019B .20192020C .20182019D .201920187.设数列()()211,12,,1222,n -+⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅的前n 项和为nS,则n S 的值为( )A .24n n --B .22n n --C .124n n +--D .122n n +--8.数列11111,2,3,424816…的前n 项和为( ) A .()211122n n n ++- B .()1111122n n n +++-C .()211222n n n ++- D .()1112122n n n ⎛⎫++- ⎪⎝⎭9.已知数列{}n a 的通项公式是221sin()2n n a n π+=,则1232020a a a a ++++=( )A .201920202⨯B .202120202⨯C .201920192⨯D .202020202⨯10.设4()42xx f x =+,1231011111111f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .4B .5C .6D .10二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.数列{n a }中,()1nn a n =-,则1210a a a +++=________12.已知数列{}n a 的前n 项和为n S ,cos()n a n π=,()*n N ∈,则2020S =________. 13.已知数列{}n a 中,2nn a n =⋅,则数列{}n a 的前9项和为_____________.14.已知等差数列{}n a 的首项和公差都为2.则数列{}n a 的通项公式=____,数列11n n a a +⎧⎫⎨⎬⎩⎭上的前2020项和为_______.15.设等差数列{}n a 的公差为非零常数d ,且11a =,若1a ,2a ,4a 成等比数列,则公差d =________﹔数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和100S =________.16.等差数列{}n a ,235a a +=,且4a 是2a 与8a 的等比中项,则n a =______;122334201920201111a a a a a a a a +++⋅⋅⋅+=⋅⋅⋅⋅______. 17.若n S 是数列{}n a 的前n 项和,且2121232222n n a a a a n n -++++=+,则n a =_________n S =_____三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.已知在等差数列{}n a 中,35a =,1763a a =.(1)求数列{}n a 的通项公式: (2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .19.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项.(2)设数列{}n a 的前n 项和为n S ,求数列的前n 项和为n T .20.已知等比数列{}n a 的前n 项和为n S ,且12n n a S +=+对一切正整数n 恒成立. (1)求数列{}n a 的通项公式; (2)求数列{}n S 的前n 项和n T .21.已知等差数列{}n a 的公差为()d d ≠0,前n 项和为n S ,且满足_____.(从①10105(1);S a =+②126,,a a a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题) (1)求n a ; (2)若12n nb =,求数列{}n n a b +的前n 项和n T . 22.已知等比数列{}n a 的公比1q >,且13,a a 的等差中项为10, 28a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n nnb a =, 求数列{}n b 的前n 项和n S . 答案解析一.选择题(共10小题,满分50分,每小题5分) 1.若数列{}n a 的通项公式是1(1)(41)n n a n +=-+,则111221a a a +++=( )A .45B .65C .69D .105-【答案】B【解析】因为1(1)(41)n n a n +=-+,所以1211(1)(41)(1)[4(1)1](1)(4)n n n n n a a n n +++++=-++-++=--,则1112211112192021()()4585a a a a a a a a +++=+++++=-⨯+…… 65=, 故选:B . 2.数列125⨯,158⨯,1811⨯,…,1(31)(32)n n -⨯+,…的前n 项和为( )A .32nn + B .64nn + C .364nn + D .12n n ++ 【答案】B 【解析】 ∵1111(31)(32)33132n n n n ⎛⎫=- ⎪-+-+⎝⎭∴1112558(31)(32)n S n n =+++⋅⋅-+=1111111325583132n n ⎛⎫-+-++-⎪-+⎝⎭=111323264nn n ⎛⎫-=⎪++⎝⎭ 故选:B3.已知数列{}n a 为等差数列,且22a =,66a =,则12232021111a a a a a a ++⋅⋅⋅+=( ) A .1819B .1920C .2021 D .2122【答案】C 【解析】设数列{}n a 的公差为d ,由题意得,11256a d a d +=⎧⎨+=⎩,解得11a =,1d =,∴1(1)1n a n n =+-⨯=,∴11111(1)1+==-++n n a a n n n n ,∴12232021111111111201122320212121a a a a a a ++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=. 故选:C. 4. ()12149161n n +-+-++-等于( )A .(1)2n n + B .-(1)2n n + C .()1(1)12n n n ++- D . ()(1)12n n n +- 【答案】C 【解析】 当n 为偶数时,()()121491613721n n n +-+-++-=-----()12(321)(1)214916122n nn n n n ++-+-+-++-=-=-当n 为奇数时,()()12214916137211n n n n +⎡⎤-+-++-=------+⎣⎦()1221[32(1)1]2149161+2n n n n n +-+---+-++-=- 所以()12(1)1491612n n n n ++-+-++-=综上可得:()()112(1)14916112n n n n n +++-+-++-=- 故选:C5.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n+n 2-1 B .2n +1+n 2-1 C .2n +n -2 D .2n +1+n 2-2【答案】D 【解析】由题可知:设数列{a n }的前n 项和为n S 所以12n n S a a a =+++即()()22221321n n n S =+++++++-。
(人教版新课标)高中数学必修2所有课时练习(含答案可编辑)

第一章空间几何体课时作业(一)棱柱、棱锥、棱台的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.从长方体的一个顶点出发的三条棱上各取一点E,F,G,过此三点作长方体的截面,那么截去的几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥答案: B2.下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④解析:因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱,有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.答案: A3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.答案: D4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.答案: B二、填空题(每小题5分,共10分)5.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:此多面体由四个面构成,故为三棱锥,也叫四面体.答案:三棱锥(也可答四面体)6.下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析:棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案:①②④⑤三、解答题(每小题10分,共20分)7.(1)如图所示的几何体是不是棱台?为什么?(2)如图所示的几何体是不是锥体?为什么?解析:(1)①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台;虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台.只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.(2)都不是.棱锥定义中要求各侧面有一个公共顶点.图①中侧面ABC与CDE没有公共顶点,故该几何体不是锥体;图②中侧面ABE与面CDF没有公共点,故该几何体不是锥体.8.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:(1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确.五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.尖子生题库☆☆☆9.(10分)在如图所示的三棱柱ABC-A1B1C1中,请连接三条线,把它分成三部分,使每一部分都是一个三棱锥.解析:如图,连接A1B,BC1,A1C,则三棱柱ABC-A1B1C1被分成三部分,形成三个三棱锥,分别是A1-ABC,A1-BB1C1,A1-BCC1.课时作业(二)圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列四种说法①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:①所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.故选D.答案: D2.下图是由选项中的哪个图形旋转得到的()解析:该组合体上部是圆锥,下部是圆台,由旋转体定义知,上部由直角三角形的直角边为轴旋转形成,下部由直角梯形垂直于底边的腰为轴旋转形成.故选A.答案: A3.如图所示为一个空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是()A.梯形、正方形B.圆台、正方形C.圆台、圆柱D.梯形、圆柱解析:空间几何体不是平面几何图形,所以应该排除A、B、D.答案: C4.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故选D.答案: D二、填空题(每小题5分,共10分)5.有下列说法:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆面.其中正确说法的个数为________.解析:命题①②都对,命题③中一个平面与球相交,其截面是一个圆面,③对.答案: 36.下面几何体的截面一定是圆面的是________.(填正确序号)①圆柱②圆锥③球④圆台答案:③三、解答题(每小题10分,共20分)7.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.解析:先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:8.如图所示的几何体是否为台体?为什么?尖子生题库☆☆☆9.(10分)一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解析:(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底一半O1A=2 cm,下底一半OB=5 cm.又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 cm.即截得此圆台的圆锥的母线长为20 cm.课时作业(三) 中心投影与平行投影空间几何体的三视图姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形C .两条相交直线的平行投影可能平行D .若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点 解析: 对于A ,矩形的平行投影可以是线段、矩形、平行四边形,主要与矩形的放置及投影面的位置有关;同理,对于B ,梯形的平行投影可以是梯形或线段;对于C ,平行投影把两条相交直线投射成两条相交直线或一条直线;D 正确。
高中数学必修二 第09章 统计(A卷基础篇)(含答案)

第九章统计A(基础卷)参考答案与试题解析一.选择题(共8小题)1.(2020春•郑州期中)某中学为了了解500名学生的身高,从中抽取了30名学生的身高进行统计分析,在这个问题中,500名学生身高的全体是()A.总体B.个体C.从总体中抽取的一个样本D.样本的容量【解答】解:为了了解500名学生的身高,从中抽取了30名学生的身高进行统计分析,这500名学生身高的全体是总体.故选:A.2.(2020春•盐城期末)某校高一、高二、高三年级各有学生数分别为800、1000、800(单位:人),现用分层抽样的方法抽取一个容量为n的样本了解网课学习情况,样本中高一学生的人数为48人,那么此样本的容量n为()A.108 B.96 C.156 D.208【解答】解:∵高一、高二、高三学生的数量之比依次为800:1000:800=4:5:4,现用分层抽样的方法抽出的样本中高一学生有48人,∴由分层抽样性质,得:,解得n=156.故选:C.3.(2020•赣州模拟)从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,……50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为()(注:表为随机数表的第1行与第2行)0347 4373 8636 9647 3661 4698 6371 62977424 6792 4281 1457 2042 5332 3732 1676A.24 B.36 C.46 D.47【解答】解:由题知从随机数表的第1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.故选:A.4.(2020•山西模拟)如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).则甲组数据的中位数,乙组数据的平均数分别为()A.12,15 B.15,15 C.15,15.9 D.15,16.8【解答】解:由茎叶图得:甲组数据为:9,12,15,24,27,乙组数据为:8,15,18,19,24,故甲组数据的中位数是15,乙组数据的平均数是:16.8,故选:D.5.(2020•新课标Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1 C.1 D.10【解答】解:∵样本数据x1,x2,…,x n的方差为0.01,∴根据任何一组数据同时扩大几倍方差将变为平方倍增长,∴数据10x1,10x2,…,10x n的方差为:100×0.01=1,故选:C.6.(2020春•闵行区校级期中)在一次数学测试中,高二某班40名学生成绩的平均分为82,方差为10.2,则下列四个数中不可能是该班数学成绩的是()A.100 B.85 C.65 D.55【解答】解:因为S210.2,所以40×10.2=408,若存在x=55,则(x)2=(55﹣82)2=729408,则方差必然大于10.2,不符合题意,所以55不可能是所有成绩中的一个样本.故选:D.7.(2020•4月份模拟)学校为了调查学生在课外读物方面的支出(单位:元)情况,抽取了一个容量为n 的样本,并将得到的数据分成[10,20),[20,30),[30,40),[40,50]四组,绘制成如图所示的频率分布直方图,其中支出在[40,50]的同学有24人,则n=()A.80 B.60 C.100 D.50【解答】解:本题考查频率分布直方图,考查数据处理能力.由频率分布直方图可得,支出在[40,50]的频率为1﹣(0.01+0.024+0.036)×10=0.3.根据题意得,解得n=80.故选:A.8.(2020•深圳模拟)一个容量为100的样本,其数据分组与各组的频数如表:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]频数12 13 24 15 16 13 7则样本数据落在(10,40]上的频率为()A.0.13 B.0.52 C.0.39 D.0.64【解答】解:由频率分布表知,样本数据落在(10,40]上的频率为:0.52.故选:B.二.多选题(共4小题)9.(2020春•启东市校级月考)为了了解参加运动会的2000名运动员的年龄情况,从中抽取了20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有()A.2000名运动员是总体B.所抽取的20名运动员是一个样本C.样本容量为20D.每个运动员被抽到的机会相等.【解答】解:由题意知,2000名运动员的年龄是总体,所以A错误;所抽取的20名运动员的年龄是一个样本,所以A错误;样本容量是20,所以C正确;每个运动员被抽到的机会相等,所以D正确.故选:CD.10.(2020•烟台一模)2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延,疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.右侧的图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是()A.16天中每新增确诊病例数量呈下降趋势且19日的降幅最大B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000D.19至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和【解答】解:由频率分布折线图可知,16天中新增确诊病例数量整体呈下降趋势,但具体到每一天有增有减,故A错误;由每日新增确诊病例的数量大部分小于新增疑似病例的数量,则16天中每日新增确诊病例的中位数小于新增疑似病例的中位数,故B正确;由图可知,16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000,故C正确;由图可知,20日的新增治愈病例数量小于新增确诊与新增疑似病例之和,故D错误.∴正确的结论是BC.故选:BC.11.(2020春•济宁月考)一组数据2x1+l,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7 B.a=ll C.b=12 D.b=9【解答】解:2x1+l,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,设X=(x1,x2,x3,…,x n),E(2X+1)=2E(X)+1=7,得E(X)=3,D(2X+1)=4D(X)=4,D(X)=1,3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,a=E(3X+2)=3E(X)+2=11,b=D(3X+2)=9D(X)=9,故选:BD.12.(2020•淄博模拟)某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况,对比数据,关于这20名肥胖者,下面结论正确的是()A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少【解答】解:体重在[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,所以A 正确;他们健身后,体重在[100,110)内的百分比没有变,但人员组成可能改变,所以B错误;他们健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)﹣(0.1×85+0.4×95+0.5×105)=5(kg),所以C错误;因为图(2)中没有体重在[110,120)内的人员,所以原来体重在[110,120)内的肥胖者体重都有减少,所以D正确.故选:AD.三.填空题(共4小题)13.(2020•江苏模拟)某次数学测验五位同学的成绩分布茎叶图如图,则这五位同学数学成绩的方差为10.【解答】解:由图可得这五位同学考试成绩分别为122,128,129,130,131;则这五位同学数学成绩的平均数为:(122+128+129+130+131)=128,方差[(122﹣128)2+(128﹣128)2+(129﹣128)2+(130﹣128)2+(131﹣128)2]=10.故答案为:10.14.(2020•南通模拟)为了解某校学生课外阅读的情况,随机统计了1000名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示,则阅读时间在[125,150)中的学生人数为200.【解答】解:由频率分布直方图得:阅读时间在[125,150)中的频率为:1﹣(0.004+0.012+0.016)×25=0.2.∴阅读时间在[125,150)中的学生人数为:1000×0.2=200.故答案为:200.15.(2020•扬州模拟)某校在高一、高二、高三三个年级中招募志愿者50人,现用分层抽样的方法分配三个年级的志愿者人数,已知高一、高二、高三年级的学生人数之比为4:3:3,则应从高三年级抽取15名志愿者.【解答】解:∵高三年级的学生人数占的比例为,则应从高三年级抽取的人数为5015,故答案为:15.16.(2020•中卫三模)从2021个学生中选取202人志愿者,若采用下面的方法选取,先用简单随机抽样法从2021人中剔除1人,剩下的2020人按系统抽样取出202人,则每人入选的概率.【解答】解:根据抽样的性质可知,无论哪种抽样,每个个体抽到的概率都是相同的,用简单随机抽样从2021人中剔除1人,每个人被剔除的概率相等,剩下的2020人再按系统抽样的方法抽取,每个人被抽取的概率也相等,即,故答案为:.四.解答题(共5小题)17.(2020•宁德模拟)A、B两同学参加数学竞赛培训,在培训期间,他们参加了8次测验,成绩(单位:分)记录如下:A71 62 72 76 63 70 85 83B73 84 75 73 7876 85B同学的成绩不慎被墨迹污染(,分别用m,n表示).(1)用茎叶图表示这两组数据,现从A、B两同学中选派一人去参加数学竞赛,你认为选派谁更好?请说明理由(不用计算);(2)若B同学的平均分为78,方差s2=19,求m,n.【解答】解:(1)A、B两同学参加了8次测验,成绩(单位:分)茎叶图如下:由茎叶图可知,B同学的平均成绩高于A同学的平均成绩,所以选派B同学参加数学竞赛更好.(2)因为(73+84+75+73+70+m+80+n+76+85)=78,所以m+n=8,①,因为S2[52+62+32+(m﹣8)2+(n+2)2+22+72]=19,所以(m﹣8)2+(n+2)2=4,②联立①②解得,m=8,n=0.18.(2020•武侯区校级模拟)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.【解答】解:(1)得分[20,40)的频率为0.005×20=0.1;得分[40,60)的频率为0.010×20=0.2;得分[80,100]的频率为0.015×20=0.3;所以得分[60,80)的频率为1﹣(0.1+0.2+0.3)=0.4.设班级得分的中位数为x分,于是,解得x=70.所以班级卫生量化打分检查得分的中位数为70分.(2)由(1)知题意“良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的“良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为A.则为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4,2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(i,j)表示,其中1≤i<j≤6.这些点恰好为6×6方格格点上半部分(不含i=j对角线上的点),于是有种.事件仅有(5,6)一个基本事件.所以.所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为.19.(2020•甲卷三模)中国女排一直是国人的骄傲,2019年女排世界杯于9月14日﹣9月29日在日本举行,中国女排10连胜提前夺冠,获世界杯第五冠、三大赛第十冠.中国女排用胜利点燃国人的激情,女排精神成为了拼搏、不服输的代表.某校受此影响,也举办了校园排球联赛,每班各自选出12人代表队,最后甲、乙两班进入决赛,如下茎叶图所示的是对每名队员上场时间做的统计,根据茎叶图回答问题:(Ⅰ)计算甲、乙两班队员上场的平均时间,并根据茎叶图分析哪班队员上场时间更均衡(不需要计算);(Ⅱ)赛后学校在上场时间超过50分钟(包括50分钟)的队员中随机抽取2人评为最佳运动员,则两人中至少有一人来自乙班的概率是多少?【解答】解:(Ⅰ)甲班队员上场的平均时间31.25,乙班队员上场的平均时间34.5.由茎叶图分析甲班队员上场时间更均衡.(Ⅱ)上场时间超过50分钟的队员甲班有两人为A,B,乙班有3人为C,D,E.则从5人中随机抽取2人的取法有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE.共有10种,至少有一人来自乙班的有9种,故两人中至少有一人来自乙班的概率P.20.(2020春•锡山区校级期中)为了落实习主席提出“绿水青山就是金山银山”的环境治理要求,某市政府积极鼓励居民节约用水.计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年200位居民每人的月均用水量(单位:吨),将数据按照[0,1),[1,2),…,[8,9)分成9组,制成了如图所示的频率分布直方图,其中0.4a=b.(1)求直方图中a,b的值,并由频率分布直方图估计该市居民用水的平均数(每组数据用该组区间中点值作为代表);(2)设该市有40万居民,估计全市居民中月均用水量不低于2吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【解答】解:(1)由题意得:,解得a=0.15,b=0.06.由频率分布直方图估计该市居民用水的平均数为:0.5×0.04+1.5×0.08+2.5×0.15+3.5×0.20+4.5×0.26+5.5×0.15+6.5×0.06+7.5×0.04+8.5×0.02≈4.07.(2)由频率分布直方图得:全市居民中月均用水量不低于2吨的频率为:1﹣0.04﹣0.08=0.88,∴全市居民中月均用水量不低于2吨的人数为:400000×(1﹣0.04﹣0.08)=352000.(3)∵前6组的频率之和是0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,∴5≤x<6,由0.15×(x﹣5)=0.85﹣0.73,解得:x=5.8,因此,估计月用水量标准为5.8吨时,85%的居民每月的用水量不超过标准.21.(2020•迎泽区校级模拟)2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x,y,z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.组数分组“环保族”人数占本组频率第一组[20,25)45 0.75第二组[25,30)25 y第三组[30,35)20 0.5第四组[35,40)z0.2第五组[40,45) 3 0.1【解答】解:(1)由题意得:.(2)根据频率分布直方图,估计这x人年龄的平均值为:22.5×0.06×5+27.5×0.04×5+32.5×0.04×5+37.5×0.03×5+42.5×0.03×5=30.75≈31..(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选:95人,[30,35]中选:94人,在这9人中选取2人作为记录员,基本事件总数n,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件个数:m26,∴选取的2名记录员中至少有一人年龄在[30,35]中的概率p.。
人教A版高中数学必修第二册测试题(含答案)

人教A版高中数学必修第二册测试题(含答案)一、单选题1.设D为所在平面内一点,且,则()A.B.C.D.2.若复数为纯虚数,则实数()A.B.0C.5D.3.已知四边形为平行四边形,其中,则顶点的坐标为()A.B.C.D.4.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A.0.04B.0.06C.0.2D.0.35.某三棱锥的三视图如右图所示,该三棱锥的体积为A.B.C.D.6.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为()A.B.C.D.7.下列说法正确的个数是()①一组数据的标准差越大,则说明这组数据越集中;②曲线与曲线的焦距相等;③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;④已知椭圆,过点作直线,当直线斜率为时,M刚好是直线被椭圆截得的弦AB的中点.A.1B.2C.3D.48.在中,一定成立的等式是()A.B.C.D.9.从高二某班级中抽出三名学生.设事件甲为“三名学生全不是男生”,事件乙为“三名学生全是男生”,事件丙为“三名学生至少有一名是男生”,则()A.甲与丙互斥B.任何两个均互斥C.乙与丙互斥D.任何两个均不互斥10.已知是平面,是直线,则下列命题不正确的是()A.若则B.若则C.若则D.若,则11.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为( )A.80B.96C.108D.110二、填空题12.在复变函数相关领域中,欧拉公式为(这里是虚数单位),当时,可以得到,这个公式被誉为数学中最令人着迷的公式,根据欧拉公式,则______.13.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.14.气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______.三、解答题16.在中,角所对的边分别为已知.(1)求A的大小;(2)如果,求的面积.17.宜宾市创建全国文明城市期间,一单位有甲、乙、丙三个志愿小组,其中甲组4人,乙组8人,丙组12人,现用分层抽样方法从这三个组中选出6人组成宣传小组.(1)应从甲组、乙组、丙组中各抽取多少人?(2)记选出6人分别为,现从这6人中抽取2人进入某小区进行创文宣传;①试用所给的字母列举出所有可能的抽取结果;②设事件是“抽取2人来自同一志愿小组”,求事件发生的概率. 18.某公司有名员工,根据男女员工人数比例,用分层随机抽样的方法从中抽取了人,调查他们的通勤时间(上下班途中花费的总时间,单位:分钟),将数据按照,, ,分成组,并整理得到如下频率分布直方图:(I)从总体中随机抽取人,估计其通勤时间小于分钟的概率;(Ⅱ)求样本数据的中位数的估计值;(Ⅲ)已知样本中通勤时间大于或等于分钟的人都是男员工,通勤时间小于分钟的人中有一半是男员工,求该公司男员工的人数.19.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.20.设,复数,其中为虚数单位.(1)当为何值时,复数是虚数?(2)当为何值时,复数是纯虚数?(3)当为何值时,复数所对应的点在复平面内位于第四象限?21.如图,已知正方体内接于球O,且球的半径为,P,Q分别是,上的动点.(1)求正方体的棱长;(2)求的最小值;(3)若平面与平面所成二面角的大小为,平面与平面所成二面角的大小为,试求的最小值,及此时P点的位置.参考答案1.D2.A3.D4.C5.A6.D7.B8.C9.A10.D11.C12.413.公平14.①③15.816.(1);(2)17.(1)甲组1人,乙组2人,丙组3人;(2)①,;②.18.(Ⅰ);(Ⅱ);(Ⅲ).19.(1)见解析;(2)见解析20.(1)且;(2);(3). 21.(1)2(2)(3),点P位于BC的中点。
新教材人教A版高中数学必修第二册全册各章综合测验汇总(共五套,附解析)

高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
人教课标版(B版)高中数学必修2基础练习-点到直线的距离

2.2.4 点到直线的距离一、选择题1.在直线3x-4y-27=0上到点P(2,1)距离最近的点的坐标是() A.(5,-3)B.(9,0)C.(-3,5) D.(-5,3)2.过点(1,2)且与原点距离最大的直线方程是()A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.3x+y-5=03.与直线2x+y+1=0的距离为55的直线的方程是()A.2x+y=0B.2x+y-2=0C.2x+y=0或2x+y-2=0D.2x+y=0或2x+y+2=04.过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程是()A.4x+y-6=0B.x+4y-6=0C.2x+3y-7=0或x+4y-6=0D.3x+2y-7=0或4x+y-6=05.已知平行四边形相邻两边所在的直线方程是l1:x-2y+1=0和l2:3x-y-2=0,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线的方程是()A.2x-y+7=0和x-3y-4=0B.x-2y+7=0和3x-y-4=0C.x-2y+7=0和x-3y-4=0D.2x-y+7=0和3x-y-4=06.到直线3x-4y-1=0距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+11=0C.3x-4y-11=0或3x-4y+9=0D.3x-4y+11=0或3x-4y-9=07.顺次连结A(-4,3)、B(2,5)、C(6,3)、D(-3,0)所组成的图形是()A.平行四边形B.直角梯形C.等腰梯形 D.以上都不对8.直线ax+3y-9=0与直线x-3y+b=0关于原点对称,则a、b的值分别为()A.1,9 B.-1,-9C.1,-9 D.-1,9二、填空题9.过点A(-3,1)的直线中,与原点距离最远的直线方程为________________.10.与直线3x+4y-3=0平行,并且距离为3的直线方程为________________.11.已知a、b、c为某一直角三角形的三边长,c为斜边,若点P(m,n)在直线ax+by+2c=0上,则m2+n2的最小值为__________.12.与三条直线l1:x-y+2=0,l2:x-y-3=0,l3:x+y-5=0,可围成正方形的直线方程为__________.三、解答题13.(2010·曲师大附中高一期末检测)已知正方形中心G(-1,0),一边所在直线方程为x+3y-5=0,求其它三边所在直线方程.14.(2010·山东聊城高一期末检测)已知点A(2,4),B(1,-2),C(-2,3),求△ABC 的面积.15.求经过点A(2,-1)且与点B(-1,1)的距离为3的直线方程.16.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.17.已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0 截得的线段的长为5,求直线l的方程.1. [答案] A[解析] 当PQ 与已知直线垂直,垂足为Q 时,点Q (5,-3)即为所求.2. [答案] A[解析] 所求直线与两点A (1,2),O (0,0)连线垂直时与原点距离最大.3. [答案] D[解析] 验证法:直线2x +y =0与2x +y +1=0的距离为122+12=55, 直线2x +y +2=0与2x +y +1=0的距离为|2-1|22+12=55,故选D. 4. [答案] D[解析] 设直线方程为Ax +By +C =0(A 2+B 2≠0),∵直线过(1,2)且与A 、B 两点距离相等, 则⎩⎨⎧ A +2B +C =0 ①|2A +3B +C |A 2+B 2=|4A -5B +C |A 2+B 2 ②由②得:A =4B 或3A -B +C =0. 当A =4B 时,C =-6B ,直线方程4Bx +By -6B =0即4x +y -6=0.当3A -B +C =0时,2A =3B ,-7A =3C ,∴直线方程3Ax +2Ay -7A =0,即3x +2y -7=0.点评:本题实际解答比较麻烦,作为选择题可用检验淘汰法,由P (1,2)在所求直线上,排除B ,C.故只须检验A 、B 两点到直线3x +2y -7=0的距离是否相等即可,选D.5. [答案] B[解析] 解法一:l 1关于P (2,3)的对称直线l 3,l 2关于P (2,3)的对称直线l 4,就是另两边所在直线.解法二:因为另两边分别与l 1、l 3平行且到P (2,3)距离分别相等,∴设l 3:x -2y +c 1=0,l 4:3x -y +c 2=0,由点到直线距离公式得出. 解法三:l 1的对边与l 1平行应为x -2y +c =0形式排除A 、D ;l 2对边也与l 2平行,应为3x -y +c 1=0形式排除C ,∴选B.[解析] 设所求轨迹上任意点P (x ,y ), 由题意,得|3x -4y -1|32+42=2, 化简得3x -4y -11=0或3x -4y +9=0.7. [答案] B[解析] ∵k AB =k CD =13,k BC =-12,k AD =-3,∴AB ∥CD ,AB ⊥AD .8. [答案] B[解析] 设直线ax +3y -9=0关于原点对称的直线方程为-ax -3y -9=0,又∵直线ax +3y -9=0与直线x -3y +b =0关于原点对称,∴-a =1,b =-9,即a =-1,b =-9.9. [答案] 3x -y +10=0[解析] 设原点为O ,则所求直线过点A (-3,1)且与OA 垂直,又k OA =-13,∴所求直线的斜率为3,故其方程为y -1=3(x +3).即3x -y +10=0.10. [答案] 3x +4y -18=0或3x +4y +12=0[解析] 设所求直线上任意一点P (x ,y ) 由题意,得|3x +4y -3|32+42=3, ∴|3x +4y -3|=15,∴3x +4y -3=±15,即3x +4y -18=0或3x +4y +12=0.11. [答案] 4[解析] 由题设a 2+b 2=c 2,m 2+n 2表示直线l :ax +by +2c =0上的点P (m ,n )到原点O 的距离的平方,故当PO ⊥l 时,m 2+n 2取最小值d ,∴d =⎝ ⎛⎭⎪⎫2c a 2+b 22=4c 2a 2+b 2=4. 12. [答案] x +y -10=0或x +y =0[解析] ∵l 1∥l 2其距离d =|2-(-3)|2=52 2.所求直线l 4∥l 3,设l 4:x +y +c =0,则|c +5|2=522, ∴c =0或-10, ∴所求直线方程为x +y =0或x +y -10=0.13. [解析] 正方形中心G (-1,0)到四边距离相等,均为|-1-5|12+32=610 . 设与已知直线平行的一边所在直线方程为x +3y +c 1=0,由|-1+c 1|10=610,∴c 1=-5(舍去)或c 1=7. 故与已知直线平行的一边所在直线方程为x +3y +7=0.设另两边所在直线方程为3x -y +c 2=0.由|3×(-1)+c 2|10=610,得c 2=9或c 2=-3. ∴另两边所在直线方程为3x -y +9=0或3x -y -3=0.综上可知另三边所在直线方程分别为:x +3y +7=0,3x -y +9=0或3x -y -3=0.14. [解析] 设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=(1-2)2+(-2-4)2=37,AB 边上的高h 就是点C 到AB 的距离.AB 边所在的直线方程为y -4-2-4=x -21-2. 即6x -y -8=0.点C (-2,3)到6x -y -8=0的距离h =|-12-3-8|62+(-1)2=233737, 因此,S △ABC =12×37×233737=232.15. [解析] 若所求直线斜率不存在,则它的方程为x =2满足要求;若所求直线的斜率存在.设方程为y +1=k (x -2),即kx -y -2k -1=0,由题设B (-1,1)到该直线距离为3, ∴|-k -1-2k -1|k 2+1=3,∴k =512,∴直线方程为:y +1=512(x -2)即:5x -12y -22=0,∴所求直线的方程为:x =2或5x -12y -22=0.16. [解析] 解法一:∵点M 在直线x +y -3=0上,∴设点M 坐标为(t,3-t ),则点M 到l 1、l 2的距离相等, 即|t -(3-t )+1|2=|t -(3-t )-1|2, 解得t =32,∴M ⎝ ⎛⎭⎪⎫32,32. 又l 过点A (2,4),由两点式得y -324-32=x -322-32,即5x -y -6=0,故直线l 的方程为5x -y -6=0.解法二:设与l 1、l 2平行且距离相等的直线l 3:x -y +c =0,由两平行直线间的距离公式得|c -1|2=|c +1|2,解得c =0,即l 3:x -y =0.由题意得中点M 在l 3上,又点M 在x +y -3=0上.解方程组⎩⎨⎧ y -y =0x +y -3=0,得⎩⎪⎨⎪⎧ x =32y =32.∴M ⎝ ⎛⎭⎪⎫32,32.又l 过点A (2,4), 故由两点式得直线l 的方程为5x -y -6=0.解法三:由题意知直线l 的斜率必存在,设l :y -4=k (x -2),由⎩⎨⎧ y -4=k (x -2)x -y -1=0,得⎩⎪⎨⎪⎧ x =2k -5k -1y =k -4k -1.∴直线l 与l 1、l 2的交点分别为⎝ ⎛⎭⎪⎫2k -3k -1,3k -4k -1, ⎝ ⎛⎭⎪⎫2k -5k -1,k -4k -1. ∵M 为中点,∴M ⎝ ⎛⎭⎪⎫2k -4k -1,2k -4k -1. 又点M 在直线x +y -3=0上,∴2k -4k -1+2k -4k -1-3=0,解得k =5. 故所求直线l 的方程为y -4=5(x -2),即5x -y -6=0.17. [解析] 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A ′(3,-4)和B ′(3,-9),截得线段A ′B ′的长为|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1,解方程组⎩⎨⎧ y =k (x -3)+1x +y +1=0, 得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎨⎧y =k (x -3)+1x +y +6=0, 得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1. ∵|AB |=5,∴⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k +1k +1+9k -1k +12=25, 解得k =0,即所求直线方程为y =1.综上可知,所求直线的方程为x =3或y =1.。
【课堂新坐标】高中数学北师大版必修二练习:2.1.1直线的倾斜角和斜率(含答案解析)

学业分层测评(十三)(建议用时:45分钟)[学业达标]一、选择题一、选择题1.已知直线l 1的倾斜角为45°,直线l 2的倾斜角为θ,若l 1与l 2关于y 轴对称,则θ的值为( )A .45°B .90°C .135°D .180° 【解析】【解析】 由对称性知θ=180°-45°=135°135°.. 【答案】【答案】 C2.直线l 经过原点和点(-1,-1),则它的倾斜角是( ) A .45° B .135° C .135°或225°D .0°【解析】【解析】 由k =-1-0-1-0=1,知tan α=1,α=45°45°. . 【答案】【答案】 A3.过点M (-2,a ),N (a,4)的直线的斜率为-12,则a 等于( ) A .-8 B .10 C .2 D .4 【解析】【解析】 ∵k =4-a a +2=-12,∴a =10.【答案】【答案】 B4.已知三点A (2,-3),B (4,3)及C èæøö5,k 2在同一条直线上,则k 的值是( )A .7B .9C .11D .12 【解析】【解析】 若A 、B 、C 三点在同一条直线上,则k AB =k AC ,即3+34-2=k2+35-2,解得k =12. 【答案】【答案】 D5.直线l 过点A (1,2)且不过第四象限,那么l 的斜率的取值范围是( ) A .[0,2] B .[0,1] C.ëéûù0,12D.ëéøö0,12 【解析】【解析】 如图,当k =0时,不过第四象限,当直线过原点时也不过第四象限,时,不过第四象限,当直线过原点时也不过第四象限,∴由k OA =2-01-0=2,知k ∈[0,2]. 【答案】【答案】 A 二、填空题二、填空题6.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值范围是________.【解析】【解析】 k =2a -+a 3--a=a -12+a ,因为倾斜角为钝角,,因为倾斜角为钝角, 所以k <0,即a -12+a <0,解得-2<a <1.【答案】【答案】 (-2,1)7.已知点M 的坐标为(3,4),在坐标轴上有一点N ,若k MN =2,则N 点的坐标为________. 【导学号:10690041】【解析】【解析】 设N (x,0)或(0,y ),k MN =43-x 或4-y 3,∴43-x =2或4-y 3=2,∴x =1或y =-2,∴N 点的坐标为(1,0)或(0,-2).【答案】【答案】 (1,0)或(0,-2)8.已知直线l 的倾斜角为60°,将直线l 绕它与x 轴的交点顺时针旋转80°到l ′,则l ′的倾斜角为________.【解析】【解析】 如图,如图,顺时针旋转顺时针旋转80°,等价于逆时针旋转100°,故l ′的倾斜角为60°+100°=160°160°..【答案】【答案】 160° 三、解答题三、解答题9.已知A (1,1),B (3,5),C (a,7),D (-1,b )四点在同一条直线上,求直线的斜率k 及a 、b 的值.的值.【解】【解】 由题意可知k AB =5-13-1=2, k AC =7-1a -1=6a -1, k AD =b -1-1-1=b -1-2, 所以k =2=6a -1=b -1-2,解得a =4,b =-3,所以直线的斜率k =2,a =4,b =-3.10.已知P (3,-1),M (5,1),N (1,1),直线l 过P 点且与线段MN 相交,求:相交,求: (1)直线l 的倾斜角α的取值范围;的取值范围; (2)直线l 的斜率k 的取值范围.的取值范围. 【解】【解】k PM =1+15-3=1,∴直线PM 的倾斜角为45°45°.. 又k PN =1+11-3=-1,∴直线PN 的倾斜角为135°135°.. (1)由图可知,直线l 过P 点且与线段MN 相交,则直线l 的倾斜角α的取值范围是45°≤α≤135°.(2)当l 垂直于x 轴时,直线l 的斜率不存在,∴直线l 的斜率k 的取值范围是k ∈(-∞,-1]∪[1,+∞).[能力提升]1.若图2-2-1-1-1-44中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )图2-2-1-1-1-4 4 A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D .k 1<k 3<k 2【解析】 由图可知,l 1的倾斜角α1>90°,所以k 1<0,l 2,l 3的倾斜角满足0°0°<<α3<α2<90°,所以k 3<k 2,于是可得k 1<k 3<k 2,故选D.【答案】【答案】 D2.将直线l 向右平移4个单位,再向下平移5个单位后仍回到原来的位置,则此直线的斜率为( )A.54B.45 C .-54 D .-45【解析】【解析】 设点P (a ,b )是直线l 上的任意一点,当直线l 按题中要求平移后,点P 也做同样的平移,平移后的坐标为(a +4,b -5),由题意知,这两点都在直线l 上,∴直线l 的斜率为k =b -5-b a +4-a=-54.【答案】【答案】 C3.直线l 经过A (2,1),B (1,m 2)(m ∈R)两点,则直线l 的倾斜角的取值范围为________. 【解析】【解析】 直线l 的斜率k =m 2-11-2=1-m 2≤1. 若l 的倾斜角为α,则tan α≤1.又∵α∈[0°,180°180°)), 当0≤tan α≤1时,0°≤α≤45°;当tan α<0时,90°90°<<α<180°,∴α∈[0°,45°45°]]∪(90°,180°180°)). 【答案】【答案】 [0°,45°45°]]∪(90°,180°180°) ) 4.已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.的最大值和最小值.【解】【解】 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于yx 的几何意义是直线OP 的斜率,的斜率, 且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.。
高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)

第四章 数列 单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________ 题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知数列{a n }的前4项为:l ,−12,13,−14,则数列{a n }的通项公式可能为( ) A .a n =1n B .a n =−1nC .a n =(−1)n nD .a n =(−1)n−1n【答案】D 【解析】 【分析】分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式 【详解】正负相间用(−1)n−1表示,∴a n =(−1)n−1n.故选D . 【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律. 2.记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为( ) A .1 B .-1C .2D .-2【答案】A【分析】利用等差数列{a n }的前n 项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n }的公差. 【详解】∴S n 为等差数列{a n }的前n 项和,a 3∴3∴S 6∴21∴∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩∴ 解得a 1∴1∴d ∴1∴ ∴数列{a n }的公差为1. 故选A ∴ 【点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.3.已知数列{}n a ,满足111n n a a +=-,若112a =,则2019a =( ) A .2 B .12C .1-D .12-【答案】C 【分析】利用递推公式计算出数列{}n a 的前几项,找出数列{}n a 的周期,然后利用周期性求出2019a 的值. 【详解】111n n a a +=-,且112a =,211121112a a ∴===--,32111112a a ===---, 111a ===,所以,()a a n N *=∈,则数列{}n a 是以3为周期的周期数列,20193672331a a a ⨯+===-∴. 故选C. 【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4.在等比数列{}n a 中,6124146,5a a a a ⋅=+=,则255a a =( ) A .94或49B .32C .32或23 D .32或94【答案】A 【分析】根据等比数列的性质得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得414,a a 的值,分类讨论求解,即可得到答案. 【详解】由题意,根据等比数列的性质,可得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得41423a a =⎧⎨=⎩或41432a a =⎧⎨=⎩,当41423a a =⎧⎨=⎩时,则1014432a q a ==,此时201022559()4a q q a ===;当41432a a =⎧⎨=⎩时,则1014423a q a ==,此时201022554()9a q q a ===,故选A. 【点睛】值是解答的关键,着重考查了运算与求解能力,属于基础题. 5.等比数列{}n a 中( ) A .若12a a <,则45a a <B .若12a a <,则34a a <C .若32S S >,则12a a <D .若32S S >,则12a a >【答案】B 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.6.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .5110【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.函数()2cos 2f x x x =-的正数零点从小到大构成数列{}n a ,则3a =( )A .1312π B .54π C .1712πD .76π 【答案】B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.8.已知函数3()13xxf x =+(x ∈R ),正项等比数列{}n a 满足501a =,则 1299(ln )(ln )(ln )f a f a f a +++=A .99B .101C .992D .1012【答案】C 【详解】因为函数31()()()11331x x xf x f x f x ---==∴+-=++(x ∈R ), 正项等比数列{}n a 满足2501995011a a a a =∴==,9921ln ln ln ln ...0a a a a +=+=则1299(ln )(ln )(ln )f a f a f a +++=992,选C二、多选题A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 10.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=【答案】BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n nn n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和.【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的 等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确; 因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题.11.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <【答案】AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.12.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,1a a =+,记这2n 个数的和为S .下列结论正确的有( )1112131.n a a a a ⋯⋯ 2122232.n a a a a ⋯⋯ 3132333.n a a a a ⋯⋯……123.n n n nn a a a a ⋯⋯A .3m =B .767173a =⨯C .()1313j ij a i -=-⨯ D .()()131314n S n n =+- 【答案】ACD 【分析】根据等差数列和等比数列通项公式,结合13611a a =+可求得m ,同时确定67a 、ij a 的值、得到,,A B C 的正误;首先利用等比数列求和公式求得第i 行n 个数的和,再结合等差求和公式得到D 的正误. 【详解】对于A ,2213112a a m m =⋅=,6111525a a m m =+=+,2235m m ∴=+,又0m >,3m ∴=,A 正确;对于B ,612517a m =+=,666761173a a m ∴=⋅=⨯,B 错误;对于C ,()111131i a a i m i =+-=-,()111313j j ij i a a mi --∴=⋅=-⋅,C 正确;对于D ,第i 行n 个数的和()()()()()1131133131122n n n i a m i i S m-----'===--,()()()()()()3111131258313131312224n n nn n S n n n +∴=-⨯+++⋅⋅⋅+-=-⨯=+-⎡⎤⎣⎦,D 正确. 故选:ACD .本题考查数列中的新定义问题,解题关键是能够灵活应用等差和等比数列的通项公式和求和公式,将新定义的数阵转化为等差和等比数列的问题来进行求解.三、填空题13.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________. 【答案】20 【分析】先由条件求出1,a d ,算出n S ,然后利用二次函数的知识求出即可 【详解】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++即1235a d +=,①2461113599a a a a d a d a d ++=+++++=即1333a d +=,②由①②联立得139,2a d ==-所以()()22139(2)40204002n S n n n n n n -=+⨯-=-+=--+故当20n =时,n S 取得最大值400 故答案为:20等差数列的n S 是关于n 的二次函数,但要注意n 只能取正整数.14.《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的12.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =_____尺.【答案】2n +1﹣21﹣n【分析】写出两只老鼠打洞的通项公式,利用分组求和即可得解. 【详解】根据题意大老鼠第n 天打洞12n na 尺,小老鼠第n 天打洞112n n b -⎛⎫= ⎪⎝⎭尺,所以11111242122n n n S --⎛⎫=+++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭111221112nn ⎛⎫- ⎪-⎝⎭=+--112122n n -⎛⎫=-+- ⎪⎝⎭1212n n -=+-故答案为:1212n n -+- 【点睛】此题考查等比数列的辨析,写出通项公式,根据求和公式求和,关键在于熟练掌握相关公式,涉及分组求和.15.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】n a =【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式. 【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j jOA B i i OA B j jS OA a SOA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得n a =故答案为: n a 【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.设等差数列{}n a 的前n 项的和为n S ,且462S =-,675S =-,求: (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前14项和.【答案】(1)323n a n =-;(2)147. 【分析】(1)由已知条件列出关于1,a d 的方程组,求出1,a d 可得到n a ;(2)由通项公式n a 先判断数列{}n a 中项的正负,然后再化简数列{}n a 中的项,即可求出结果. 【详解】解:(1)设等差数列{}n a 的公差为d ,依题意得11434622656752a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得120,3a d =-=,∴()2013323n a n n =-+-⨯=-; (2)∵323n a n =-,∴由0n a <得8n <,22(20323)3433432222n n n n n S n n -+--===-∴123141278141472a a a a a a a a a S S ++++=----+++=-223433431414772222⎛⎫=⨯-⨯-⨯-⨯ ⎪⎝⎭()()7424372143147=---=.【点睛】此题考查等差数列的基本量计算,考查计算能力,属于基础题. 18.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+ (1)设1n n n b a a +=-,证明数列{}n b 是等差数列(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明过程见详解;(2)21n nS n =+. 【分析】(1)先化简得到()()2112n n n n a a a a +++---=即12n n b b ,再求得1211b a a =-=,最后判断数列{}n b 是以1为首项,以2为公差的等差数列.(2)先求出数列{}n b 的通项公式21n b n =-,再运用“裂项相消法”求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nS 即可. 【详解】解:(1)因为2122n n n a a a ++=-+,所以()()2112n n n n a a a a +++---= 因为1n n n b a a +=-,所以12nn b b ,且1211b a a =-=所以数列{}n b 是以1为首项,以2为公差的等差数列. (2)由(1)的()11221n b n n =+-⨯=-,所以()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以12233411111n n n S b b b b b b b b +=++++11111111111121323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111.22121n n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查利用定义求等差数列的通项公式、根据递推关系判断数列是等差数列、根据“裂项相消法”求和,还考查了转化的数学思维方式,是基础题.19.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析 【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+,因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n nS ⎛⎫=-⎪⎝⎭, 且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ),因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-,则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 20.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)()12326n n T n +=-⨯+【分析】(1)利用1(2)n n n a S S n -=-≥,11a S =,可得{}n a 为等比数列,利用等比数列的通项公式即可求得通项公式n a ;(2)利用错位相减法求和即可求n T . 【详解】(1)当1n =时,11122a S a ==-,解得12a =,当1n >时,由22n n S a =-可得1122n n S a --=-,1n >两式相减可得122n n n a a a -=-,即12nn a a -=, 所以{}n a 是以2为首项,以2为公比的等比数列,所以1222n nn a -=⋅=(2)由(1)(21)2nn b n =-⋅,23123252(21)2n n T n =⨯+⨯+⨯++-⋅,则23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,两式相减得2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯()112118(12)2(21)226(21)2232612n n n n n n n n -++++-=+--⨯=---⨯=--⋅--,所以()12326n n T n +=-⨯+.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩求解,考查学生的计算能力.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T . 【答案】(1)32n a n =-;(2)10002631T =. 【分析】(1)利用1n n n a S S -=-可求出; (2)根据数列特点采用分组求和法求解. 【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦,将1n =代入上式验证显然适合,所以32n a n =-. (2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题. 22.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设()1n n n b a =-,求1ni i b =∑.【答案】(1)32n a n =-;(2)13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【分析】(1)利用1a ,412a ,9a 成等比数列∴可得221132690a a d d +-=, 若选①:由535S =得:127a d +=,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选②:由13310a a +=可得152d a =-,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选③:由113n a n a +=+,可表示出419a a =+,9124a a =+,结合1a ,412a ,9a 成等比数列∴即可解出1a 和d 的值,即可求出{}n a 的通项公式; (2)由(1)可得()()132n n b n =--,分n 为奇数和偶数,利用并项求和即可求解.【详解】 {}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+, 整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得:2230d d --=,解得3d =或1d =-(舍) 所以11a =,所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得:2111762450a a -+=,即 ()()11117450a a --=解得:113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意; 若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得:113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩, 32n a n =-,(2)()()132n n b n =--, ()()()()()12311231111111n n n i n n i b a a a a a --==-+-+-+-+-∑ ()()()()114710135132n n n n -=-+-++--+-- 当n 为偶数时,13322n i i n n b ==⨯=∑, 当n 为奇数时,()11131322n i i n n b =--=-+-⨯=∑, 所以13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数. 【点睛】关键点点睛:本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1n n n b a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修二基础练习卷班别 ____ 姓名________ 座号_____一、选择题1 .用符号表示点A在直线I上,I在平面G外”正确的是()A. A I,丨二匚B. A l,l「C. A 丨,丨二:D. A I ,l「2、正棱柱L长方体?=()A. ■正棱柱}B.长方体1C. ■正方体}D.不确定3、已知平面a内有无数条直线都与平面B平行,那么()A . all 3 B. a与B相交C . a与3重合D . al 3或a与3相交4、在空间四边形ABCD各边AB BC、CD、DA上分别取E、F、G、H四点,如果与EF、GH能相交于点P,那么A、点P不在直线AC上B、点P必在直线BD上C、点P必在平面ABC内D、点P必在平面ABC外5、已知正方体的ABC^A1B1C1D1棱长为1,则三棱锥C -BC i D的体积是()1 1A. 1B.C.—3 26、有一个几何体的三视图及其尺寸如下(单位A.24 n 捅12 n cn3B.15 n c n i 12 n cn3C.24 n cn, 36 n cn3D.以上都不正确1D.—6cm),则该几何体的表面积和体积为:(7. 利用斜二测画法,一个平面图形的直观图是边长为()A .3B 2C 2.28. 半径为R的半圆卷成一个圆锥,则它的体积为(1的正方形,如图所示.则这个平面图形的面积为A .仝二R324 B. 乜二R38C .乜二R3249.用与球心距离为1的平面去截面面积为二,则球的体积为() 2 218 .圆x y -2y -1 = 0的半径为 ()A.1B.2C. 3D. 219、直线 3x+4y-13=0 与圆(x -2)2,( y - 3)2 =1 的位置关系是:()A.相离;B.相交;C.相切;D.无法判定.20 .圆:x 2 y 2 -2x -2y • 1 =0上的点到直线x - y =2的距离最大值是(f —A 、2B 、12C 、1 -D 、12.2 232-: A. B. 3 10. 已知m, n 是两条不同直线,:■A .若m IN- ,n II 〉,则m II nC .若mil :■ ,m | ,则:-I :11. 已知点 A(1,2)、B (-2, 3)、C (4, 1 A . - B . 12 12. 直线x -3y T =0的倾斜角是( A. 300 B. 600 C. 1200 - C. D.3 ,'-,是三个不同平面,下列命题中正确的是 B .若口丄?,B 丄?,则a II P D .若m 丨r , n 丨-,则m I n y )在同一条直线上,贝U y 的值为(3C. - D . -12 ).D. 150013. 直线I 经过两点A1,2、B 3,4,那么直线I 的斜率是A. -1B. -3C. 1D. 314. 过点P (T,3)且垂直于直线x 「2y ,3 = 0的直线方程为()A . 2x y-1=0B . 2x y-5=0C. x 2y-5=0 D . x-2y 7=0kA . (0,0)B . (0,1)C . (3,1)D . (2,1)16 .两直线3x • y -3 =0与6x my ^0平行,则它们之间的距离为(A . 4B . ■— 13 17 .下列方程中表示圆的是( A . x 2 + y 2 + 3x + 4y + 7=0C . 2x ?+ 2y 2— 3x — 4y — C .D . —26 20 )B . x 2+ 2y 2— 2x + 5y + 9=0D . x 2— y 2— 4x — 2y +且AC 二BC , PC 与O O 所在的平面成45角,E 是PC 中点.F 为PB 中点.21 .直线x • y =1与圆x 2 • y 2 -2ay =0(a • 0)没有公共点则a 的取值范围是A . (0^.2 -1)B .(迈-1,,2 1)C . (-.2-1^2 1)D . (0,、2 1)22 .直线y = kx+3与圆(x —2)2+(y —3)2 =4相交于 M,N 两点,若MN > 2 J3 ,则k 的取值范围是( )3 门 Ii 43 3 I_ 片 /—q 2 J A . ,0 B • - ,- C . -V 3, V 3】 D .J-—,0 ]4 」 [33- -] 3 」 23.菱形ABCD 勺相对顶点A(1,-2),C(-2,-3),则对角线BD 所在的直线方程为( )A. 3x y 4=0B . 3x y_4 = 0C . 3x -y1=0D . 3x -y -1=0二、填空题 23 .点P(1,—1)至煩线x — y+1=0的距离是 ___________24 .若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的侧面积为25 .右图所示的直观图,其原来平面图形的面积是26 .两平行直线x • 3y -4二0与2x • 6y -9 = 0的距离是 __________________27 .直线x -2y • 5 =0与圆x 2 • y 2 =8相交于A 、B 两点,则 AB = ____________28 .已知点A(-2, 3, 4),在y 轴上求一点 B ,使|AB|=7 ,则点B 的坐标为29 .如图,圆柱的轴截面是边长为5cm 距离为 ____________ . 的正方形ABCD,则圆柱侧面上从 三、解答题30 .如图,已知PA — O O 所在的平面, AB 是O O 的直径,AB =2, C 是O O 上一点, 正视图B A A 至UC 的(1) 求证:EF〃面ABC ;(2) 求证:EF .1 面PAC ;(3) 求三棱锥B-PAC的体积.解(1 )在A PBC中E、F分别是PC、PB的中点所以EF为APBC的中位线所以EF // BC又EF不在面ABC内,BC在面ABC内所以EF //面ABC(2)AB是。
O的直径,C是O O上一点所以AC丄BC因为PA_ O O所在的平面所以PA丄BC又EF // BC所以AC丄EF PA丄EF且PA P AC = A所以EF _面PAC(3)由(2)知AC 丄BC 且AC = BC AB = 2所以AC = BC = , 2PA_ O O所在的平面,所以/ PCA为PC与O O所在的平面所成的角,所以Z PCA = 45°所以PA = AC = .. 2I—1 1 1 一厂厂“2所以V B—PAC = V P— BAC = S A ABC ?PA=匚X- X. 2 X、. 2 心 2 =-3 3 2 3 31 .已知圆C经过A(3,2)、B(1,6)两点,且圆心在直线y = 2x上.(1)求圆C的方程;⑵若直线I经过点P(-1,3)且与圆C相切,求直线I的方程.设圆C的方程为(x —a)2 + (y —b)2二r2则有b= 2a2 2 2(3 —a) +(2 —b) = r2 2 2 (1 —a) +(6 —b) = r解得a = 2,b = 4,r2 = 5圆C 的方程为(x —2)2 + (y —4)2 = 5设直线I的方程为y —3二k(x + 1)即kx —y+k + 3=0由题意得|2k — 4 + k + 3「5解得k =」或k = 2 V'k2 +1 2所以直线I的方程为x+2y — 5 = 0或2x —y+ 5 = 0(1) 求证:直线BD1//平面PAC ;(2) 求证:平面PAC _平面BDD1;(3) 求证:直线PB j _平面PAC。
32、解:(1)设AC和BD交于点0,连PO,由P, 0分别是DD1, BD的中点,故P0〃BD1 , 所以直线BD1//平面PAC -- (4分)(2)长方体ABCD - A1B1C1D1中,AB = AD = 1, 底面ABCD是正方形,则AC _BD又DD j _ 面ABCD,贝U DD j _ AC ,所以AC_面BDD1,则平面PAC _平面BDD12 2 2(3)PC =2, PB1 =3, B1C =5,所以△ PB i C 是直角三角形,所以PB j _ PC ,同理PB j _ PA,且PA交PC于点P,所以直线PB j _平面PAC。
33 .已知两条直线I1 : x - y,4=0与I2: 2x • y • 2 = 0的交点P,求满足下列条件的直线方程(1) 过点P且过原点的直线方程;(2) 过点P且平行于直线l3: x-2y-1=0直线l的方程;解:( 1)联立方程组x一y 4 = 0解得x一2l2x + y+2=0 \y = 2所以点P(-2,2)所求直线方程为口二口2-0 -2-032.如图,长方体ABCD - A i B i C1D1 中,AB = AD = 1,AA"i = 2,点P 为DD1的中点。
(2)由题意可设直线方程为 x _2y • m = 0,又直线过点 P(_2,2) 则有-2-2 2 • m = 0可得m = 634.己知圆 C: x 2+y 2— 2x — 4y — 20=0,直线 l: (2m+1)x+(m+1)y — 7m — 4=0(m € R)(1) 证明:无论m 取何值 直线I 与圆C 恒相交.(2) 求直线l 被圆C 截得的最短弦长,及此时直线I 的方程.解:由圆 C: x 2+y 2— 2x — 4y — 20=0,得(x-1)2 ( y _ 2)2 = 25(1)直线 l: (2m+1)x+(m+1)y — 7m — 4=0(m € R)可化为m(2x y -7) (x y -4) = 0所以直线直线l 恒过定点P (3,1)又(3 -1)2 (1 -2)2 =5 ::: 25,即点 P (3,1)在圆 C 内所以无论m 取何值 直线l 与圆C 恒相交.(2)由题目可知,当PC _直线丨时,直线l 被圆C 截得的最短弦长1-2-2m -1 则 k PcL k l _ -1 所以有 ----------- * -------- _ _1 3-1 m 13解得m _ __ 4 由方程组 2x y - 7 0 x y -4 = 0 解得x = 3 ly t。