九年级数学第一学期 期末模拟1

合集下载

2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案

2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案

2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.55.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>29.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:710.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是.12.已知=,则=.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x <0)上,D点在双曲线y=(x>0)上,则k的值为6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是.22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数【分析】根据分式有意义可得中x≠0.【解答】解:函数y=中,自变量x的取值范围是x≠0,故选:C.3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.5【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求DF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴DF=.故选:D.5.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)【分析】依次把各个选项的横坐标代入反比例函数y=的解析式中,得到纵坐标的值,即可得到答案.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>2【分析】设出点A的坐标,可得点B的坐标.易得△ABC为直角三角形,面积等于×AC×BC,把相关数值代入求值即可.【解答】解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(﹣x,﹣y),k=xy=1∵AC平行于y轴,BC平行于x轴,∴△ABC的直角三角形,∴AC=2y,BC=2x,∴S=×2y×2x=2xy=2.故选:B.9.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:7【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG 的面积比.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.10.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④【分析】证明Rt△CFG≌Rt△CDG,得出①正确;在证明△ADE≌△DCG得出AE=DG,得出AE=AG,②不正确;证出GH是△AFD的中位线,得出GH∥AF,证出∠AFD=90°,即AF⊥DE,③正确;证明△ADE∽△F AE,得出===2,得出DE=2AE,AE=2EF,因此DF=4EF,④正确;即可得出答案.【解答】解:连接CG交ED于点H.如图所示:∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG(HL),∴GF=GD,①正确.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AE=AG,②不正确;∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE,③正确;∵AD=AB,AB=2AE,∴AD=2AE,∵∠AFE=90°=∠DAE,∠AEF=∠DEA,∴△ADE∽△F AE,∴===2,∴DE=2AE,AE=2EF,∴DF=4EF,④正确;故选:C.二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=412.已知=,则=.【分析】依据比例的性质,即可得到=.【解答】解:∵=,∴7a﹣7b=3a+3b,∴4a=10b,∴=,故答案为:.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率【分析】先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为=.14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是【解答】解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为6.【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【解答】解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.【分析】利用因式分解法求解可得.【解答】解:∵2x2﹣5x+3=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=1.5.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.【解答】解:(1)把A(﹣4,2)代入y=得:m=﹣8,则反比例函数的解析式是:y=﹣;把y=﹣4代入y=﹣,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:,解得:,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x >2.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【分析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)÷0.1]=8000.解得:x1=60,x2=80当售价为60时,月成本[500﹣(60﹣50)÷0.1]×40=16000>10000,所以舍去.当售价为80时,月成本[500﹣(80﹣50)÷0.1]×40=8000<10000.答:销售单价定为80元.20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是或.【分析】(1)证明∠ECD+∠EDC=90°即可解决问题.(2)由△CFE∽△EFD,得,由此即可解决问题.(3)分两种情形,当△BCE∽△FGD时,当△BCE∽△FDG时,分别计算即可.【解答】(1)证明:∵EC、ED分别为∠BCD、∠ADC的角平分线,∴∠BCE=∠DCE,∠ADE=∠CDE,∵BC∥AD,∴∠BCD+∠ADC=180°,∴2∠ECD+2∠EDC=180°,∴∠ECD+∠EDC=90°,22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM ∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.∴∠CED=90°.即CE⊥DE;(2)解:∵∠EAD=∠EFD,∠ADE=∠FDE,DE=DE,∴△EAD≌△EFD(AAS),∴EF=EA,∵E为AB的中点,∴AE=EF=3∵∠CED=90°,∴∠CEF+∠FED=90°,∵EF⊥CD,∴∠FED+∠EDF=90°,∴∠CEF=∠EDF,∴△CFE∽△EFD,∴,即CF•DF=EF•EF,∴CF•DF=9.(3)解:①当△BCE∽△FGD时,∵∠BCE=∠AED,∴∠FED=∠FGD,∴ED=DG,∴∠EDF=∠GDF,∴△EDC≌△GDC(SAS),∴∠ECD=∠GCD,∵∠BCE+∠ECD+∠DCG=180°,∴∠BCE=∠AED=60°,设BC=x,则BE=x,∴AE=x,∴AD=3x,∴.②当△BCE∽△FDG时,∠BCE=∠FDG,∵∠BCE=∠ECF,∴∠ECF=∠FDG,∴EC∥DG,∴∠BCE=∠CGD,∴∠CGD=∠FDG,∴CD=CG.∵S△CDG=,∴FG=AB.∵EC∥DG,∴=,∴.综合以上可得的值为或.故答案为:或.。

2022年湖南省广益实验中学九年级数学第一学期期末综合测试模拟试题含解析

2022年湖南省广益实验中学九年级数学第一学期期末综合测试模拟试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.一元二次方程2 340x x ﹣﹣=的常数项是( )A .﹣4B .﹣3C .1D .22.如图,已知在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,则下列结论错误的是( )A .CD AC AB BC ⋅=⋅ B .2AC AD AB =⋅ C .2BC BD AB =⋅ D .⋅=⋅AC BC AB CD3.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若OA =2,则四边形CODE 的周长为( )A .4B .6C .8D .104.二次函数y =x 2+(t ﹣1)x +2t ﹣1的对称轴是y 轴,则t 的值为( )A .0B .12C .1D .25.如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O=30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3,过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6;…按此规律进行下去,则点A 2017的横坐标为( )A.10083B.0 C.10093D.100736.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC7.给出下列四个函数:①y=﹣x;②y=x;③y=1x;④y=x1.x<0时,y随x的增大而减小的函数有()A.1个B.1个C.3个D.4个8.如图,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,则EC的长为()A.1 B.2 C.3 D.49.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=2510.用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为( )A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块二、填空题(每小题3分,共24分)11.如图,D在矩形ABCD中,AB=4,BC=6,E是边AD一个动点,将△ABE沿BE对折成△BEF,则线段DF长的最小值为_____.12.二次函数2y x bx =+的图象如图所示,对称轴为1x =.若关于x 的方程20x bx t +-=(t 为实数)在14x -<≤范围内有实数解,则t 的取值范围是__________.13.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.14.已知二次函数2()21y x a a =-++-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a 取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.15.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.16.用正五边形钢板制作一个边框总长为40cm 的五角星(如图),则正五边形的边长为cm (保留根号)__________.17.已知抛物线2 0y ax bx c a =++≠()与 x 轴交于,A B 两点,若点 A 的坐标为()2,0-,抛物线的对称轴为直线 2x =,则点B 的坐标为__________.18.若抛物线 ()22y a x =- 的开口向上,则 a 的取值范围是________.三、解答题(共66分)19.(10分)如图,AB 、CD 、EF 是与路灯在同一直线上的三个等高的标杆,已知AB 、CD 在路灯光下的影长分别为BM 、DN ,在图中作出EF 的影长.20.(6分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表: 售价(元/千克) 45 50 55 销售量(千克) 110 100 90(1)求与之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?21.(6分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设BC =x m .(1)若矩形花园ABCD 的面积为165m 2,求 x 的值;(2)若在P 处有一棵树,树中心P 与墙CD ,AD 的距离分别是13m 和6m ,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD 时,需将以P 为圆心,1为半径的圆形区域围在内),求矩形花园ABCD 面积S 的最大值.22.(8分)欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中A 礼包是芭比娃娃,B 和C 礼包都是智能对话机器人.这些礼包用外表一样的包装盒装着,看不到里面的礼物.(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.23.(8分)某地2016年为做好“精准扶贫”,投入资金1000万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1250万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于400万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?的正方形网格中,网线的交点称为格点,点A,B,C都是格点.已知每个小正方形的边24.(8分)如图,在66长为1.(1)画出ABC的外接圆O,并直接写出O的半径是多少.△是直角三角形,且点P在O上.(2)连结AC,在网络中画出一个格点P,使得PAC25.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.26.(10分)如图,圆的内接五边形ABCDE中,AD和BE交于点N,AB和EC的延长线交于点M,CD∥BE,BC∥AD,BM=BC=1,点D是CE的中点.(1)求证:BC=DE;(2)求证:AE 是圆的直径;(3)求圆的面积.参考答案一、选择题(每小题3分,共30分)1、A【分析】一元二次方程ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)中a 、b 、c 分别是二次项系数、一次项系数、常数项.【详解】解:一元二次方程2 340x x ﹣﹣=的常数项是﹣4,故选A .【点睛】本题考查了一元二次方程的一般形式:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a 、b 、c 分别叫二次项系数,一次项系数,常数项.2、A【分析】根据三角形的面积公式判断A 、D ,根据射影定理判断B 、C .【详解】由三角形的面积公式可知,CD•AB=AC•BC ,A 错误,符合题意,D 正确,不符合题意;∵Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴AC 2=AD•AB ,BC 2=BD•AB ,B 、C 正确,不符合题意;故选:A .【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.3、C【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OA=OC=2,OB=OD,∴OD=OC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.故选:C.【点睛】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.4、C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣12t=0,解得,t=1,故选:C.【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.5、A【分析】由题意根据坐标的变化找出变化规律并依此规律结合2017=504×4+1即可得出点A2017的坐标进而得出横坐标. 【详解】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0.∵A2A3⊥A1A2,∴点A3的坐标为(-3,0).同理可得:A4(0,-3 ,A5(9,0),A6(0,9 ,…,∴A4n+1()4n,0),A4n+2(0,)4n+1),A4n+3(-( )4n+2,0),A4n+4(0,-( 4n+3)(n为自然数).∵2017=504×4+1,∴A2017(2016,0),即(31008,0),点A2017的横坐标为10083.故选:A.【点睛】本题考查规律型中点的坐标以及含30度角的直角三角形,根据点的变化找出变化规律是解题的关键.6、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.7、C【解析】解: 当x<0时,①y=−x,③1yx=,④2y x=,y随x的增大而减小;②y=x,y随x的增大而增大. 故选C.8、C【分析】根据平行线所截的直线形成的线段的比例关系,可得AD AEBD EC=,代数解答即可.【详解】解:由题意得,AD AEBD EC=,864EC=,解得3EC=.【点睛】本题考查了平行线截取直线所得的对应线段的比例关系,理解掌握该比例关系列出比例式是解答关键.9、C【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=1.故选:C.【点睛】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10、C【分析】易得这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】由主视图可得:这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多为3+4+1=8个最少为2+4+1=7个故选C【点睛】本题考查由三视图判断几何体,熟练掌握立体图形的三视图是解题关键.二、填空题(每小题3分,共24分)-11、2134【分析】连接DF、BD,根据DF>BD−BF可知当点F落在BD上时,DF取得最小值,且最小值为BD−BF的长,然后根据矩形的折叠性质进一步求解即可.【详解】如图,连接DF、BD,由图可知,DF>BD−BF,当点F落在BD上时,DF取得最小值,且最小值为BD−BF的长,∵四边形ABCD是矩形,∴AB=CD=4、BC=6,∴2222+=+=64213BC CD由折叠性质知AB=BF=4,∴线段DF 长度的最小值为BD−BF=4,故答案为:4.【点睛】本题主要考查了矩形的折叠的性质,熟练掌握相关概念是解题关键.12、18t -≤≤【分析】先求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】由已知可得,对称轴12b x a =-= 所以b=-2所以 22y x x =-当x=1时,y=-1即顶点坐标是(1,-1)当x=-1时,y=3当x=4时,y=8由20x bx t +-=得2t x bx y =+=因为当14x -<≤时,18y -≤≤所以在14x -<≤范围内有实数解,则t 的取值范围是18t -≤≤故答案为:18t -≤≤【点睛】考核知识点:二次函数和一元二次方程.数形结合分析问题,注意函数的最低点和最高点.13、3π.【解析】∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=12×2π×3=3π, 故答案为3π.14、21y x =--【分析】已知抛物线的顶点式,写出顶点坐标,用x 、y 代表顶点的横坐标、纵坐标,消去a 得出x 、y 的关系式.【详解】解:二次函数2()21y x a a =-++-中,顶点坐标为:(,21)a a --,设顶点坐标为(x ,y ),∴x a =-①,21y a =-②,由①⨯2+②,得22211x y a a +=-+-=-,∴21y x =--;故答案为:21y x =--.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.15、3.【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=3°,∴∠C=∠A=3°.故答案为3.考点:3.切线的性质;3.平行四边形的性质.16、252【分析】根据正五边形的概念可证得~AFG EAF ,利用对应边成比例列方程即可求得答案. 【详解】如图,由边框总长为40cm 的五角星,知:4044AF AG GE cm ====, ABCDE 为圆内接正五边形,∴AB BC CD DE EA ====, ()521801085BAE -⨯︒∠==︒, ∴121108363BAC ABE DAE ∠=∠=∠=∠=∠=⨯︒=︒, ∴363672AFG BAC ABE ∠=∠+∠=︒+︒=︒,同理:72AGF FAE ∠=∠=︒,∴AFG AGF FAE ∠=∠=∠,∴AE FE =,设AE x =,则4FG EF GE x =-=-,∵2136∠=∠=︒,72AFG AGF FAE ∠=∠=∠=︒,∴~AFG EAF ,AF FG AE AF =, 即:444x x -=, 化简得:24150x x --=,配方得:()2220x -=,解得:x =252+(负值已舍) ,故答案为:252+【点睛】本题考查了圆内接正五边形的性质、相似三角形的判定和性质、一元二次方程的解法,判定~AFG EAF 是正确解答本题的关键.17、60(,)【解析】根据抛物线对称轴是直线2x =及,A B 两点关于对称轴直线对称求出点B 的坐标即可.【详解】解:∵抛物线2 0y ax bx c a =++≠()与 x 轴交于,A B 两点,且点 A 的坐标为()2,0-,抛物线的对称轴为直线 2x =∴点B 的横坐标为22(2)6⨯--=即点B 的坐标为60(,)【点睛】本题考查抛物线的对称性,利用数形结合思想确定关于直线2x =对称的点的坐标是本题的解题关键.18、a >2【分析】利用二次函数图像的性质直接求解.【详解】解:∵抛物线()22y a x =-的开口向上, ∴a-2>0,∴a>2,故答案为a>2.【点睛】本题考查二次函数图像的性质,掌握二次项系数决定开口方向是本题的解题关键.三、解答题(共66分)19、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE 交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线.20、(1);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【解析】(1)利用待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;【详解】(1)设y=kx+b,将(50,100)、(55,90)代入,得:解得:,∴y=-2x+200 (40≤x≤60);(2)==∵开口向下∴当时,随的增大而增大,当时,最大,答:售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【点睛】考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.21、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.22、(1)13;(2)13【分析】(1)根据一共三个礼包,芭比娃娃的礼包占一种即可计算概率;(2)列出所有可能的结果,再找到符合要求的个数,即可得到概率.【详解】(1)根据题意,可知取出的是芭比娃娃的概率是1 3 .(2)结果:(,)A B ,(A,C),(,)B A ,(,)B C ,(C,A),(,)C B ,由图可知,共有6种等可能的结果,而符合要求的是(,)B C ,(,)C B 两种, ∴取出的两个礼包都是智能机器人的概率是2163P ==. 【点睛】本题考查了列表法或树状法求概率,正确列出所有可能结果是解题的关键.23、(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)今年该地至少有1400户享受到优先搬迁租房奖励.【分析】(1)根据”2016年投入资金⨯212018+=(年增长率)年投入资金”列方程求解即可; (2)根据题意,享受奖励的搬迁户分为前1000户和1000户之后的部分,可以设搬迁户总数为a ,则有前1000户享受奖励总额+1000户之后享受奖励综合≥400万元,据此可解.【详解】解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得:1000(1+x )2=1250+1000,解得:x =0.5或x =﹣2.5(舍),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a ﹣1000)×5×400≥4000000, 解得:a ≥1400,答:今年该地至少有1400户享受到优先搬迁租房奖励.【点睛】本题主要考查了一元二次方程和一元一次不等式的应用,认真审题,找准数量关系列出方程是解答关键.24、(15(2)作图见解析【分析】(1)作AB 和BC 的垂直平分线,交点即为点O 的位置,在网格中应用勾股定理即可求得半径;(2)只能是90PAC ∠=︒或90PCA ∠=︒,直接利用网格作图即可.【详解】解:(1)作AB 和BC 的垂直平分线,交点即为点O ,如图:, 根据勾股定理可得半径为221+25=;(2)当PAC △是直角三角形时,且点P 在O 上,只能是90PAC ∠=︒或90PCA ∠=︒,利用网格作图如下:.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键.25、(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD =CD ,根据三角形的中位线可得OD ∥AC ,所以得OD ⊥EF ,从而得结论;(2)证明△ODF ∽△AEF ,列比例式可得结论.【详解】(1)证明:连接OD ,AD ,∵AB 是⊙O 的直径,∴AD ⊥BC ,∵AB =AC ,∴BD =CD ,∵OA =OB ,∴OD ∥AC ,∵EF ⊥AC ,∴OD ⊥EF ,∴EF 是⊙O 的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=1,∴,∴BF=2.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.26、(1)证明见解析;(2)证明见解析;(3)212Sπ⎛⎫=+⎪⎪⎝⎭.【分析】(1)根据平行线得出∠DCE=∠CEB,求出DE BC=即可;(2)求出AB=BC=BM,得出△ACB和△BCM是等腰三角形,求出∠ACE=90°即可;(3)根据AB DE BC CD===求出∠BEA=∠DAE=22.5°,∠BAN=45°,求出BN=1,AN NE2==勾股定理求出AE2的值,即可求出答案.【详解】(1)证明:∵CD∥BE,∴∠DCE=∠CEB,∴DE BC=,∴DE=BC;(2)证明:连接AC,∵BC∥AD,∴∠CAD=∠BCA,∴AB CD =,∴AB =DC ,∵点D 是CE 的中点,∴CD DE =,∴CD =DE ,∴AB =BC .又∵BM =BC ,∴AB =BC =BM ,即△ACB 和△BCM 是等腰三角形,在△ACM 中,1ACM ACB BCM 180902︒︒∠=∠+∠=⨯=, ∴∠ACE =90°,∴AE 是圆的直径;(3)解:由(1)(2)得:AB DE BC CD ===,又∵AE 是圆的直径,∴∠BEA =∠DAE =22.5°,∠BAN =45°,∴NA =NE ,∴∠BNA =∠BAN =45°,∠ABN =90°,∴AB =BN ,∵AB =BM =1,∴BN =1, ∴AN NE 2==由勾股定理得:AE 2=AB 2+BE 2=22121)422+=+∴圆的面积2212124AE S AE πππ⎛⎛⎫==⋅= ⎪ ⎝⎭⎝⎭. 【点睛】本题主要考察正多边形与圆、勾股定理、平行线的性质,解题关键是根据勾股定理求出AE2的值.。

人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)

人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)

2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一.选择部分(共30分)1.下列函数中y是x的二次函数的是()A.y=﹣2x2B.y=C.y=ax2+bx+c D.y=(x﹣2)2﹣x22.下列图形中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 4.已知a>1,点A(a﹣1,y1),B(a,y2),C(a+1,y3)都在二次函数y=﹣2x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.28.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°9.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,以下结论中不正确的是()A.2a+b=0B.a>﹣C.△P AB周长的最小值是D.x=3是ax2+bx+3=0的一个根10.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个二.填空题(共33分)11.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.12.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.把二次函数y=2x2﹣1的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC =25°,则∠BAD=.15.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,⊙O的半径为2,弦AB=,E为弧AB的中点,OE交AB于点F,则OF 的长为.19.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.20.若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为cm.21.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三.解答题(共57分)22.如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).24.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0(1)若该方程有两个实数根,求m的取值范围.(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2﹣10m=2,求m的值.25.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.26.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.27.山西转型综合改革示范区的一工厂里,生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.(1)用含x的代数式表示:一天生产的产品件数为件,每件产品的利润为元;(2)若该产品一天的总利润为1080元,求这天生产产品的档次x的值.28.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.参考答案一.选择部分(共30分)1.解:A、是二次函数,故此选项符合题意;B、不是二次函数,故此选项不合题意;C、a=0时,不是二次函数,故此选项不合题意;D、不是二次函数,故此选项不合题意;故选:A.2.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C.3.解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.4.解:∵a>1,∴0<a﹣1<a<a+1,∵y=﹣2x2,﹣2<0,∴当x>0时,y随x值的增大而减少,∴y3<y2<y1.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.7.解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.9.解:A、根据图象知,对称轴是直线x=﹣=1,则b=﹣2a,即2a+b=0.故A正确;B、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),∴x=3时,y=9a+3b+3=0,∴9a﹣6a+3=0,∴3a+3=0,∵抛物线开口向下,则a<0,∴2a+3=﹣a>0,∴a>﹣,故B正确;C,点A关于x=1对称的点是A′为(3,0),即抛物线与x轴的另一个交点.连接BA′与直线x=1的交点即为点P,则△P AB周长的最小值是(BA′+AB)的长度.∵A(﹣1,0),B(0,3),A′(3,0),∴AB=,BA′=3.即△P AB周长的最小值是+3,故C错误;D、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故D正确;故选:C.10.解:∵函数开口方向向上,a>0,∵对称轴为x=1,则﹣=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则﹣=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.二.填空题(共33分)11.解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.12.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.13.解:由“左加右减”的原则可知,将二次函数y=2x2﹣1的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1;由“上加下减”的原则可知,将抛物线y=2(x+1)2﹣1向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1﹣2=2(x+1)2﹣3,故答案为:y=2(x+1)2﹣3.14.解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.15.解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.16.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:∵E为弧AB的中点,∴OE⊥AB于F,∵AB=2,∴AF=BF=,在Rt△OAF中,OA=2,,故答案为:1.19.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.20.解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.21.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④错误;故正确为:③1个.故答案为:③.三.解答题(共57分)22.解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得,r=.故答案为:.23.解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);(2)如图,△A2B2O即为所求,点A2的坐标(3,1);(3)点A旋转到点A2所经过的路径长==π24.解:(1)由题意可知:Δ=(2m﹣1)2﹣4(m2﹣1)≥0,∴﹣4m+5≥0,∴m≤;(2)由题意可知:x1+x2=1﹣2m,x1x2=m2﹣1,∵(x1﹣x2)2﹣10m=2,∴(x1+x2)2﹣4x1x2﹣10m=2,∴(1﹣2m)2﹣4(m2﹣1)﹣10m=2,解得:m=;25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.26.(1)证明:如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.27.解(1)一天生产的产品件数为[76﹣4(x﹣1)]=(80﹣4x)件,每件产品的利润为[10+2(x﹣1)]=(8+2x)元,故答案为(80﹣4x),(8+2x);(2)当利润是1080元时,即:[10+2(x﹣1)][76﹣4(x﹣1)]=1080,整理得:﹣8x2+128x+640=1080,解得x1=5,x2=11,因为x=11>10,不符合题意,舍去.因此取x=5,当生产产品的质量档次是在第5档次时,一天的总利润为1080元.28.解:(1)将B、C两点的坐标代入y=x2+bx+c得:,解得:,所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年第一学期九年级数学期末模拟(一)
一、选择题:(本大题共有10小题,每小题3分,共30分) 1、方程x (x +1)=2的解是( )
A .x =-1
B .x =-2
C .x 1=1,x 2=-2
D .x 1=-1,x 2=-2 2、一元二次方程x 2+x -2 = 0根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .只有一个实数根
D .没有实数根
3、从1到9这九个自然数中任取一个,是奇数的概率是( )
A .92
B .94
C .95
D .3
2
4、如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8 这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,哪么指针
指向的数字和为偶数的概率是( ) A .21 B .92 C .9
4 D .31
5、下列图形中:⑴线段,⑵正方形,⑶圆,⑷等腰三角形,⑸平行四边形,是轴对称图形但不是 中心对称图形的有( )
A .1个
B .2个
C .3个
D .4个
6、以P (-2,-6)为顶点的二次函数是( )
A .y =5(x +2)2 +6
B .y =5(x -2)2 +6
C .5(x +2)2 -6
D .y =5(x -2)2 -6 7、若抛物线y = x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A .抛物线开口向上 B .抛物线的对称轴为x =1 C .当x =1时,y 的最大值为-4 D .抛物线与x 轴的交点为(-1,0) 8、如图,点A ,B ,C ,在⊙O 上,∠A = 64°,则∠BOC 的度数为( )
A .26°
B .116°
C .128°
D .154°
9、如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为( ) A .3π B
.3 C .6π D .6 10、如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D ,CD 与AB 延长线交于点C ,∠A =30°,给出下面3个结论:⑴AD =CD, ⑵BD =BC, ⑶AB=2BC,其中正确结论的个数是( ) A .3个 B .2个
C .1个
D .0个 二、填空题:(本大题共6题,每小题4分,共24分) 11、已知关于x 的一元二次方程x 2-32x -k =0有两个相等的实数根,则k 的值为________
12、从一幅没有“大小王”的扑克牌中随机抽取一张,点数为“5”的概率________ 13、请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线解析式_______________________
14、已知Rt △ABC 的两直角边分别为5和12,则它的内切圆的半径为________ 15、如图,将⊙O 沿弦AB 折叠,使弧AB 经过圆心O ,则∠OAB =__________ 16、如图,△ABC 绕点A 顺时针旋转45°得 △A'B'C',若∠BAC =90°,AB =AC =2, 则图中阴影部分的面积等于_________
三、解答题(一)(本大题共3题,每小题6分,共18分)
17、解方程:x 2-10x +9 =0
18、已知抛物线y = x 2-4x +3,求这条抛物线与x 轴交点的坐标以及当y > 0时,
x 的取值范围。

19、如图,在Rt △ABC 中,∠ACB =90° (1)作∠ABC 的平分线交AC 于点O ,
以O 为圆心,OC 为半径作⊙O ;
(2)判断AB 与⊙O 的位置关系。

C 四、解答题(二)(本大题共3题,每小题7分,共21分) 20、已知关于x 的方程x 2+ax +a -2 =0 (1)当该方程的一个根为1时,求a 的值及该方程的另一个根。

(2)求证:无论a 取何值时,该方程都有两个不相等的实数根。

1 2 3 6
7 8 第4题图 A B C
O 第8题图 第9题图 A B O
C D
第10题图
第15题图
第16题图
A B C
21、方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示:
(1)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A1B1C1;
(2)求点B在旋转过程中所经过的路径长(结果保留π)
22、某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,
B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指
针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界上时,重
新转动一次,直到指针指向一个区域内为止),然后,将两次记录的数据相等。

(1)请利用画树状图或列表的方法,求出乘积为负数的概率;
(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?
五、解答题(三)(本大题共3题,每小题9分,共27分)
23、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈
利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,
商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24、如图,已知⊙O的半径为1,DE是⊙O的直径,过D作⊙O的切线,C是AD的中点,AE交⊙O于点B,四边形BCOE是平行四边形。

(1)求AD的长;(2)求证:BC是⊙O的切线。

25、如图,抛物线y = x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)若抛物线上有一点B(3,m),在二次函数的对称轴上找到一点P,
使P A+PB最小,求点P的坐标。

0 1
-1 A
1.5
-3
2
2
1
B
E
A
C
D
O
B。

相关文档
最新文档