人教版九年级数学模拟试题(共10套)(含答案)
人教版九年级数学第一学期期末检测模拟试卷(5)

人教版九年级数学第一学期期末检测模拟试卷(5)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣55.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=度.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是.三、解答题(本大题共11小题,共78分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为;(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为个.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.人教版九年级数学第一学期期末检测模拟试卷(5)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、不是中心对称图形;故选:A.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选:B.4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(3,﹣5),然后根据顶点式写出平移得到的抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选:A.5.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选:B.6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°【分析】根据平行线的性质可证∠D=∠AOD=50°,又根据三角形外角与内角的关系可证∠ACO=∠OAC=∠AOD=25°.【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选:D.7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°【分析】根据弧长公式l=,即可求解.【解答】解:设圆心角是n度,根据题意得=,解得:n=60.故选:C.8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.【分析】本题可先由一次函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:∵函数y=ax+b的图象经过一、二、三象限∴a>0,b>0,∵a>0时,抛物线开口向上,排除D;∵a>0,b>0时,对称轴x=﹣<0,排除A、C.故选:B.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16【分析】连接BO并延长交圆于点E,连接AE,根据三角函数可求得BE的长;再根据圆内接正方形的性质求得其边长,从而可得到其面积.【解答】解:如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE==2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于∴⊙O的内接正方形的面积为2.故选:A.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.【分析】求出一次抛一枚硬币正面朝上的概率即可.【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=60度.【分析】连接OA,BO,由圆周角定理知可知∠AOB=2∠E=120°,P A、PB分别切⊙O于点A、B,利用切线的性质可知∠OAP=∠OBP=90°,根据四边形内角和可求得∠P=180°﹣∠AOB=60°.【解答】解:连接OA,BO;∵∠AOB=2∠E=120°,∴∠OAP=∠OBP=90°,∴∠P=180°﹣∠AOB=60°.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意得:289×(1﹣x)2=256,解得:x=或x=(舍去),故答案为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是﹣4<x<0或x>2.【分析】写出直线y=x+1在双曲线y=上方部分的x的取值范围即可.【解答】解:∵点A(m,2)在直线y=x+1,∴2=m+1,解得m=2.则A(2,2),将其代入双曲线y=得到:k=2×2=4,∴双曲线的解析式为:y=,∴<解得或,∴直线y=x+1与双曲线y=的另一交点坐标是(﹣4,﹣1),∴不等式x+1>的解集是﹣4<x<0或x>2.故答案是:﹣4<x<0或x>2.三、解答题(本大题共11小题,共75分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=,∴x1=﹣2+,x2=﹣2﹣;(2)(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为(﹣2,3);(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.【分析】(1)先画出直角坐标系,然后根据第二象限点的坐标特征写出A点坐标;(2)先利用网格特点和旋转的性质画出点A和B的对应点A1、B1,即可得到△OA1B1,再利用勾股定理计算出OA和OB,然后根据扇形面积公式计算S扇形OAA1﹣S扇形BOB1的即可.【解答】解:(1)如图1,点A的坐标为(﹣2,3);(2)如图2,△OA1B1为所作;OA==,OB==线段AB扫过的面积=S扇形OAA1﹣S扇形BOB1=﹣=π.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.【分析】因为圆柱形油槽装入油后形成弓形,可以考虑用垂径定理解答.【解答】解:由题意得出:OC⊥AB于点D,由垂径定理知,点D为AB的中点,AB=2AD,∵直径是52cm,∴OB=26cm,∴OD=OC﹣CD=26﹣16=10(cm),由勾股定理知,BD==24(cm),∴AB=48cm.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【分析】(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∠BAC=30°,∵∠ACB=90°,∴AB=2BC=8,∴OA=4,∴劣弧AC的长为=.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.【分析】(1)由三角形AOB的面积,可得出m的值为2.(2)求出A、B的坐标,进而可根据S△ABD=AD•(x A﹣x B)求出△ABD的面积.【解答】解:(1)设A(x,y),∵直线y=x+m与双曲线y=在第一象限交于点A,S△AOB=1,∴xy=1,即xy=m=2,∴m=2,(2)联立两函数的方程,解得或,∴A点坐标为(﹣1,+1),D(﹣﹣1,﹣+1),∴S△ABD=(+1)(﹣1++1)=3+.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为4个.【分析】(1)根据反比例函数的性质得1﹣2m>0,然后解不等式得到m的取值范围;(2)①根据平行四边形的性质得AD∥OB,AD=OB=2,易得D点坐标为(2,3),然后根据反比例函数图象上点的坐标特征得1﹣2m=6,则反比例函数解析式为y=;②根据反比例函数的图象关于原点中心对称可得点D关于原点的对称点P满足OP=OD,则此时P点坐标为(﹣2,﹣3);再根据反比例函数y=的图象关于直线y=x对称,可得点D(2,3)关于直线y=x对称点P满足OP=OD,此时P点坐标为(3,2),易得点(3,2)关于原点的对称点P也满足OP=OD,此时P点坐标为(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,所以以D点为顶点可画出点P1,P2;以O点顶点可画出点P3,P4,如图.【解答】解:(1)根据题意得1﹣2m>0,解得m<;(2)①∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,又∵A点坐标为(0,3),∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴反比例函数解析式为y=;②∵反比例函数y=的图象关于原点中心对称,∴当点P与点D关于原点对称,则OD=OP,此时P点坐标为(﹣2,﹣3),∵反比例函数y=的图象关于直线y=x对称,∴点P与点D(2,3)关于直线y=x对称时满足OP=OD,此时P点坐标为(3,2),点(3,2)关于原点的对称点也满足OP=OD,此时P点坐标为(﹣3,﹣2),综上所述,P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,则以D点为圆心,DO为半径画弧交反比例函数图象于点P1,P2,则点P1,P2满足条件;以O点为圆心,OD为半径画弧交反比例函数图象于点P3,P4,则点P3,P4也满足条件,如图,作线段OD的垂直平分线,与反比例函数的图象无交点.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【分析】画树状图展示所有6种等可能的结果,找出两数之积为3的倍数的结果数,这样可计算出甲获胜的概率和乙获胜的概率,然后通过比较两概率的大小可判断这样的游戏规则对甲乙双方是否公平.【解答】解:这样的游戏规则对甲乙双方不公平.理由如下:画树状图为:共用6种等可能的结果,其中两数之积为3的倍数的结果数为4,所以甲获胜的概率==,乙获胜的概率==,因为>,所以这样的游戏规则对甲乙双方不公平.23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?【分析】(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【解答】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=400÷5=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?【分析】(1)设涨x元,利用单件利润乘以销售量得到总利润得到(50﹣40+x)(500﹣10x)=8000,然后解方程即可;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x),然后利用二次函数的性质解决问题.【解答】解:(1)设涨x元,根据题意得(50﹣40+x)(500﹣10x)=8000,整理得x2﹣40x+300=0,解得x1=10,x2=30,当x=10时,50+10=60;当x=30时,50+30=80,此时售价应定为每件60元或80元,利润为8000元;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x)=﹣10x2+400x+5000=﹣10(x﹣20)2+9000,∵a=﹣10<0,∴当x=20时,y有最大值,最大值为9000,∴要想获得的利润最大,销售价应定为70元.25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.【分析】(1)∠ABO=60°则∠ADO=60°,在直角△AOD中,根据三角函数就可以求出OD的长,则可以求出D的坐标.(2)若点C的坐标为(﹣1,0),在直角△CDO中,根据三角函数就可以求出∠CDO的度数.进而得到∠CDA 的度数.从而判断过D,C的直线与△AOB的外接圆的位置关系.(3)函数经过O,A两点,因而对称轴是OA的垂直平分线与圆的交点,过交点作OA的垂线,利用三角函数,就可以求出OA的垂直平分线与圆的交点的坐标,再根据待定系数法就可以求出函数的解析式.【解答】解:(1)连接AD,则∠ADO=∠B=60°,在Rt△ADO中,∠ADO=60°,所以OD=OA÷=3÷=,所以D点的坐标是(0,);(2)猜想:CD与圆相切,∵∠AOD是直角,∴AD是圆的直径,又∵tan∠CDO ===,∠CDO=30°,∴∠CDA=∠CDO+∠ADO=90°,即CD⊥AD,∴CD切外接圆于点D;(3)依题意可设二次函数的解析式为:y=α(x﹣0)(x﹣3),由此得顶点坐标的横坐标为:x ==;即顶点在OA的垂直平分线上,作OA的垂直平分线EF,则得∠EF A =∠B=30°,即得到EF =EA =可得一个顶点坐标为(,),同理可得另一个顶点坐标为(,),分别将两顶点代入y=α(x﹣0)(x﹣3)可解得α的值分别为,,则得到二次函数的解析式是y =x(x﹣3)或y =x(x﹣3).第21页(共21页)。
人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。
人教版2023-2024学年九年级上册期中数学模拟检测试题(含解析)

人教版2023-2024学年九年级上册期中数学模拟检测试题一、选择题:(本大题共12小题,每小题4分,共48分,给出的四个选项中,只有一项是符合题目要求的)1.九年级567班化学科代表在老师的培训后学会了某个化学实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有25人会做这个实验;若设1人每次都能教会x 名同学,则可列方程为().A.2125x x ++= B.2(1)25x x ++=C.(1)25x x x ++= D.1(1)25x x x +++=2.如图,将ABC △绕点A 逆时针旋转100︒,得到ADE △.若点D 在线段BC 的延长线上,则B ∠的大小为()A.30︒B.40︒C.50︒D.60︒3.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.4.如果在二次函数的表达式2y ax bx c =++中,0a >,0b <,0c <,那么这个二次函数的图象可能是()A. B. C. D.5.已知点(),2022A m 与点()2023,B n -关于原点对称,的值为()A.-1B.0C.1D.40456.方程2430x x ++=的两个根为()A.11x =-,23x =- B.11x =-,23x =C.11x =,23x =- D.11x =,23x =7.若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是()A.0k ≠B.1k ≥-且0k ≠C.1k ≥- D.1k >-且0k ≠8.如图,抛物线2()(0)y x a h a =-+>与y 轴交于点B ,直线13y x =经过抛物线顶点D ,过点B 作//BA x 轴,与抛物线交于点C ,与直线13y x =交于点A ,若点C 恰为线段AB 中点,则线段OA 长度为()C.3D.39.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30m h =时, 1.5s t =.其中正确的是()A.①④B.①②C.②③④D.②③10.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”.那么代数式22022ax bx ++能取的最小值是()A.2015B.2017C.2022D.202711.已知点()11,A x y ,()22,B x y ()12x x <是二次函数(3)()3y x m x m =+--+(m 为常数)图象上的两点,下列说法正确的是()A.若123x x +>,则12y y > B.若123x x +<,则12y y >C.若123x x +>-,则12y y > D.若123x x +<-,则12y y <12.己知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线1x =-,有以下结论:①0a b c >;②0a c -+<;③若t 为任意实数,则有2a bt at b -≤+;④当图象经过点()1,3时,方程230ax bx c ++-=的两根为1x ,()212x x x <,则12327x x +=,其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共15分)13.如图,在Rt ACB △中,90C ∠=︒,30cm AC =,25cm BC =,动点P 从点C 出发,沿CA 方向运动,速度是2cm/s ;同时,动点Q 从点B 出发,沿BC 方向运动,速度是1cm/s ,则经过__________s 后,P ,Q 两点之间相距25cm .14.图1是一个坡度为1:2的斜坡的横截面,斜坡顶端B 与地面的距离BC 为2.5米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分,设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),图2记录了y 与x 的相关数据,则y 与x 的函数关系式为_____.15.已知点A 是抛物线2443(0)y ax ax a a =-++>上的一点.过点A 作AC x ⊥轴于点C ,以AC 为斜边作Rt ABC △和Rt DAC △,使得//BC AD ,连接BD ,则BD 的最小值为_________.16.如图,已知矩形ABCD ,6AB =,8AD =,将矩形ABCD 绕点A 顺时针旋转3(060)θθ︒<<︒得到矩形AEFG ,连接CG ,BG .当θ=__________时,GC GB =.17.如图,已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线2111y a x b x c =++,则下列结论:①0b >;②0a b c -+<;③阴影部分的面积为4;④若1c =,则24b a =.其中正确的是________.(写出所有正确结论的序号)三、解答题(本大题共6小题,共计57分,解答题应写出演算步骤或证明过程)18.(6分)如图,ABC △三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC △绕点A 顺时针旋转90︒后得到的图形11AB C △;(2)请画出将ABC △关于原点O 成中心对称的图形222A B C △;(3)当ABC △绕点A 顺时针旋转90︒后得到11AB C △时,点B 对应旋转到点1B ,请直接写出1B 点的坐标.19.(8分)用适当的方法解方程:(1)2562x x -=-;(2)22(31)(1)x x -=-.20.(8分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.21.(10分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A .若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.22.(12分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg 需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y (kg )与销售价格x (元/kg )之间满足如图所示的一次函数关系.(1)求y 与的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?23.(13分)如图,抛物线2:4L y axbx =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:设1人每次都能教会x 名同学,根据题意得:()1125x x x +++=.故选:D.2.答案:B解析:根据旋转的性质,可得:AB AD =,100BAD ∠=︒,()1180100402B ADB ∴∠=-︒∠=⨯︒=︒.故选:B.3.答案:C解析:A 、不是中心对称图形,是轴对称图形,故此选项错误;B 、不是中心对称图形,是轴对称图形,故此选项错误;C 、是中心对称图形,是轴对称图形,故此选项正确;D 、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.4.答案:B解析:由0a >,0b <,0c <,推出02ba->,可知抛物线的图象开口向上,对称轴在y 轴的右边,交y 轴于负半轴,由此即可判断。
人教版九年级数学上册第一次月考数学模拟试题含答案

人教版九年级上期第一次月考数学模拟试题时间:100分钟分数:120分班级:姓名:一.选择题(共10小题)1.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣22.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=33.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3)5.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣36.对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下 B.对称轴是x=m C.最大值为0 D.与y轴不相交7.若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B. C. D.8.某景点的参观人数逐年增加,据统计,为10.8万人次,为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.89.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.二.填空题(共5小题)11.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.12.方程(x﹣3)(x﹣9)=0的根是.13.当x= 时,二次函数y=x2﹣2x+6有最小值.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.15.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD 为底的等腰三角形,则点P的坐标为.三.解答题(共9小题)16.解方程:(1)(x﹣3)2=2x(x﹣3)(2)2x2﹣7x+3=0(公式法)17.关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.18.已知二次函数y=﹣x2+x+4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?19.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?20.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?21.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知该市投入基础教育经费5000万元,投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?22.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x (元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?23.如图,抛物线经过A(﹣2,0),B(﹣,0),C(0,2)三点.(1)求抛物线的解析式;(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足∠AMH=90°?若存在,请求出点H的坐标;若不存在,请说明理由.人教版九年级上期第一次月考数学模拟试题参考答案一.选择题(共10小题)1.B 2.A 3.A 4.B 5.D6.D 7.A 8.C 9.A 10.D二.填空题(共5小题)11.012.x1=3,x2=9 .13.1、514.1515.(1+,2)或(1﹣,2).三.解答题(共9小题)16.解:∵(x﹣3)2﹣2x(x﹣3)=0,∴(x﹣3)(﹣x﹣3)=0,则x﹣3=0或﹣x﹣3=0,解得:x=3或x=﹣3,即x1=3,x2=﹣3.(2)2x2﹣7x+3=0,a=2,b=﹣7,c=3,△=49﹣24=25,∴x=,∴x1=3,x2=.17.解:(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.18.解:(1)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),对称轴为直线x=1;(2)当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小.19.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.20.解:(1)以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)令y=0,则﹣x2+x+1=0,解得:x1=6﹣4(舍去),x2=6+4=12.8(米),所以,足球落地点C距守门员约12.8米.21.解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:最多可购买电脑880台.22.解:(1)当x=25时,y=2000÷(25﹣15)=200(千克),设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:,解得:,∴y与x的函数关系式为:y=﹣10x+450;(2)设每天获利W元,W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250,∵a=﹣10<0,∴开口向下,∵对称轴为x=30,∴在x≤28时,W随x的增大而增大,∴x=28时,W最大值=13×170=2210(元),答:售价为28元时,每天获利最大为2210元.23.解:(1)设抛物线的解析式为y=ax2+bx+c,将A(﹣2,0),B(﹣,0),C(0,2)代入解析式,得,解得.∴抛物线的解析式是y=2x2+5x+2;(2)由题意可求得AC的解析式为y=x+2,如图1,设D点的坐标为(t,2t2+5t+2),过D作DE⊥x轴交AC于E点,∴E点的坐标为(t,t+2),DE=t+2﹣(2t2+5t+2)=﹣2t2﹣4t,用h表示点C到线段DE所在直线的距离,S△DAC=S△CDE+S△ADE=DE•h+DE(2﹣h)=DE•2=DE=﹣2t2﹣4t=﹣2(t+1)2+2 ∵﹣2<t<0,∴当t=﹣1时,△DCA的面积最大,此时D点的坐标为(﹣1,﹣1);(3)存在点H满足∠AMH=90°,由(1)知M点的坐标为(﹣,﹣)如图2:作MH⊥AM交x轴于点K(x,0),作MN⊥x轴于点N,∵∠AMN+∠KMN=90°,∠NKM+∠KMN=90°,∴∠AMN=∠NKM.∵∠ANM=∠MNK,∴△AMN∽△MKN,∴=,∴MN2=AN•NK,∴()2=(2﹣)(x+),解得x=∴K点坐标为(,0)直线MK的解析式为y=x﹣,∴,把①代入②,化简得48x2+104x+55=0.△=1042﹣4×48×55=64×4=256>0,∴x1=﹣,x2=﹣,将x2=﹣代入y=x﹣,解得y=﹣∴直线MN与抛物线有两个交点M、H,∴抛物线上存在点H,满足∠AMH=90°,此时点H的坐标为(﹣,﹣).。
九年级数学模拟试题(共10套)(含答案)

九年级中考模拟测试数学冲刺卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列立体图形中,俯视图与主视图不同的是()A.B.C.D.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.据此作答.【解答】解:A.俯视图与主视图都是正方形,故选项A不合题意;B.俯视图与主视图都是长方形,故选项B不合题意;C.俯视图是圆(带圆心),主视图是等腰三角形;故选项C符合题意;D.俯视图与主视图都是圆,故选项D不合题意;故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.2.已知点P(3,a)关于x轴的对称点为Q(b,2),则ab=()A.6B.﹣6C.5D.﹣5【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=﹣2,b=3,进而可得答案.【解答】解:∵点P(3,a)关于x轴的对称点为Q(b,2),∴a=﹣2,b=3,∴ab=﹣6,故选:B.【点评】此题主要考查了关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.某学校计划挖条长为300米的供热管道,开工后每天比原计划多挖5米,结果提前10天完成若设原计划每天挖x 米,那么下面所列方程正确的是( )A .300x−300x+5=10 B .300x−5−300x =10 C .300x+5−300x =10 D .300x −300x−5=10【分析】设原计划每天挖x 米,则实际每天挖(x +5)天,根据工作时间=工作总量÷工作效率结合实际比原计划提前10天完工,即可得出关于x 的分式方程,此题得解.【解答】解:设原计划每天挖x 米,则实际每天挖(x +5)天,依题意,得:300x −300x+5=10. 故选:A .【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4.下列说法错误的是( )A .若a =b ,则3﹣2a =3﹣2bB .若a c =b c ,则a =bC .若|a |=|b |,则a =bD .若a =b ,则ca =cb【分析】根据等式的性质即可求出答案.【解答】解:(C )∵|a |=|b |,∴a =±b ,故选:C .【点评】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.5.武侯区初中数学分享学习课堂改革正在积极推进,在一次数学测试中,某班的一个共学小组每位同学的成绩(单位:分;满分100分)分别是:92,90,94,88,记这组数据的方差为s 12.将上面这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣2,记这组新数据的方差为s 22,此时有s 12=s 22,则s 12的值为( )A .1B .2C .4D .5【分析】首先计算出每一个数都减去90,得到一组新数据2,0,4,﹣2的平均数,再利用方差公式计算方法即可.【解答】解:x =(2+0+4﹣2)÷4=1,s 22=(2−1)2+(0−1)2+(4−1)2+(−2−1)24=1+1+9+94=5, ∵s 12=s 22,∴s 12的值为5,故选:D .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1−x )2+(x 2−x )2+…+(x n −x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.用四舍五入法把106.49精确到个位的近似数是( )A .107B .107.0C .106D .106.5 【分析】根据近似数的精确度求解.【解答】解:用四舍五入法把106.49精确到个位的近似数是106,故选:C .【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【解答】解:∵x 2−2x x−1÷x 21−x =x 2−2x x−1•1−x x =x 2−2x x−1•−(x−1)x =x(x−2)x−1•−(x−1)x 2=−(x−2)x=2−x x , ∴出现错误是在乙和丁,故选:D .【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算法则.8.图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个【分析】根据倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则逐一判断可得.【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.【点评】本题主要考查倒数、绝对值、众数、零指数幂及整式的运算,解题的关键是掌握倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则.9.如图,等边△ABC的边长为8,AD是BC边上的中线,E是AD边上的动点,F 是AB边上一点,若BF=4,当BE+EF取得最小值时,则∠EBC的度数为()A.15°B.25°C.30°D.45°【分析】取AC得中点G,连接BG,交AD于点E,由等边△ABC的边长为8,BF=4知点F是AB中点,据此得点G与点F关于AD对称,此时BE+FE=BG 最小,再根据等边三角形的性质可得答案.【解答】解:取AC得中点G,连接BG,交AD于点E,∵等边△ABC的边长为8,BF=4,∴点F是AB中点,∴点G与点F关于AD对称,此时BE+FE=BG最小,根据等边三角形的性质知∠EBC=12∠ABC=30°,故选:C.【点评】本题考查了轴对称﹣最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.10.校园内有一个由两个全等的六边形(边长为3.5m)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为()A.28m B.35m C.42m D.56m【分析】由题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=3.5m,同理可证出AF=EF=3.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=3.5(m)∴AB=BG+GF+AF=3.5×3=10.5(m),∴扩建后菱形区域的周长为10.5×4=42(m).故选:C.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及正六边形的性质.注意解此题的关键是根据题意作出辅助线,找出等边三角形.11.如图,一巡逻艇在A处,发现一走私船在A处的南偏东60°方向上距离A处12海里的B处,并以每小时20海里的速度沿南偏西30°方向行驶,若巡逻艇以每小时25海里的速度追赶走私船,则追上走私船所需时间是()A.12小时B.34小时C.45小时D.54小时【分析】根据题意,求得∠ABC=90°,再结合勾股定理,根据追及问题的求法求巡逻艇以每小时25海里的速度追赶走私船的时间即可.【解答】解:∵走私船在A处的南偏东60°方向上,∴∠ABD=30°,∵走私船在A处沿南偏西30°方向行驶,∴∠CBD=60°,∴∠CBA=90°.设追上走私船所需时间是t小时,则(20t)2+122=(25t)2解得t=−45(不合题意,舍去)或t=45.故选:C.【点评】此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.12.下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个【分析】①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.【解答】解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.【点评】本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化.13.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+3b),宽为(a+2b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,8,5B.3,8,6C.3,7,5D.2,6,7【分析】由(2a+3b)×(a+2b)=2a2+7ab+6b2,得A类卡片的面积为a2,B 类卡片的面积为b2,C类卡片的面积为ab,因此需要A类卡片2张,B类卡片6张,C类卡片7张.【解答】解:长为(2a+3b),宽为(a+2b)的大长方形的面积为:(2a+3b)×(a+2b)=2a2+7ab+6b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片2张,B类卡片6张,C类卡片7张.故选:D.【点评】本题考查了多项式乘法,熟练掌握多项式乘以多项式是解题的关键.14.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或【分析】根据不同的截法,找出前后的多边形的边数之间的关系得出答案.【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线A1N截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.【点评】考查多边形的意义,根据截线的不同位置得出不同的答案,是解决问题的关键.15.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB 的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB的长.【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选:B.【点评】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,点B位于(4,0)、(5,0)之间,与y轴交于点C,对称轴为直线x=2,直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴上方且横坐标小于5,则下列结论:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m为任意实数);④a<﹣1,其中正确的是()A.①②③④B.①②③C.①②④D.①③④【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣4a,则4a+2b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=2时,二次函数有最大值,则am2+bm+c≤4a+2b+c,即,m(am+b)≤4a+2b,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴上方且横坐标小于5,利用函数图象得x=5时,一次函数值比二次函数值大,即25a+5b+c<﹣5+c,然后把b=﹣4代入解a的不等式,则可对④进行判断;【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=2∴b=﹣4a,∴4a+b+c=4a﹣4a+c=c>0,所以①正确;∵抛物线的对称轴为直线x=2,与x轴的一个交点B位于(4,0)、(5,0)之间,∴抛物线与x轴的另一个交点位于(0,0)、(﹣1,0)之间,即当x=﹣1时,y<0,也就是a﹣b+c<0,因此②正确;∵对称轴为x=2,∴x=2时的函数值大于或等于x=m时函数值,即,当x=2时,函数值最大,∴am2+bm+c≤4a+2b+c,即,m(am+b)≤4a+2b,因此③不正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴上方且横坐标小于5,∴x=5时,一次函数值比二次函数值大,即25a+5b+c<﹣5+c,而b=﹣4a,∴25a﹣20a<﹣5,解得a<﹣1,因此④正确;综上所述,正确的结论有①②④,故选:C.【点评】本题考查了二次函数的图象和性质,不等式(组)等知识,利用两个函数在直角坐标系中的图象求自变量的取值范围以及判断系数的大小关系是常考的知识.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.已知,x、y为实数,且y=√x2−1−√1−x2+3,则x+y=2或4.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】解:由题意知,x2﹣1≥0且1﹣x2≥0,所以x=±1.所以y=3.所以x+y=2或4故答案是:2或4.【点评】此题主要考查了二次根式有意义的条件以及平方根,正确得出x,y的值是解题关键.18.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,为保证不亏本,最多打6折.【分析】通过理解题意可知本题的等量关系:无论亏本或盈利,其成本价相同;成本价=服装标价×折扣.【解答】解:设每件服装标价为x元.0.5x+20=0.8x﹣40,0.3x=60,解得:x=200.故每件服装标价为200元;设能打a折.由(1)可知成本为:0.5×200+20=120,列方程得:200×a10≥120,解得:a≥6.故最多能打6折.故答案是:6.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.19.如图所示,则(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=180度.【分析】利用多边形的内角和公式即可求出答案.【解答】解:∵∠1+∠2+(360°﹣∠3)+∠4+∠5+(360°﹣∠6)+∠7+∠8+(360°﹣∠9)=180°•(9﹣2)=1260度,∴(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=1260﹣360×3=180°.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°(n﹣2).此类题型直接根据内角和公式计算可得.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.【解答】解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6【点评】本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.(本小题满分9分)某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇)3 4 5 6 7及以上 人数(人) 10 14 m 8 6 请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m 的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.【分析】(1)从统计图表可得,“阅读篇数为6篇”的有8人,占调查人数的16%,可求出调查人数;进而可求出阅读篇数为5篇的人数,即m 的值;(2)根据众数、中位数的意义,分别求出即可;(3)样本估计总体,样本中,“阅读篇数为4篇”占调查人数的1450,因此估计1200人中,约有1450阅读篇数是4篇.【解答】解:8÷16%=50人,m =50﹣10﹣14﹣8﹣6=12,答:被抽查的学生人数50人,m 的值为12;(2)学生阅读文章篇数出现次数最多的是4篇,出现14次,因此众数是4篇, 将学生阅读篇数从小到大排列处在第20、21位都是4篇,因此中位数是4篇,(3)1200×1450=336人, 答:该校1200名学生中在这一周内文章阅读的篇数为4篇的有336人.【点评】考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知“1”所在的台阶数为4k﹣1.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.【点评】本题主要考查图形的变化规律,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.23.(本小题满分9分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB =CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=CD,只要证明△ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,{AB=CB∠ABE=∠CBD BE=BD,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴12•AE•BK=12•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.24.(本小题满分10分)如图:一次函数y =(13)x +2交y 轴于A ,交y =3x ﹣6于B ,y =3x ﹣6交x 轴于C ,直线BC 顺时针旋转45°得到直线CD .(1)求点B 的坐标;(2)求四边形ABCO 的面积;(3)求直线CD 的解析式.【分析】(1)构建方程组即可解决问题;(2)求出A 、C 两点坐标,根据S 四边形ABCO =S △OCB +S △AOB 计算即可;(3)如图,将线段BC 绕点B 逆时针旋转90得到C ′.由题意可知点C ′在直线CD 上,求出点C ′坐标,利用待定系数法即可解决问题;【解答】解:(1)由{y =13x +2y =3x −6,解得{x =3y =3,∴B (3,3). (2)由题意A (0,2),C (2,0),∴S 四边形ABCO =S △OCB +S △AOB =12×2×3+12×2×3=6.(3)如图,将线段BC 绕点B 逆时针旋转90得到C ′.∵△BCC ′是等腰直角三角形,∠BCD =45°,∴点C ′在直线CD 上,∵B (3,3),C (2,0),∴C ′(6,2),设直线CD 的解析式为y =kx +b ,则有{6k +b =22k +b =0, 解得{k =12b =−1, ∴直线CD 的解析式为y =12x ﹣1.【点评】本题考查一次函数的应用、四边形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,寻找特殊点解决问题,属于中考常考题型.25.(本小题满分10分)如图,在△ABC 中,∠C =90°,AC =6,BC =8,点O 在AC 上,OA =2,以OA 为半径的⊙O 交AB 于点D ,AC 于G ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)求证:直线DE 是⊙O 的切线;(2)求线段DE 的长;(3)求线段AD 的长.【分析】(1)连接OD ,欲证明DE 是⊙O 的切线,只要证明OD ⊥DE 即可;(2)连接OE ,设DE =x ,则EB =ED =x ,CE =8﹣x ,在直角三角形OCE 中,利用勾股定理列出关于x 的方程,求出方程的得到x 的值,即可确定出DE 的长;(3)根据面积法列出方程即可解决问题;【解答】(1)证明:连接OD ,∵EF 垂直平分BD ,∴EB=ED,∴∠B=∠EDB,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE于D,∴DE是⊙O的切线.(2)解:连接OE,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.75,∴DE=4.75.(3)连结BG,DG.∵AG是直径,∴GD⊥AB,由S△ABG=12AG•BC=12AB•GD可得:4×8=10×GD,∴GD=3.2,∴AD=√AG2−GD2=√42−3.22=2.4,【点评】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.26.(本小题满分12分)如图,在平面直角坐标系中,矩形ABCD 的顶点B ,C ,D 的坐标分别(1,0),(3,0),(3,4),以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,以每秒12个单位的速度沿线段AD 向点D匀速运动,过点P 作PE ⊥x 轴,交对角线AC 于点N .设点P 运动的时间为t (秒).(1)求抛物线的解析式;(2)若PN 分△ACD 的面积为1:2的两部分,求t 的值;(3)若动点P 从A 出发的同时,点Q 从C 出发,以每秒1个单位的速度沿线段CD 向点D 匀速运动,点H 为线段PE 上一点.若以C ,Q ,N ,H 为顶点的四边形为菱形,求t 的值.【分析】(1)先确定顶点A 的坐标,设抛物线的解析式为y =a (x ﹣1)2+4,将点C 的坐标代入即可;(2)证△APN ∽△ADC ,PN 分△ACD 的面积为1:2的两部分,分两种情况,S △APN S △ADC=13或23,通过相似三角形的性质可分别求出AP 的长,即可求出t 的值;(3)如图2﹣1,当CN 为菱形的对角线时,由点P ,N 的横坐标均为1+12t ,求出直线AC 的解析式,将点N 的横坐标1+12t 代入直给AC ,可求出NE 的长,推出CQ =NH =t =CH ,可得EH =4﹣2t ,在Rt △CHE 中,通过勾股定理可求出t 的值;如图2﹣2,当CN 为菱形的边时,在Rt △CNE 中,可通过勾股定理求出t 的值.【解答】解:(1)∵四边形ABCD 为矩形,且B (1,0),C (3,0),D (3,4),∴A (1,4),设抛物线的解析式为y =a (x ﹣1)2+4,将C (3,0)代入y =a (x ﹣1)2+4,得0=4a +4,解得a =﹣1, ∴抛物线的解析式为y =﹣(x ﹣1)2+4=﹣x 2+2x +3;(2)∵PE ⊥x 轴,DC ⊥x 轴,∴PE ∥DC ,∴△APN ∽△ADC , ∵PN 分△ACD 的面积为1:2的两部分,∴S △APN S △ADC =13或23,当S △APN S △ADC=13时,APAD=√13=√33, ∵AD =2,∴AP =2√33,∴t 的值为2√33×2=4√33;当S △APN S △ADC=23时,APAD=√23=√63, ∵AD =2,∴AP =2√63,∴t 的值为2√63×2=4√63, 综上所述,t 的值为4√33或4√63; (3)如图2﹣1,当CN 为菱形的对角线时, 点P ,N 的横坐标均为1+12t ,设直线AC 的解析式为y =kx +b ,将A (1,4),C (3,0)代入y =kx +b ,得{k +b =43k +b =0,解得{k =−2b =6,∴直线AC 的表达式为y =﹣2x +6, 将点N 的横坐标1+12t 代入y =﹣2x +6, 得y =−2(1+12t)+6=4−t ,即EN =4﹣t ,由菱形CQNH 可得,CQ =NH =t =CH ,可得EH =(4﹣t )﹣t =4﹣2t , ∵AP =BE =12t ,∴CE =2−12t ,在Rt △CHE 中,∵CE 2+EH 2=CH 2,∴(2−12t)2+(4−2t)2=t 2, 解得,t 1=2013,t 2=4(舍);如图2﹣2,当CN 为菱形的边时,由菱形CQHN 可得,CQ =CN =t , 在Rt △CNE 中,∵NE 2+CE 2=CN 2,∴(4﹣t )2+(2−12t )2=t 2, 解得,t 1=20﹣8√5,t 2=20+8√5(舍); 综上所述,t 的值为2013或20−8√5.【点评】本题考查了待定系数法求解析式,相似三角形的判定与性质,菱形的判定与性质等,解题关键是注意分类讨论思想在解题过程的中运用.初中升学统一考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.有理数-8的立方根为( )A .-2B .2C .±2D .±4【答案】A2.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 【答案】D3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为( )A .60.8×104B .6.08×105C .0.608×106D .6.08×107【答案】B4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .n m >B .||m n >-C .||n m >-D .||||n m <【答案】C5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .【答案】A6.下列说法中不正确的是( )A .四边相等的四边形是菱形B .对角线垂直的平行四边形是菱形C .菱形的对角线互相垂直且相等D .菱形的邻边相等【答案】C7.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )A .1-6月份利润的众数是130万元B .1-6月份利润的中位数是130万元C .1-6月份利润的平均数是130万元D .1-6月份利润的极差是40万元 【答案】D7题图 8题图8.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B9.—个“粮仓”的三视图如图所示(单位:m ),则它的体积是( )A .21πm 3B .30πm 3C .45πm 3D .63πm 3【答案】C10.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4πB .2π C .π D .π2【答案】B俯视图119题图 10题图二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11.=÷35a a _____. 【答案】2a12.分解因式:=--+b a ab b a 22_______________. 【答案】))(1(b a ab +-13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是____. 【答案】52 14.如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =__________.【答案】314题图 15题图15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T”字形需要的棋子个数为_________. 【答案】3n +216.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2)(b a -的值是_________. 【答案】117.已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是_________.③②①【答案】a ≤-1 18.如图,抛物线241x py =(p >0),点F (0,p ),直线l :y =-p ,已知抛物线上的点到点F 的距离与到直线l 的距离相等,过点F 的直线与抛物线交于A ,B 两点,AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1,连接A 1F ,B 1F ,A 1O ,B 1O .若A 1F =a ,B 1F =b 、则△A 1OB 1的面积=__________.(只用a ,b 表示).【答案】4ab16题图 18题图三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题4分)计算:︒--+-60sin |31|)2019(0π. 解:︒--+-60sin 31)2019(0π:23131--+=23=. 20.(本题4分)已知:ab =1,b =2a -1,求代数式ba 21-的值. 解:∵ab =1,b =2a -1,∴b -2a =-1,∴ab a b b a 221-=-111-=-=. 21.(本题5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器? 解:设该工厂原来平均每天生产x 台机器,则现在平均每天生产(x +50)台机器. 根据题意得xx 45050600=+,解得x =150. ba经检验知x =150是原方程的根.答:该工厂原来平均每天生产150台机器. 22.(本题6分)如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港.(1)求A ,C 两港之间的距离(结果保留到0.1km ,参考数据:2≈1.414,3≈1.732);(2)确定C 港在A 港的什么方向.解:(1)由题意可得,∠PBC =30°,∠MBB =60°,∴∠CBQ =60°,∠BAN =30°,∴∠ABQ =30°,∴∠ABC =90°.∵AB =BC =10,∴AC =22BC AB =210≈14.1. 答:A 、C 两地之间的距离为14.1km .(2)由(1)知,△ABC 为等腰直角三角形,∴∠BAC =45°,∴∠CAM =15°, ∴C 港在A 港北偏东15°的方向上. 23.(本题7分)某校为了解七年级学生的体重情况,随机抽取了七年级m 名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.东北。
人教版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图所示的几何体,从正面看是()3.2022年12月4日,神舟14号载人飞船返回舱在东风着陆场成功着陆,它在轨飞行183Tina,共飞行里程约125 000 000千米,其中“125 000 000”用科学记数法表示为()A.125×106B.1.25×109C.1.25×108D.1.25×10104.如图,AB∥CD,BE平分∠ABC,且交CD于D点,∠CDE=150°,则∠C的度数为()A.30°B.60°C.124°D.150°(第4题图)(第8题图)(第9题图)5.下列图形中既是轴对称图形又是中心对称图形的是()6.下列计算正确的是()A.(3a3)2=9a6B.a3+a2=2a5C.(a+b)2=a2+b2D.(a4)3=a77.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立春和立夏的概率是( )A.16 B.18 C.23 D.128.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ’B ’C ’,则点P 的坐标是( )A.(0,4)B.(1,1)C.(1,2)D.(2,1) 9.如图1,AD 是△ABC 的高,以点B 为圆心,适当长为半径画弧交AB 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧相交于P ,作射线BP 交AD 于点E ,若∠ABC=45°,AB ⊥AC ,DE=1,则CD 的长为( )A.√2B.√2+1C.√3D.√2-110.在平面直角坐标系中,抛物线y=x 2-2mx+3与y 轴交于点A ,过点A 作x 轴的平行线与抛物线交于另一点B ,点M (m+2,3),N (0,m+3),若抛物线与线段MN 有且只有一个公共点,则m 的取值范围是( )A.0<m ≤2或m <﹣2B.0<m ≤2或m ≤﹣2C.0≤m ≤2或m ≤﹣2D.0≤m <2或m <﹣2二.填空题。
人教版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学二模考试试题满分150分 时间:120分钟一、单选题。
(每小题4分,共40分) 1.|﹣2023|等于( )A.-2024B.﹣2023C.2024D.20232.如图是由5个相同的正方体搭成的几何体,这个几何体的主视图是( )3.“有一种三体文明距地球大约400 000 000千米,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的三体星系,其中“400 000 000”用科学记数法表示为( ) A.4×108B.4×106C.0.4×108D.4000×1044.如图,两条直线a ,b 被第三条直线l 所截,若a ∥b ,∠1=55°,则∠2的度数为( ) A.55° B.105° C.125° D.135°(第3题图) (第9题图) (第10题图) 5.下列运算正确的是( )A.(3a 2)3=9a 6B.a 3÷a 3=aC.a 2+a 2=a 4D.a 2•a 3=a 5 6.化简m -1m÷m -1m 2的结果是( )A.mB.1m C.m -1 D.1m -17.一个不透明的口袋中有三个完全相同的小球,分别标号为1,2,3,随机摸取一个小球然后放回,再随机摸取一个球,则两次取出的小球标号相同的概率为( ) A.29 B.19 C.13 D.498.在同一平面直角坐标系中,函数y=kx-k与y=kx的大致图象可能是()9.在平面直角坐标系中,矩形ABCD的边BC在x轴上,O为线段BC的中点,矩形ABCD的顶点D(2,3),连接AC按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交CA,CD于点E,F;(2)分别以E,F为圆心,大于12EF的长为半径画弧交于点G;(3)做射线CG交AD于H,则线段DH的长为()A.158 B.1 C.32D.5410.如图,抛物线y=x2+2x与直线y=x+2交于A,B两点,与直线x=2交于点P,将抛物线沿着射线AB平移3√2个单位,在整个平移过程中,点P经过的路程为()A.6B.132 C.254D.14二.填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级中考模拟测试数学冲刺卷一、选择题(本大题共6个小题,每小题 3 分,共 18分),﹣1四个数中,最小的数是()1.(2018•金华)在0,1,﹣12D. ﹣1A. 0B. 1C. 122.(2018•深圳)260000000用科学计数法表示为( )A. B. C. D. 26×1073.(2019•河北)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1D.2x2+3x4.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.9 1.1 1.3 1.5及以上人数296544 A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.(2019•江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是()A.反比例函数y2的解析式是y2=–8 xB.两个函数图象的另一交点坐标为(2,–4)C.当x<–2或0<x<2时,y1<y2D.正比例函数y1与反比例函数y2都随x的增大而增大6.(2018•安徽)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF二、填空题(本大题共6个小题,每小题 3 分,共 18分)7.(2018•滨州)若分式x2-9x-3的值为0,则x的值为______.8.(2019•重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比是4:3:5,根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是__________.9.(2019•鄂州)在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By C A B +++,则点P (3,-3)到直线2533y x =-+的距离为__________.10.(2018•南京)如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC =10?cm ,则DE=__________cm .11.(2018•盐城)如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.12.(2018•安徽)如图,菱形ABOC 的AB ,AC 分别与⊙O 相切于点D 、E ,若点D 是AB 的中点,则∠DOE =__________.三、(本大题共5个小题,每小题 6 分,共 30分)13.(2018•舟山)(1)计算:2(√8-1)+|-3|-(√3-1)0;(2)化简并求值:(ab -ba)?aba+b,其中a=1,b=2.14.(2019•天津)解不等式组11 211xx+≥-⎧⎨-≤⎩.请结合题意填空,完成本题的解答.(1)解不等式①,得__________;(2)解不等式②,得__________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为__________.15.(2019•吉林)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.16.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数89101112频率(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?17.(2019·杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为1S,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为2S,且12=.S S(1)求线段CE的长;=.(2)若点H为BC边的中点,连结HD,求证:HD HG四、(本大题共3个小题,每小题8分,共 24分)18.(2018·嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.19.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.20.(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B–A–O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO=__________.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)五、(本大题共2个小题,每小题 9分,共 18分)21.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被__________整除,mn–nm一定能被__________整除,mn•nm –mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.22.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A 的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)六、(本大题共 12分)23.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(–5,0),B(–4,–3)两点,与x轴的另一个交点为C,顶点为D,连结C D.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)如图,数轴上表示﹣2的相反数的点是()A.M B.N C.P D.Q2.(3分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军工等工业品不可或缺的原料.据有关统计数据表明:至2017年止,我国已探明稀土储量约4400万吨,居世界第一位,请用科学记数法表示 44 000 000为()A.44×106B.4.4×107C.4.4×108D.0.44×109 4.(3分)下列运算正确的是()A.(x2)3=x5B.+=C.x•x2•x4=x6D.=5.(3分)一元二次方程2x2+3x﹣5=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.(3分)下列采用的调查方式中,合适的是()A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式7.(3分)如图,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OB C.OP=OF D.PO⊥AB8.(3分)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.B.2C.D.4二、填空题(共8小题,每小题3分,满分24分)9.(3分)二次根式中,x的取值范围是.10.(3分)若=,则=.11.(3分)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为度.12.(3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.13.(3分)某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.14.(3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)15.(3分)已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是.(结果保留π)16.(3分)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD 的面积为.三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.(6分)计算:(3﹣π)0﹣2cos30°+|1﹣|+()﹣1.18.(6分)先化简,再求值:﹣,其中a=.19.(6分)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.20.(8分)我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)21.(8分)如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离A处30km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?(精确到0.01km.参考数据:≈1.414,≈1.732,≈2.449)22.(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?23.(8分)如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于点D ,且AD ∥OC .(1)求证:BC 是⊙O 的切线;(2)延长CO 交⊙O 于点 E .若∠CEB =30°,⊙O 的半径为2,求的长.(结果保留π)24.(10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y =的图象与性质.列表:x … ﹣3 ﹣﹣2 ﹣ ﹣1 ﹣ 0 1 2 3 …y … 1 2 1 0 1 2 … 描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.25.(10分)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF 折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.26.(12分)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.2019年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.【解答】解:﹣2的相反数是2,故选:D.2.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将 44 000 000用科学记数法可表示为4.4×107.故选:B.4.【解答】解:A、(x2)3=x6,故本选项错误;B、+=+2=3,故本选项错误;C、x•x2•x4=x7,故本选项错误;D、=,故本选项正确;故选:D.5.【解答】解:一元二次方程2x2﹣3x+5=0中,△=32﹣4×2×9(﹣5)>0,∴有两个不相等的实数根.故选:B.6.【解答】解:A、为了解东江湖的水质情况,采用抽样调查的方式,合适;B、我市某企业为了解所生产的产品的合格率,因调查范围广,工作量大采用普查的方式不合适;C、某小型企业给在职员工做工作服前进行尺寸大小的调查,因调查范围小采用抽样调查的方式不合适;D、某市教育部门为了解该市中小学生的视力情况,因调查范围广,采用普查的方式不合适,故选:A.7.【解答】解:∵由作图可知,EF垂直平分AB,∴PA=PB,故A选项正确;OA=OB,故B选项正确;OE=OF,故C选项错误;PO⊥AB,故D选项正确;故选:C.8.【解答】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;故选:B.二、填空题(共8小题,每小题3分,满分24分)9.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故答案是:x≥2.10.【解答】解:∵=,∴2x+2y=3x,故2y=x,则=.故答案为:.11.【解答】解:∵a∥b,∴∠3=∠4,∵∠1=∠2+∠4=∠2+∠3,∠1=130°,∠2=30°,∴130°=30°+∠3,解得:∠3=100°.故答案为:100.12.【解答】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,故这组数据的中位数是8.13.【解答】解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.14.【解答】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.15.【解答】解:由三视图可知,该几何体是圆锥,∴侧面展开图的面积=π•2•5=10π,故答案为10π.16.【解答】解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,∴S△AOB=S△BOC=S△DOC=S△AOD,又∵反比例函数y=的图象上,∴S△AOB=S△BOC=S△DOC=S△AOD=×4=2,∴S四边形ABCD=4S△AOB=4×2=8,三、解答题(17~19题每题6分,20~23题每题8分,24~25题每题10分,26题12分,共82分)17.【解答】解:原式=1﹣2×+﹣1+2=2.18.【解答】解:﹣=====,当a=时,原式===1.19.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.20.【解答】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%=×100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为=.21.【解答】解:延长CB交过A点的正东方向于D,如图所示:则∠CDA=90°,由题意得:AC=30km,∠CAD=90°﹣45°=45°,∠BAD=90°﹣60°=30°,∴AD=CD=AC=15,AD=BD,∴BD==5,∴BC=CD﹣BD=15﹣5≈15×1.414﹣5×2.449≈8.97(km);答:巡逻船与渔船的距离约为8.97km.22.【解答】解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.23.【解答】(1)证明:连接OD,∵CD与⊙O相切于点D,∴∠ODC=90°,∵OD=OA,∴∠OAD=∠ODA,∵AD∥OC,∴∠COB=∠OAD,∠COD=∠ODA,∴∠COB=∠COD,在△COD和△COB中,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴BC是⊙O的切线;(2)解:∵∠CEB=30°,∴∠COB=60°,∵∠COB=∠COD,∴∠BOD=120°,∴的长:=π.24.【解答】解:(1)如图所示:(2)①A(﹣5,y1),B(﹣,y2),A与B在y=﹣上,y随x的增大而增大,∴y1<y2;C(x1,),D(x2,6),C与D在y=|x﹣1|上,观察图象可得x1<x2;故答案为<,<;②当y=2时,2=﹣,∴x=﹣(不符合);当y=2时,2=|x﹣1|,∴x=3或x=﹣1;③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,∴﹣1≤x≤3时,点关于x=1对称,∵y3=y4,∴x3+x4=2;④由图象可知,0<a<2;25.【解答】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.又∵∠HEB1+∠EHB1=90°,∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F 位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2,26.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得:,∴抛物线解析式为y=﹣x2﹣2x+3;∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)①∵在Rt△AOC中,OA=3,OC=3,∴AC2=OA2+OC2=18,∵D(﹣1,4),C(0,3),A(﹣3,0),∴CD2=12+12=2∴AD2=22+42=20∴AC2+CD2=AD2∴△ACD为直角三角形,且∠ACD=90°.∵,∴F为AD的中点,∴,∴.②在Rt△ACD中,tan,在Rt△OBC中,tan,∴∠ACD=∠OCB,∵OA=OC,∴∠OAC=∠OCA=45°,∴∠FAO=∠ACB,若以A,F,O为顶点的三角形与△ABC相似,则可分两种情况考虑:当∠AOF=∠ABC时,△AOF∽△CBA,∴OF∥BC,设直线BC的解析式为y=kx+b,∴,解得:,∴直线BC的解析式为y=﹣3x+3,∴直线OF的解析式为y=﹣3x,设直线AD的解析式为y=mx+n,∴,解得:,∴直线AD的解析式为y=2x+6,∴,解得:,∴F(﹣).当∠AOF=∠CAB=45°时,△AOF∽△CAB,∵∠CAB=45°,∴OF⊥AC,∴直线OF的解析式为y=﹣x,∴,解得:,∴F(﹣2,2).综合以上可得F点的坐标为(﹣)或(﹣2,2).九年级中考模拟测试数学冲刺卷(满分120分,考试时间120分钟)一、选择题(本大题共6个小题,每小题 3 分,共 18分)1.(2018•安徽)-8的绝对值是()A. -8B. 8C. ±8D. -18【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B. 【名师点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键. 2.(2018•连云港)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.【名师点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2019•桂林)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为A.πB.2πC.3πD+1)π【答案】C形.∴正三角形的边长=sin60︒=2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π,∴侧面积为12⨯2π×2=2π,∵底面积为πr2=π,∴全面积是3π.故选C.【名师点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.(2019•安徽)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为A.60 B.50 C.40 D.15【答案】C【解析】由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选C.【名师点睛】本题考查了众数,熟练掌握众数的定义是解题的关键.5.(2019•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=1x上,顶点B在反比例函数y=5x上,点C在x轴的正半轴上,则平行四边形OABC的面积是A.32B.52C.4 D.6【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=5,S△AOE=12,∴四边形OABC的面积=5–12–12=4,故选C.【名师点睛】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性.6.(2019·安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.8【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF 取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.二、填空题(本大题共6个小题,每小题 3 分,共 18分)7.(2018•成都)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为__________.【答案】0.36【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.详解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36【名师点睛】本题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.8.(2018•滨州)若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n 的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:【名师点睛】本题考查了二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.9.(2019•山西)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为__________.【答案】(12–x)(8–x)=77【解析】∵道路的宽应为x米,∴由题意得,(12–x)(8–x)=77,故答案为:(12–x)(8–x)=77.【名师点睛】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.10.(2018•绍兴)滨州等腰三角形ABC中,顶角A为,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为__________.【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.易证△ABP≌△ABC,∴∠ABP=∠BAC=40°,同理:△ABP'≌△BAC,故答案为:或【名师点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用.11.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是__________.【答案】4<BC≤83 3【解析】作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB3AC=4,∴AC=433,∴BC=833;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC 83,故答案为:4<BC83【名师点睛】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作△ABC的外接圆进行推理计算是解题的关键.12.(2019•江西)在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为__________.【答案】(2,0)或(2,0)或(2,0)。