(完整版)成都市初三中考数学模拟试题(1)(含答案)
2022年成都市中考数学模拟试题(1)(解析版)

2022年成都市中考数学模拟试题(1)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2021的倒数是()A.2021 B.C.﹣2021 D.【答案】D【解析】﹣2021的倒数是:﹣.故选:D.2.如图所示的几何体的从左面看到的图形为()A.B.C.D.【答案】D【解析】从这个几何体的左面看,所得到的图形是长方形,能看到的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此,选项D的图形,符合题意,故选:D.3.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108【答案】C【解析】89 000 000这个数据用科学记数法表示为8.9×107.故选:C.4.在平面直角坐标系中,点A(m﹣1,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2 B.m=﹣2,n=3 C.m=2,n=3 D.m=﹣2,n=2【答案】D【解析】∵点A(m﹣1,2)与点B(3,n)关于y轴对称,∴m﹣1=﹣3,n=2,解得:m=﹣2,故选:D.5.下列运算正确的是()A.a2•a3=a6B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.5a2﹣3a=2a【答案】C【解析】A、a2•a3=a5,故本选项不合题意;B、(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;C、(a2)3=a2×3=a6,故本选项符合题意;D、5a2与﹣3a不是同类项,所以不能合并,故本选项不合题意;故选:C.6.如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF【答案】C【解析】A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.7.给出一组数据:3,2,5,3,7,5,3,7,这组数据的中位数是()A.3 B.4 C.5 D.7【答案】B【解析】这组数据按从小到大的顺序排列为:2,3,3,3,5,5,7,7,则中位数为:(3+5)÷2=4.故选:B.8.分式方程=的解是()A.x=9 B.x=7 C.x=5 D.x=﹣1【答案】A【解析】去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.9.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【答案】D【解析】设大马有x匹,小马有y匹,由题意得:,故选:D.10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则该正六边形的边长是()A.6 B.C.D.12【答案】A【解析】连接OF,设⊙O的半径为R,∵O是正六边形ABCDEF的中心,∴∠AOF=∠EOF==60°,∴∠AOE=120°,∵OA=OF,∴△OAF是等边三角形,∴AF=OA=R,∵扇形AOE的面积是12π,∴=12π,∴R2=36,∴AF=R=6,∴正六边形的边长是6,故选:A.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式m2﹣4的结果为________.【答案】(m+2)(m﹣2).【解析】m2﹣4=(m+2)(m﹣2).12.(4分)在△ABC中,∠A=45°,AB=,∠ABC=75°.则BC长为________.【答案】4.【解析】过点B作BD⊥AC于点D,如图:∵BD⊥AC,∴∠ADB=∠CDB=90°.在△ABC中,∠A=45°,∠ABC=75°,∴∠C=180°﹣∠A﹣∠ABC=60°,∴∠DBC=30°,∠ABD=∠A=45°,∴AD=BD,BC=2CD,∵AB=,∴AB2=AD2+BD2=2BD2,∴=2BD2,∴BD=2(舍负),设CD=x,则BC=2x,∴+x2=(2x)2,解得:x=2(舍负),∴BC=2x=4.13.(4分)如果抛物线y=ax2﹣3x+1与x轴有交点,那么a的取值范围是________.【答案】a≤且a≠0.【解析】∵抛物线y=ax2﹣3x+1与x轴有交点,∴a≠0,△≥0,∴9﹣4a×1≥0,∴a≤,14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若BD=2,则CD的长为________.【答案】.【解析】过点D作DH⊥AB,则DH=DC,由题目作图知,AD是∠CAB的平分线,则CD=DH,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=2,则DH=DC=三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣3)0+|﹣2|﹣tan60°;(2)解不等式组:.【答案】见解析【解析】(1)原式=1+2﹣=1+2﹣3,=0.(2),由①得x>﹣3,由②得x≤2.故不等式组的解集为﹣3<x≤2.16.(6分)化简:(﹣a+1)÷.【答案】见解析【解析】原式=(﹣)×=×=×=.17.(8分)今年是建党100周年,学校决定开展观看爱国电影、制作手抄报、朗诵经典和唱响红歌四项活动喜迎建党100周年.为了解学生对四种活动的喜爱程度,随机调查了m名学生最喜爱的一项活动(每名学生只能选择一项),并将调查结果绘制成两幅不完整的统计图表.活动学生人数观看电影60制作手抄报36朗诵经典50唱响红歌x合计m请根据统计图表提供的信息,解答下列问题:(1)m=________,n=________,x=________;(2)在扇形统计图中,“朗诵经典”所对应的圆心角度数是________度;(3)若该学校有1000人,请你估计喜欢“制作手抄报”和“唱响红歌”的学生共有________名.【答案】见解析【解析】(1)由题意可得,m=60÷30%=200,n%=50÷200=25%,x=200﹣﹣36﹣50=54,故答案为:200,25,54;(2)扇形统计图中,朗诵经典”所对应的圆心角度数是360°×25%=90°;故答案为:90;(3)由题意可得,全校1000名学生中,喜爱“制作手抄报”的学生有:1000×=180(名),喜爱“唱响红歌”的学生有:1000×=270(名),180+270=450(名),答:估计喜欢“制作手抄报”和“唱响红歌”的学生共有450名.故答案为:450.18.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡AC的坡度为1:10(即AE:CE=1:10),学生小明站在离升旗台水平距离为35m (即CE=35m)处的C点,测得旗杆顶端B的仰角α=30°,已知小明身高CD=1.6m,求旗杆AB 的高度.(参考数据:tan30°≈0.58,结果保留整数)【答案】见解析【解析】作DG⊥AE于G,则∠BDG=α,则四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×0.58=20.3m,∴BE=20.3+1.6=21.9m.∵斜坡AC的坡比为i AC=1:10,CE=35m,∴EA=35×=3.5,∴AB=BE﹣AE=21.9﹣3.5≈18m.答:旗杆AB的高度为18m.19.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点(﹣6,1),直线y=mx+m 与y轴交于点(0,﹣2).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx+m于点A,交函数y=(x<0)的图象于点B.①当n=﹣1时,判断线段PA与PB的数量关系,并说明理由;②若PB≥2PA,结合函数的图象,直接写出n的取值范围.【答案】见解析【解析】(1)∵函数y=(x<0)图象经过点(﹣6,1),∴k=﹣6×1=﹣6,∵直线y=mx+m与y轴交于点(0,﹣2),∴m=﹣2;(2)①PB=2PA,理由如下:当n=﹣1时,点P坐标为(﹣1,2),∴点A坐标为(﹣2,2),点B坐标为(﹣3,2),∴PA=1,PB=2,∴PB=2PA;②∵点P坐标为(n,﹣2n),PA平行于x轴,把y=﹣2n分别代入y=(x<0)和y=﹣2x﹣2得,点B坐标为(,﹣2n),点A坐标为(n﹣1,﹣2n),∴PA=n﹣(n﹣1)=1,PB=|n﹣|,当PB=2PA时,则|n﹣|=2,如图1,当n﹣=2,解得n1=﹣1,n2=3(不合题意,舍去),如图2,当﹣n=2解得n1=﹣3,n2=1(不合题意,舍去),∴PB≥2PA时,n≤﹣3或﹣1≤n<0.20.如图所示,过圆w外一点K做圆w的两条切线,其切点分别为L和N,在KN的延长线上取一点M,△KLM的外接圆和圆w相交于点P(异于点L),QN⊥LM于Q,LM与圆w相交于点R,求证:∠MPQ=2∠MPR=2∠KML.【答案】见解析【解析】证明:延长KL至A,延长PR交KM于T,连接PL、RN、LN、QT,设△KLM外接圆为⊙O,如图:∵四边形KLPM是⊙O的内接四边形,∴∠LPM=180°﹣∠K,同理∠LPR=180°﹣∠LNR,∴∠MPT=∠LPM﹣∠LPR=(180°﹣∠K)﹣(180°﹣∠LNR)=∠LNR﹣∠K,∵KA是⊙W的切线,∴∠LNR=∠ALM,∴∠MPT=∠ALM﹣∠K=∠LMK,即∠MPT=∠RMT,∵∠PTM=∠MTR,∴△PTM∽△MTR,∴=,即MT2=PT•RT,∵TN是⊙W的切线,∴NT2=PT•RT,∴MT=NT,∵NQ⊥LM,∴QT是Rt△NQM斜边MN的中线,∴QT=MT=NT,∴=,∠TQM=∠TMQ,∵∠QTR=∠PTQ,∴△QTR∽△PTQ,∴∠QPT=∠TQR,∴∠QPT=∠TQM=∠TMQ=∠MPT,∴∠MPQ=2∠MPR=2∠KML.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)已知一次函数y=x+3k﹣2的图象不经过第二象限,则k的取值范围是________.【答案】k≤.【解析】一次函数y=x+3k﹣2的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,3k﹣2=0,解得k=,经过一三四象限时,3k﹣2<0.解得k<故k≤.22.(4分)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【答案】1000.【解析】∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.23.(4分)在平面直角坐标系xOy中,⊙O的半径为13,直线y=kx﹣3k+4与⊙O交于B,C两点,则弦BC长的最小值等于________.【答案】24.【解析】∵y=kx﹣3k+4,∴(x﹣3)k=y﹣4,∵k为无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线y=kx﹣3k+4过定点(3,4),如图,P(3,4),连接OB,如图,当BC⊥OP时,弦BC最短,此时BP=PC,∵OP==5,∴BP==12,∴BC=2BP=24,即弦BC长的最小值等于24.24.(4分)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=________cm.【答案】.【解析】如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.25.(4分)如图电路中,随机闭合开关S1,S2,S3,S4中的两个,能够点亮灯泡的概率为.【答案】.【解析】用列表法表示所有可能出现的情况如下:共有12种可能出现的情况,其中能够点亮灯泡的有8种,∴P==,(点亮灯泡)二.解答题(共3小题,满分30分)26.(8分)某电信公司推出20M宽带业务,第一天办理“包一年”业务的有10个顾客,“包两年”的有5个顾客,共收费20500元;第二天办理“包一年”业务的有15个顾客,“包两年”的有10个顾客,共收费35500元.(1)请求出办理“包一年”、“包两年”这两种业务分别应交的费用;(2)电信公司平时的手机收费标准是:主叫300分钟以内.每分钟0.2元;超过300分钟.超过的时间每分钟0.1元.为业务发展需要,电信公司推出20M宽带和手机的捆绑礼包业务,内容如下:使用时间礼包内容手机主叫超过300分钟费用20M宽带免费手机每月最低消费99元(每月免费0.2元/分钟24个月主叫时长300分钟)小方要在该公司办理20M宽带两年的业务,假设他使用该公司的手机,每月主叫时间一样,且手机在使用过程中再无其他费用产生,请你说明选择哪种方案更合算.【答案】见解析【解析】(1)设办理“包一年”业务应交x元,办理“包两年”业务应交y元,依题意,得:,解得:.答:办理“包一年”业务应交1100元,办理“包两年”业务应交1900元.(2)设小方每月主叫时间为m分钟(m为整数,不为整数的按照进一法取整).①当0<m≤300时,选择平时的手机收费标准2年所需费用为1900+12×2×0.2m=(4.8m+1900)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×99=2376元.令4.8m+1900<2376,解得:m<99,令4.8m+1900=2376,解得:m=99,令4.8m+1900>2376,解得:m>99.∵m为正整数(利用进一法取整),∴当m≤99时,选择平时的手机收费标准划算;当99<m≤300时,选择宽带和手机的捆绑礼包业务划算;②当m>300时,选择平时的手机收费标准2年所需费用为1900+12×2×[300×0.2+0.1(x﹣300)]=(2.4x+2620)元,选择宽带和手机的捆绑礼包业务2年所需费用为12×2×[99+0.2(x﹣300)]=(4.8x+936)元.令2.4x+2620<4.8x+936,解得:x>701;令2.4x+2620=4.8x+936,解得:x=701;令2.4x+2620>4.8x+936,解得:x<701.∵m为正整数(利用进一法取整),∴当300<m≤701时,选择宽带和手机的捆绑礼包业务划算;当m>701时,选择平时的手机收费标准划算.综上所述:当m≤99或m>701时,选择平时的手机收费标准划算;当99<m≤701时,选择宽带和手机的捆绑礼包业务划算.27.在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH=BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP+MP 最小时,直接写出△DPN的面积.【答案】见解析【解析】(1)①过D作DH⊥GC于H,如图:∵线段EF绕点E逆时针旋转60°得到线段EG,点E与点B重合,且GF的延长线过点C,∴BG=BF,∠FBG=60°,∴△BGF是等边三角形,∴∠BFG=∠DFC=60°,BF=GF,∵等边△ABC,AB=6,BD⊥AC,∴∠DCF=180°﹣∠BDC﹣∠DFC=30°,∠DBC=∠ABC=30°,CD=AC=AB=3,∴∠BCG=∠ACB﹣∠DCF=30°,∴∠BCG=∠DBC,∴BF=CF,∴GF=CF,Rt△FDC中,CF===2,∴GF=2,Rt△CDH中,DH=CD•sin30°=,CH=CD•cos30°=,∴FH=CF﹣CH=,∴GH=GF+FH=,Rt△GHD中,DG==;②过E作EP⊥AB交BD于P,过H作MH⊥BC交BD于M,连接PG,作BP中点N,连接EN,如图:∵EF绕点E逆时针旋转60°得到线段EG,∴△EGF是等边三角形,∴∠EFG=∠EGF=∠GEF=60°,∠EFH=120°,EF=GF,∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC+∠EFH=180°,∴B、E、F、H共圆,∴∠FBH=∠FEH,而△ABC是等边三角形,BD⊥AC,∴∠DBC=∠ABD=30°,即∠FBH=30°,∴∠FEH=30°,∴∠FHE=180°﹣∠EFH﹣∠FEH=30°,∴EF=HF=GF①,∵EP⊥AB,∠ABD=30°,∴∠EPB=60°,∠EPF=120°,∴∠EPF+∠EGF=180°,∴E、P、F、G共圆,∴∠GPF=∠GEF=60°,∵MH⊥BC,∠DBC=30°,∴∠BMH=60°,∴∠BMH=∠GPF②,而∠GFP=∠HFM③,由①②③得△GFP≌△HFM(AAS),∴PF=FM,∵EP⊥AB,BP中点N,∠ABD=30°,∴EP=BP=BN=NP,∴PF+NP=FM+BN,∴NF=BM,Rt△MHB中,MH=BM,∴NF=MH,∴NF+BN=MH+EP,即BF=MH+EP,Rt△BEP中,EP=BE•tan30°=BE,Rt△MHB中,MH=BH•tan30°=BH,∴BF=BE+BH,∴BE+BH=BF;(2)以M为顶点,MP为一边,作∠PML=30°,ML交BD于G,过P作PH⊥ML于H,设MP 交BD于K,如图:Rt△PMH中,HP=MP,∴NP+MP最小即是NP+HP最小,此时N、P、H共线,∵将线段EF绕点E顺时针旋转60°得到线段EP,∴F在射线QF上运动,则P在射线MP上运动,根据“瓜豆原理”,F为主动点,P是从动点,E 为定点,∠FEP=60°,则F、P轨迹的夹角∠QKP=∠FEP=60°,∴∠BKM=60°,∵∠ABD=30°,∴∠BMK=90°,∵∠PML=30°,∴∠BML=60°,∴∠BML=∠A,∴ML∥AC,∴∠HNA=180°﹣∠PHM=90°,而BD⊥AC,∴∠BDC=∠HNA=∠PHM=90°,∴四边形GHND是矩形,∴DN=GH,∵等边△ABC中,AB=6,BD⊥AC,∴CD=3,又DN=2NC,∴DN=GH=2,∵等边△ABC中,AB=6,点E为AB中点时,点M为BE中点,∴BM=,BD=AB•sin A=6×sin60°=3,Rt△BGM中,MG=BM=,BG=BM•cos30°=,∴MH=MG+GH=,GD=BD﹣BG=,Rt△MHP中,HP=MH•tan30°=,∴PN=HN﹣HP=GD﹣HP=,∴S△DPN=PN•DN=.28.(12分)定义:在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点坐标为(0,c),那么我们把经过点(0,c)且平行于x轴的直线称为这条抛物线的极限分割线.[特例感知](1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为________.[研究深入](2)经过点A(﹣1,0)和B(x,0)(x>﹣1)的抛物线y=﹣x2+mx+n与y轴交于点C,它的极限分割线与该抛物线的另一个交点为D,请用含m的代数式表示点D的坐标.[深入拓展](3)在(2)的条件下,设抛物线y=﹣x2+mx+n的顶点为P,直线EF垂直平分OC,垂足为E,交该抛物线的对称轴于点F.①当∠CDF=45°时,求点P的坐标.②若直线EF与直线MN关于极限分割线对称,是否存在使点P到直线MN的距离与点B到直线EF的距离相等的m的值?若存在,直接写出m的值;若不存在,请说明理由.【答案】见解析【解析】(1)∵抛物线y=x2+2x+1的对称轴为直线x=﹣1,极限分割线为y=1,∴极限分割线与这条抛物线的一个交点坐标为(0,1),则另一个交点坐标为(﹣2,1).故答案为:(0,1)和(﹣2,1).(2)∵抛物线经过点A(﹣1,0),∴﹣×(﹣1)2+m×(﹣1)+n=0,∴n=m+.∵y=﹣x2+mx+n=﹣(x﹣m)2+m2+n=﹣(x﹣m)2+m2+m+,∴对称轴为直线x=m,∴点D的坐标为(2m,m+).(3)①设CD与对称轴交于点G,若∠CDF=45°,则DG=GF.∴|m|=|m+|,∴m=或m=﹣.∴当m=时,y=×++=,点P的坐标为(,);当m=﹣时,y=×+(﹣)+=,点P的坐标为(﹣,).∴点P的坐标为(,)或(﹣,).②存在,m的值为0或1+或1﹣.如图,设MN与对称轴的交点为H.由(2)知,n=m+,y=﹣(x﹣m)2+m2+m+,∴P(m,m2+m+),∴抛物线y=﹣x2+mx+n的极限分割线CD:y=m+,∵直线EF垂直平分OC,∴直线EF:y=m+.∴点B到直线EF的距离为|m+|.∵直线EF与直线MN关于极限分割线CD对称,∴直线MN:y=m++m+=m+.∵P(m,m2+m+),∴点P到直线MN的距离为|m2+m+﹣(m+)|=|m2﹣m﹣|,∵点P到直线MN的距离与点B到直线EF的距离相等,∴|m2﹣m﹣|=|m+|,∴m=0或m=1+或m=1﹣.。
【最新】四川省成都市中考数学模拟试卷(及答案解析)

四川省成都市中考数学模拟试卷(含答案)(考试时间:120分钟分数:150分)一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列计算正确的是()A.=﹣4 B.(a2)3=a5C.a•a3=a4D.2a﹣a=23.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.6.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.37.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较8.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD 于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是()A.①②④B.②③④C.①②③④D.①③9.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.10.二次函数y=﹣(x﹣1)2+3图象的对称轴是()A..直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣3 二.填空题(共10小题,满分30分,每小题3分)11.分解因式:4m2﹣16n2=.12.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.13.要使代数式有意义,x的取值范围是.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,△ABC中,点E是BC上的一点,CE=2BE,点D是AC中点,若S△ABC=12,则S△ADF﹣S△BEF=.16.如图,点D是等边三角形ABC内一点,△ABD绕点A逆时针旋转△ACE的位置,则∠AED=.17.函数y=k(x﹣1)的图象向左平移一个单位后与反比例函数y =的图象的交点为A、B,若A点坐标为(1,2),则B点的坐标为.18.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b =.19.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.20.如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO =30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是三.解答题(共9小题,满分90分)21.计算题(1)|﹣|+(﹣1)2018﹣2cos45°+.(2)÷(a+2)22.解方程:(1)x2﹣3x=4(2)2x(x﹣3)=3﹣x23.先化简,再求值:(x﹣2+)÷,其中x=﹣.24.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,则m的值为;(3)若x1、x2是原方程的两根,且+=2x1x2+1,求m的值.25.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.26.如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.27.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,求⊙O的半径及EC的长.28.如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.求证:EF与圆O相切.29.已知开口向上的抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B (1,0)两点,与y轴交于C点,∠ACB不小于90°.(1)求点C的坐标(用含a的代数式表示);(2)求系数a的取值范围;(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.答案一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据=|a|;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行分析即可.【解答】解:A、=4,故原题计算错误;B、(a2)3=a6,故原题计算错误;C、a•a3=a4,故原题计算正确;D、2a﹣a=a,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、同底数幂的乘法、合并同类项,关键是掌握各知识点,记住计算法则.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.6.【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.7.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.8,S乙2=0.7,∴S甲2>S乙2,∴成绩比较稳定的是乙;故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD2=DF•DC.【解答】解:①∵AE平分∠CAB∴∠CAE=∠DAF,∴△CAE∽△DAF,∴∠AFD=∠AEC,∴∠CFE=∠AEC,∴CF=CE,∵CN=BE,∴CE=BN,∴CF=BN,故本选项正确;②∵CD⊥AB,∴∠ADC=∠CDB=90°,∵CD2=AD•DB,∴,∴△ADC∽△CDB,∴∠ACD=∠B,∴∠ACB=90°,故本选项正确;③∵∠EAB=∠B,∴EA=EB,易知:∠ACF=∠ABC=∠EAB=∠EAC,∴FA=FC,易证:CF=CE,∴CF=AF=CE,∵FA=FC=BN,EA=EB,∴EF=CE,∴∵∠FEN=∠AEB,∴△EFN∽△EAB,∴∠EFN=∠EAB,∴FN∥AB,故本选项正确;④易证△ADF∽△CDA,∴AD2=DF•DC,故本选项正确;故选:C.【点评】本题综合考查了相似三角形的判定和性质,平行线的判定,等腰三角形的性质等知识点.9.【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,==,∴阴影部分的面积S=S扇形COB故选:D.【点评】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.10.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:二次函数y=﹣(x﹣1)2+3图象的对称轴是直线x=1,故选:A.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E =2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.13.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x ≥0且x ≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数. 【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.【分析】本题需先分别求出S △ABD ,S △ABE 再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点, ∴AD =AC ,∵S △ABC =12, ∴S △ABD =S △ABC =×12=6.∵EC =2BE ,S △ABC =12, ∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF , 即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2. 故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.16.【分析】先利用等边三角形的性质得到AB =AC ,∠BAC =60°,再根据旋转的性质得到AE =AD ,∠EAD =∠CAB =60°,则可判断△AED 为等边三角形,然后利用等边三角形的性质可得到∠AED 的度数.【解答】解:∵△ABC 为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕点A逆时针旋转△ACE的位置,∴AE=AD,∠EAD=∠CAB=60°,∴△AED为等边三角形,∴∠AED=60°.故答案为60°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】应先得到一次函数平移后的函数解析式,进而判断与反比例函数的交点.【解答】解:y=k(x﹣1)的图象向左平移一个单位为y=kx,为正比例函数,∵正比例函数与反比例函数的交点关于原点对称,A点坐标为(1,2),∴另一交点坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】用到的知识点为:一次函数y=kx+b平移规律:“左加右减”,即向左(右)移几个单位就加(减)几个单位;正比例函数与反比例函数的交点关于原点对称.18.【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.【解答】解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b 的形式,结合根与系数的关系以及一元二次方程的解即可解答.19.【分析】由直线解析式求出B1点的坐标,解直角三角形得出∠B1OA1=30°,由此可发现,OA2=OB1=OA1÷cos30°=OA1,同理OA3=OA2=()2OA1,OA4=OA3=()3OA1,…,由此得出一般规律.【解答】解:由A1坐标为(1,0),可知OA1=1,把x=1代入直线y=x中,得y=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=30°,则OA2=OB1=OA1÷cos30°=OA1=,OA3=OA2=()2,OA4=OA3=()3,故点A4的坐标为(,0),点A n(()n﹣1,0).故答案为:(,0),(()n﹣1,0).【点评】本题考查了一次函数的综合运用.关键是由直线解析式求出直线与x轴正方向的夹角为30°,再依次求OA2,OA3,OA4,…的长,得出一般规律.20.【分析】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,利用勾股定理即可解决问题;【解答】解:设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=7,故答案为3或7.【点评】本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.三.解答题(共9小题,满分90分)21.【分析】(1)先计算绝对值、乘方、代入三角函数值和算术平方根,再计算乘法,最后计算加减即可得;(2)先计算括号内分式的减法、将被除式因式分解,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=+1﹣2×+4=+1﹣+4=5;(2)原式=÷(﹣)=÷=•==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的混合运算顺序和运算法则.22.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先变形得到2x(x﹣3)+x﹣3=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(2)2x(x﹣3)+x﹣3=0,(x﹣3)(2x+1)=0,x﹣3=0或2x+1=0,所以x1=3,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.【分析】(1)先计算判别式得到△=(m+1)2,根据非负数的性质即可得到△≥0,于是利用判别式的意义即可得到结论;(2)根据二次函数的性质得m<0且=0,然后解方程即可;(3)先根据根与系数的关系得到x1+x2=,x1x2=﹣,再把+=2x1x2+1变形得到=2x1x2+1,则=2•(﹣)+1,然后解关于m的方程即可.【解答】(1)证明:m≠0,△=(m﹣1)2﹣4m×(﹣1)=(m+1)2,∵(m+1)2≥0,即△≥0,∴这个一元二次方程总有两个实数根;(2)解:∵二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,∴m<0且=0,∴m=﹣1;故答案为﹣1.(3)解:x1+x2=,x1x2=﹣,∵+=2x1x2+1,∴=2x1x2+1,∴=2•(﹣)+1,整理得m2+m﹣1=0,∴m=或m=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x 1+x 2=﹣,x 1x 2=.也考查了根的判别式和二次函数的性质.25.【分析】(1)用表格列出所有等可能结果,再根据概率公式计算可得; (2)分别计算出小红、小亮获胜的概率,比较大小即可得出结论. 【解答】解:(1)如下表所示:红 蓝1 蓝2 红 (红,红) (红,蓝1) (红,蓝2) 黄 (黄,红) (黄,蓝1) (黄,蓝2) 蓝(蓝,红)(蓝,蓝1)(蓝,蓝2)由表可知,共有9种等可能结果,其中配成紫色的有3种结果, 所以P (能配成紫色)=;(2)∵P (小红赢)=,P (小亮赢)=∴P (小红赢)=P (小亮赢),因此,这个游戏对双方是公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】根据CE 和α的正切值可以求得AE 的长度,根据AB =AE +EB 即可求得AB 的长度,即可解题.【解答】解:在中Rt △ACE , ∴AE =CE •tan α, =BD •tan α, =25×tan22°, ≈10.10米,∴AB =AE +EB =AE +CD ≈10.10+1.20≈11.3(米). 答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE 的值是解题的关键.27.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r的值,连接BE,由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC 是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了勾股定理、圆周角定理,作出恰当的辅助线是解答此题的关键.28.【分析】连接OD,作出辅助线,只要证明OD⊥EF即可,根据题目中的条件可知,∠FOD与∠FAD的关系,由AD平分∠CAB,可知∠EAF与∠FAD之间的关系,又因为AE⊥EF,从而可以推出OD垂直EF,本题得以解决.【解答】证明:连接OD,如右图所示,∵∠FOD=2∠BAD,AD平分∠CAB,∴∠EAF =2∠BAD ,∴∠EAF =∠FOD ,∵AE ⊥EF ,∴∠AEF =90°,∴∠EAF +∠EFA =90°,∴∠DFO +∠DOF =90°,∴∠ODF =90°,∴OD ⊥EF ,即EF 与圆O 相切.【点评】本题考查切线的判定,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.29.【分析】(1)由抛物线 y =ax 2+bx +c 过点A (﹣3,0),B (1,0),得出c 与a 的关系,即可得出C 点坐标;(2)利用已知得出△AOC ∽△COB ,进而求出OC 的长度,即可得出a 的取值范围; (3)作DG ⊥y 轴于点G ,延长DC 交x 轴于点H ,得出抛物线的对称轴为x =﹣1,进而求出△DCG ∽△HCO ,得出OH =3,过B 作BM ⊥DH ,垂足为M ,即BM =h ,根据h =HB sin ∠OHC 求出0°<∠OHC ≤30°,得到0<sin ∠OHC ≤,即可求出答案; (4)连接CE ,过点N 作NP ∥CD 交y 轴于P ,连接EF ,根据三角形的面积公式求出S △CAEF =S 四边形EFCB ,根据NP ∥CE ,求出,设过N 、P 两点的一次函数是y =kx +b ,代入N 、P 的左边得到方程组,求出直线NP 的解析式,同理求出A 、C 两点的直线的解析式,组成方程组求出即可.【解答】解:(1)∵抛物线 y =ax 2+bx +c 过点A (﹣3,0),B (1,0),∴消去b ,得 c =﹣3a .∴点C的坐标为(0,﹣3a),答:点C的坐标为(0,﹣3a).(2)当∠ACB=90°时,∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,∴∠ACO=∠OBC,∴△AOC∽△COB,,即OC2=AO•OB,∵AO=3,OB=1,∴OC=,∵∠ACB不小于90°,∴OC≤,即﹣c≤,由(1)得3a≤,∴a≤,又∵a>0,∴a的取值范围为0<a≤,答:系数a的取值范围是0<a≤.(3)作DG⊥y轴于点G,延长DC交x轴于点H,如图.∵抛物线y=ax2+bx+c交x轴于A(﹣3,0),B(1,0).∴抛物线的对称轴为x=﹣1.即﹣=﹣1,所以b=2a.又由(1)有c=﹣3a.∴抛物线方程为y=ax2+2ax﹣3a,D点坐标为(﹣1,﹣4a).于是CO=3a,GC=a,DG=1.∵DG∥OH,∴△DCG∽△HCO,∴,即,得 OH =3,表明直线DC 过定点H (3,0).过B 作BM ⊥DH ,垂足为M ,即BM =h ,∴h =HB sin ∠OHC =2 sin ∠OHC .∵0<CO ≤,∴0°<∠OHC ≤30°,0<sin ∠OHC ≤. ∴0<h ≤1,即h 的最大值为1,答:△BCD 中CD 边上的高h 的最大值是1.(4)由(1)、(2)可知,当∠ACB =90°时,,,设AB 的中点为N ,连接CN ,则N (﹣1,0),CN 将△ABC 的面积平分,连接CE ,过点N 作NP ∥CE 交y 轴于P ,显然点P 在OC 的延长线上,从而NP 必与AC 相交,设其交点为F ,连接EF ,因为NP ∥CE ,所以S △CEF =S △CEN ,由已知可得NO =1,,而NP ∥CE , ∴,得,设过N 、P 两点的一次函数是y =kx +b ,则, 解得:, 即,①同理可得过A 、C 两点的一次函数为,② 解由①②组成的方程组得,, 故在线段AC 上存在点满足要求.答:当∠ACB =90°,在线段AC 上存在点F ,使得直线EF 将△ABC 的面积平分,点F 的坐标是(﹣,﹣).【点评】本题主要考查对用待定系数法求二次函数、一次函数的解析式,三角形的面积,解二元一次方程,相似三角形的性质和判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。
中考强化训练2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析)

2022年四川省成都市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若反比例函数k y x =的图象经过点()2,2P -,则该函数图象不经过的点是( ) A .(1,4)B .(2,-2)C .(4,-1)D .(1,-4)2、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( ) A .B .C .D . 3、下列格点三角形中,与右侧已知格点ABC 相似的是( )·线○封○密○外A .B .C .D .4、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我5、下列式子运算结果为2a 的是( ).A .a a ⋅B .2a +C .a a +D .3a a ÷6、平面直角坐标系中,已知点()21,P m n -,()2,1Q m n -,其中0m >,则下列函数的图象可能同时经过P ,Q 两点的是( ).A .2y x b =+B .22y x x c =--+C .()20y ax a =+>D .()220y ax ax c a =++> 7、下列运算中,正确的是( ) A6 B5 C=4 D8、下列说法中不正确的是( )A .平面内,垂直于同一条直线的两直线平行B .过一点有且只有一条直线与已知直线平行C .平面内,过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A .50°B .65°C .75°D .80°10、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( ) A . B .·线○封○密○外C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:60°18′________°.2、如图,在△AAA中,AB=AC=6,BC=4,点D在边AC上,BD=BC,那么AD的长是______3、如图,∠A=∠A,AA⊥AA,AB EF,AA=25,AA=8,则AA=_______.4、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.5、若关于x的二次三项式A2−2(A+1)A+4是完全平方式,则k=____.三、解答题(5小题,每小题10分,共计50分)∥交CD的延长线于点E,点N是线段AC 1、如图,在ABC中,D是边AB的中点,过点B作BE AC上一点,连接BN 交CD 于点M ,且BM AC =. (1)若55E ∠=︒,65A ∠=︒,求CDB ∠的度数;(2)求证:CN MN =. 2、小明根据学习函数的经验,对函数y =﹣|x |+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题. (1)如表y 与x 的几组对应值:①a = ;②若A (b ,﹣7)为该函数图象上的点,则b = ; (2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:·线○封○密·○外①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.3、如图,二次函数y =a (x ﹣1)2﹣4a (a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C (0,.(1)求二次函数的表达式;(2)连接AC ,BC ,判定△ABC 的形状,并说明理由.4、计算:2(3)()()a b a b a b +-+-.5、如图,点B ,E ,F ,C 在同一直线上.已知A D ∠=∠,B C ∠=∠,BE CF =,请说明ABF △≌DCE .-参考答案-一、单选题1、A【分析】 由题意可求反比例函数解析式4y x =-,将点的坐标一一打入求出xy 的值,即可求函数的图象不经过的点. 【详解】 解:因为反比例函数k y x =的图象经过点(2,2)P -, 所以4k =-, 选项A 1444xy =⨯=≠-,该函数图象不经过的点(1,4),故选项A 符合题意; 选项B ()224xy =⨯-=-,该函数图象经过的点(2,-2),故选项B 不符合题意; 选项C ()414xy =⨯-=-,该函数图象经过的点(4,-1),故选项C 不符合题意; 选项B ()144xy =⨯-=-,该函数图象经过的点(1,-4),故选项D 不符合题意; 故选A. 【点睛】 考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键. ·线○封○密○外2、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.【点睛】本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.3、A【分析】根据题中利用方格点求出ABC的三边长,可确定ABC为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:ABC的三边长分别为:AB=AC BC=∵222+=,AB AC BC∴ABC为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,==A选项符合题意,D≠故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.4、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5、C·线○封○密○外【分析】由同底数幂的乘法可判断A ,由合并同类项可判断B ,C ,由同底数幂的除法可判断D ,从而可得答案.【详解】解:2,a a a ⋅=故A 不符合题意;2a +不能合并,故B 不符合题意;2,a a a +=故C 符合题意;23,a a a ÷=故D 不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.6、B【分析】先判断1,m m 221,n n 再结合一次函数,二次函数的增减性逐一判断即可.【详解】解:22221110,n n n n221,n n同理:1,m m∴ 当0m >时,y 随x 的增大而减小,由2y x b =+可得y 随x 的增大而增大,故A 不符合题意;22y x x c =--+的对称轴为:21,21x 图象开口向下,当1x >-时,y 随x 的增大而减小,故B 符合题意; 由()20y ax a =+>可得y 随x 的增大而增大,故C 不符合题意; ()220y ax ax c a =++>的对称轴为:21,2a x a 图象开口向上, 1x ∴>-时,y 随x 的增大而增大,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.7、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确; 4,正确; 8,故不正确; 故选C . 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. ·线○封○密○外8、B【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.9、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE =∠BED =50°,∵AG 为折痕, ∴()1180652FAE α=︒-∠=︒ . 故选:B 【点睛】 本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键. 10、C 【分析】 根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案. 【详解】 解:A 、是轴对称图形,不是中心对称图形,故错误; B 、是轴对称图形,不是中心对称图形,故错误; C 、既是轴对称图形,又是中心对称图形,故正确; D 、既不是轴对称图形,也不是中心对称图形,故错误. 故选:C . 【点睛】 本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合. 二、填空题 1、60.3 【分析】 ·线○封○密○外根据1′=(160)°先把18′化成0.3°即可.【详解】∵1'=(160)°∴18′=18×(160)°=0.3°∴60°18′=60.3°故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.2、103【分析】根据等腰三角形的等边对等角可得∠ABC=∠C=∠BDC,根据相似三角形的判定证明△ABC∽△BDC,根据相似三角形的性质求解即可.【详解】解:∵AB=AC,BD=BC,∴∠ABC=∠C,∠C=∠BDC,∴△ABC∽△BDC,∴AAAA=AAAA,∵AB=AC=6,BC=4,BD=BC,∴64=4AA,∴AA =83,∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.3、17 【分析】 由“AAA ”可证ABC EFC ∆≅∆,可得AA =AA ,9BC CF ==,即可求解. 【详解】 解:∵AA ⊥AA ,90ACB ECF ∴∠=∠=︒,在AAAA 和AAAA 中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC EFC AAS ∴∆≅∆, ∴AA =AA ,AA =AA =8, ∴AA =AA =AA −AA =25−8=17, 故答案为:17. 【点睛】 本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等. 4、30·线○封○密·○外【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-56)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.5、﹣3或1【分析】根据A 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式A 2−2(A +1)A +4是完全平方式,∴A 2−2(A +1)A +4=22(2)44x x x -=-+或A 2−2(A +1)A +4=(A +2)2=A 2+4A +4, ∴−2(A +1)=4或−2(A +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.三、解答题1、(1)120︒(2)证明见解析【分析】(1)先根据平行线的性质可得65ABE A ∠=∠=︒,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出B ADC DE ≅,再根据全等三角形的性质可得AC BE =,E ACD ∠=∠,从而可得BE BM =,然后根据等腰三角形的性质、对顶角相等可得E BME CMN ∠=∠=∠,从而可得ACD CMN ∠=∠,最后根据等腰三角形的判定即可得证. (1)解:∵AC BE ,65A ∠=︒, ∴65ABE A ∠=∠=︒, ∵55E ∠=︒, ∴5565120CDB E ABE ∠=∠+∠=︒+︒=︒. (2) 证明:∵AC BE , ∴A ABE ∠=∠, ∵D 是边AB 的中点, ∴AD BD =, 在ADC 和BDE 中,A DBE AD BD ADC BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BD ADC E ASA ≅,∴AC BE =,ACD E ∠=∠,∵BM AC =,∴BE BM =,∴E BME CMN ∠=∠=∠,·线○封○密○外∴ACD CMN∠=∠,∴CN MN=.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.2、(1)①0;②±10;(2)见解析;①最大值,3;②9 2【分析】(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y轴对称,∵当x=-3时,y=0,∴当x=3时,a=0,故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7=﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3; ②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为193322⨯⨯=. 【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键. 3、(1)21)y x =- (2)直角三角形,理由见解析. 【分析】 (1)将点C 的坐标代入函数解析式,即可求出a 的值,即得出二次函数表达式;(2)令0y =,求出x 的值,即得出A 、B 两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断ABC 的形状. ·线○封○密·○外(1)解:将点C (0,代入函数解析式得:2(01)4a a =--,解得:a =故该二次函数表达式为:21)y x =- (2)解:令0y =21)0x --=, 解得:11x =-,23x =.∴A 点坐标为(-1,0),B 点坐标为(3,0).∴OA =1,OC 3(1)4B A AB x x =-=--=,∴2AC ==,BC ===∵22224+=,即222BC AC AB +=,∴ABC 的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C 的坐标求出函数解析式是解答本题的关键.4、22862a ab b ++【分析】根据完全平方公式及平方差公式,然后再合并同类项即可.【详解】 解:原式222296()=++--a ab b a b 222296+=++-a ab b a b 22862a ab b =++. 【点睛】 本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可. 5、见详解. 【分析】 用AAS 证明△ABF ≌△DCE 即可. 【详解】 解:∵BE CF = BE EF CF EF ∴+=+ ,BF CE ∴= 又∵∠A =∠D ,∠B =∠C , ∴△ABF ≌△DCE (AAS ). 【点睛】 本题考查了全等三角形的判定,证明BF =CE 是解决本题的关键. ·线○封○密○外。
(四川成都卷)中考数学模拟考试(含答案)

中考数学模拟考试(四川成都卷)(本卷共26小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.5-的相反数是()A.5B.5-C.0.2D.0.2-2.如图是一个由5个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.3.据海外网消息,根据Worldometer实时统计数据,截至北京时间2021年3月16日6时30分左右,数据“12000万”用科学记数法表示为( ) A .1.2×107B .12×107C .1.2×108D .1.2×1094.下列运算中,正确的是( ) A .2a 3﹣a 3=2 B .(a 3)2=a 9 C .2a 2•3a 3=6a 6 D .a 7÷a 5=a 25.在函数12x y x +=-中,自变量x 的取值范围是( ) A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠6.若关于x 的一元二次方程x 2-2x +a =0有实数根,则a 应满足( ) A .a ≥1B .a ≤1C .a ≤-1D .a ≠07.ABC 的边BC 经过圆心O ,AC 与圆相切于点A ,若20B ∠=︒,则C ∠的大小等于( )A .50︒B .25︒C .40︒D .20︒8.已知二次函数2(0)y ax bx c a =++≠的图象如图,分析下列四个结论: ①0abc <;①240b ac ->;①30a c +>;①22()a c b +<, 其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.分解因式:3a a-=__.10.若M(12-,1y),N(14-,2y),P(12,3y)三点都在函数(0)ky kx=<的图象上y1,y2,y3的大小关系是______.11.如图,在等腰①ABD中,AB=AD,①A=32°,取大于12AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,则①EBD的度数为______.12.如图,在菱形ABCD中,AC与BD交于点E,F是BC的中点,如果EF=3,那么菱形ABCD的周长是_____.13.若关于x的分式方程2m有增根,则m的值为三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)计算:212017223tan603-⎛⎫-+--︒ ⎪⎝⎭;(2)解方程组148x yx y+=⎧⎨+=-⎩.15.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.16.一辆小汽车在某城市道路上自西向东行驶,某“玩转数学”活动小组在距路边20米的点C处放置了“检测仪器”,测得该车从北偏西60°方向的点A行驶到东北方向的点B,所用时间为6秒.(1)求AB的长;(2)求该车的速度约为多少米/秒?(精确到0.1,参考数据:2≈1.414,3≈1.732)17.如图,AB 为①O 的直径,AC 为弦,①BCD =①A ,OD 交①O 于点E . (1)求证:CD 是①O 的切线;(2)若CD =4,AC =2.7,cos①BCD =920,求DE 的长度.18.如图,一次函数12y x b =-+的图象分别交x 轴,y 轴于D ,C 两点,交反比例函数2ky x=,图象于()1,6A -,(),2B m -两点.(1)求k ,b 的值;(2)点E 是y 轴上点C 下方一点,若132AEB S =△,求E 点的坐标;(3)当12y y >时,x 的取值范围是_______.B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.已知关于x 、y 的方程组2128x y ax y a +=-⎧⎨+=+⎩,则代数式2x +y =___.20.关于x 的不等式组1(25)131(3)2x x x x a ⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a 的取值范围是 _____.21.已知1a 为实数,规定运算:2111a a =-,3211a a =-,4311a a =-,……,111n n a a =--.按以上算法计算:当14a =时,2022a 的值等于______. 22.如图,已知双曲线y =12x(x <0)和y =k x (x >0),12y x =与直线交于点A ,将直线OA 向下平移与双曲线y =12x,与y 轴分别交于点,B P ,与双曲线y =kx 交于点C ,S △ABC =6,BP :CP =2:1,则k 的值为____.23.如图,ABCD 为正方形,①CAB 的角平分线交BC 于点E ,过点C 作CF ①AE 交AE 的延长线于点G ,CF 与AB 的延长线交于点F ,连接BG 、DG 、与AC 相交于点H ,则下列结论:①①ABE ①①CBF ;①GF =CG ;①BG ①DG ;①DH =21)AE ,其中正确的是______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.我市某苗木种植基地尝试用单价随天数而变化的销售模式销售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果苗,单日销售量n (株)与第x 天(x 为整数)满足关系式:n =-x +50,销售单价m (元/株)与x 之间的函数关系为m =()()1201202420102130x x x x⎧+≤≤⎪⎪⎨⎪+≤≤⎪⎩ (1)求该基地销售这种果苗30天里单日所获利润y (元)与x (天)的函数关系式;(2)为回馈本地居民,基地负责人决定将这30天中,其中获利最多的那天的利润全部捐出进行“精准扶贫”.试问:基地负责人这次为“精准扶贫”捐赠多少钱?25.如图,抛物线y =ax 2+bx +8(a ≠0)与x 轴交于点A (﹣2,0)和点B (8,0),顶点为D ,连接AC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC△PBC=35S△ABC时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.26.如图,在四边形ABCD中,①A=①ADC=90°,AB=AD=10,CD=15,点E,F分别为线段AB,CD 上的动点,连接EF,过点D作DG①直线EF,垂足为G.点E从点B向点A以每秒2个单位的速度运动,同时点F从点D向点C以每秒3个单位的速度运动,当点E运动到点A时,E,F同时停止运动,设点E 的运动时间为t秒.(1)求BC的长;(2)当GE=GD时,求AE的长;(3)当t为何值时,CG取最小值?请说明理由.数学·参考答案A 卷一、选择题1 2 3 4 5 6 7 8 AACDCBAB二、填空题9. (1)(1)a a a +- 10. y 2>y 1>y 3 11.42°12.24 13.23三、解答题14.【解析】(1)原式912323=-+63=;(2)148x y x y +=⎧⎨+=-⎩①②,①-①得:39x =-, 解得:3x =-,把3x =-代入①得:31y -+=, 解得:4y =,则方程组的解为34x y =-⎧⎨=⎩.15. 【解析】(1)解:根据题意可列表或树状图如下: 第一次第二次12341 (1,2) (1,3) (1,4)2 (2,1) (2,3) (2,4)3 (3,1) (3,2) (3,4)4 (4,1) (4,2) (4,3)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,①P (和为奇数)23=;(2)不公平.①小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠,①不公平.16. 【解析】(1)由题意可知,CD =20m ,①ACD =60°,①BCD =45°,在Rt ①ACD 中,①ACD =60°,CD =20m ,①tan 203AD ACD CD =∠=(m ),在Rt ①BCD 中,①BCD =45°,CD =20m ,①BD =CD =20m ,①(20203)AB AD BD =+=+m ,答:AB 的长度为(20203)+m ;(2)该车的速度为(20203)69.1+÷≈(米/秒),则该车的速度约为9.1米/秒.17. 【解析】(1)证明:如图,连接OC .①AB 为①O 的直径,AC 为弦,①①ACB =90°,即①OCB +①ACO =90°.①OA =OC ,①①ACO =①A .①①BCD =①A ,①①ACO =①BCD .①①OCB +①BCD =90°,即①OCD =90°.①CD ①OC .①OC 为①O 的半径,①CD 是①O 的切线.(2)解:①①BCD =①A ,cos①BCD =920, ①cos A =cos①BCD =920. 在Rt △ABC 中, ①cos AC A AB= ①AB =cos AC A =2.7920=2.720=69⨯. ①OC =OE =12AB =3. 在Rt △ODC 中,①222OD OC DC =+, ①2222345OD OC DC +=+.①DE =OD ﹣OE =5﹣3=2.18. 【解析】(1)①点A (-1,6)在一次函数12y x b =-+上,①-2⨯(-1)+b =6.解得,4b =.①点A (-1,6)在反比例函数2k y x=上,①166k =-⨯=-. (2)设()0E a ,.①点()2B m -,在函数26y x=-上,①-2m =-6.解得,3m =.①B (3,-2). ①132AEB S =△,①()11322B A CE x x -=.①()1133122CE +=. ①134CE =.①4-a=134,解得,a=34.①304E ⎛⎫ ⎪⎝⎭,. (3)观察图象:①反比例函数26y x=-的两个分支在第二、四象限, 一次函数124y x =-+的图象经过第三、一、四象限,①在第二象限内,当12y y >时,有x <-1;在第一、四象限内,当12y y >时,有0<x <3.故答案为:1x <-或03x <<.B 卷一、填空题19. 8 20.732a ≤<21.13- 22.﹣3. 23.①①① 二、解答题24.【解析】(1)分两种情况,①当1≤x ≤20时,()()1102010502y m n x x ⎛⎫=-=+--+ ⎪⎝⎭ 21155002x x =-++, ①当21≤x ≤30时,()()42010101050y m n x x ⎛⎫=-=+--+ ⎪⎝⎭21000420x =-,综上:()()21155001202{210004202130x x x y x x-++≤≤=-≤≤; (2)①当1≤x ≤20时,()221112251550015222y x x x =-++=--+, ①102a =-<,①当x =15时,y 最大=1225=612.52, ①21≤x ≤30时,由21000420y x=-知,y 随x 的增大而减小, ①当x =21时,y 最大=2100042058021-=, ①580<612.5,①基地负责人向“精准扶贫”捐了612.5元.25. 【解析】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (﹣2,0)和点B (8,0),∴428064880a b a b -+=⎧⎨++=⎩,解得123a b ⎧=-⎪⎨⎪=⎩. ∴抛物线解析式为:21382y x x =++; (2)当x =0时,y =8,∴C (0,8),∵B (8,0),设直线BC 解析式为y kx b =+',则880b k b '=⎧⎨+'=⎩,解得81b k '=⎧⎨=-⎩∴直线BC 解析式为:y =﹣x +8, ∵111084022ABC S AB OC ∆=⋅⋅=⨯⨯=, ∴3245PBC ABC S S ∆∆==, 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设21(,38)2P t t t -++,∴F (t ,﹣t +8),∴2142PF t t =-+, ∴1242PBC S PF OB ∆=⋅=, 即211(4)82422t t ⨯-+⨯=,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,∵C (0,8),B (8,0),∠COB =90°,∴△OBC 为等腰直角三角形,抛物线21382y x x =++的对称轴为33122()2b x a =-==⨯-,∴点E 的横坐标为3, 又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E (3,5),设21(3,),(,38)2M m N n n n ++, ①当MN =EM ,∠EMN =90°,△NME ∽△COB ,则2531382m n n n m -=-⎧⎪⎨-++=⎪⎩,解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去), ∴此时点M 的坐标为(3,8),①当ME =EN ,当∠MEN =90°时, 则25313852m n n n -=-⎧⎪⎨-++=⎪⎩, 解得:515315m n ⎧=+⎪⎨=+⎪⎩或515315m n ⎧=-⎪⎨=-⎪⎩(舍去), ∴此时点M 的坐标为(3,515)+;①当MN =EN ,∠MNE =90°时,此时△MNE 与△COB 相似,此时的点M 与点E 关于①的结果(3,8)对称,设M (3,m ),则m ﹣8=8﹣5,解得m =11,∴M (3,11);此时点M 的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8)或(3,515)+或(3,11).26. 【解析】(1)如图1,过点B作BH①CD于点H,则四边形ADHB是矩形,①AB=10,CD=15,①CH=5,又①BH=AD=10,①BC2222++10555BH CH(2)过点G作MN①AB,如图2,①AB CD∥,①MN①CD,①DG①EF,①①EMG=①GND=90°,①①MEG+①MGE=90°,①①EGM+①DGN=90°,①①GEM=①DGN,①EG=DG,①①EMG①①GND(AAS),①MG=DN,设DN=a,GN=b,则MG=a,ME=b,①点E从点B向点A以每秒2个单位的速度运动,同时点F从点D向点C以每秒3个单位的速度运动,①BE=2t,AE=10﹣2t,DF=3t,CF=15﹣3t,①AM=DN,AD=MN,①a+b=10,a﹣b=10﹣2t,解得a=10﹣t,b=t,①DG①EF,GN①DF,①①DNG=①FNG=90°,①①GDN+①DFG=①GDN+①DGN=90°,①①DFG=①DGN,①①DGN①①GFN,①GN NF DN GN=,①GN2=DN•NF,①NF=2210GN tDN t=-,又①DF=DN+NF,①3t=10﹣t+210tt-,解得t=55±,又①0≤t≤5,①t=5﹣5,①AE=10﹣2t=25.(3)如图3,连接BD,交EF于点K,①BE DF∥,①①BEK①①DFK,①2233 BK BE tDK DF t===,又①AB=AD=10,①BD2AB=2①DK=362 5BD=取DK的中点,连接OG,①DG①EF,①①DGK为直角三角形,①OG=132 2DK=①点G在以O为圆心,r=2的圆弧上运动,连接OC,OG,由图可知CG≥OC﹣OG,当点G在线段OC上时取等号,①AD=AB,①A=90°,①①ADB=45°,①①ODC=45°,过点O作OH①DC于点H,又①OD=2CD=15,①OH=DH=3,①CH=12,①OC22317OH CH+=则CG的最小值为3172,当O,G,C三点共线时,过点O作直线OR①DG交CD于点S,①OD=OG,①R为DG的中点,又DG①GF,①OS①GF,①点S是DF的中点,OC SC OG SF=,①DS=SF=32t,SC=15﹣32t,31531723322tt-=,①t2344-,即当t 2344-时,CG取得最小值为31732。
2024年中考数学第一次模拟考试(四川成都卷)(全解全析)

2024年中考第一次模拟考试(成都卷)数学·全解全析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
A卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).【答案】B【分析】本题考查了相反数的定义,根据只有符号不同的两个数互为相反数进行解答即可得.−,故选:B.【详解】解:2024的相反数是20242.杭州亚运会已闭幕,中国代表团共收获201金、111银、71铜,总计383枚奖牌,创历史.图①是2023年10月2日乒乓球男单颁奖现场.图②是领奖台的示意图,则此领奖台主视图是()A.B.C.D.【答案】B【分析】本题考查了组合体的主视图.熟练掌握从正面看到的是主视图是解题的关键.根据从正面看到的是主视图进行判断作答即可.【详解】解:由题意知,是主视图,故选:B .3.俄罗斯和乌克兰的战争从去年2月24日开始到现在还在持续,战争持续的主要原因是:以美国为首的北约在不断拱火,据不完全统计仅美国就先后向乌克兰提供军火价值275.8亿美元,275.8亿用科学记数法如何表示( ) A .82.75810⨯ B .92.75810⨯ C .102.75810⨯ D .11275810.⨯【答案】C【分析】根据科学记数法的表示方法求解即可.【详解】解:275.8亿用科学记数法表示为102.75810⨯.故选:C .【点睛】此题考查了科学记数法的表示方法,解题的关键是熟练掌握科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1<10a ≤,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4.若关于x 的方程230x mx −+=的一个根是11x =,则另一个根2x 及m 的值分别是( ) A .234x m ==−, B .214x m ==, C .224x m ==−, D .234x m ==,【答案】D【分析】本题考查了一元二次方程的解,把11x =代入方程先求出m 的值,从而确定出方程,再解方程即可求出2x ,理解方程的解并准确计算是解题的关键.【详解】解:∵11x =是方程230x mx −+=的一个根,∴130m −+=,∴4m =,∴方程为2430x x −+=,解得11x =,23x =,∴另一个根2x 为3,m 的值为4,故选:D .【答案】D【分析】分式方程两边乘以最简公分母,去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解:A 、方程两边同乘以()2x −,得:()1122x x −=−−−,故本选项不符合题意;B 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项不符合题意;C 、方程两边同乘以()2x −,得:()1122x x −=−−,故本选项不符合题意;D 、解方程得2x =,当2x =时分母20x −=,2x =是方程的增根,故本选项符合题意;故选:D . 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.C . 302⎛⎫− ⎪⎝⎭, 【答案】A【分析】本题考查的是位似图形的概念、相似三角形的性质,根据位似图形的概念得出EF OC ∥,DE OP ∥是解题的关键.根据位似图形的概念得到EF OC ∥,DE OP ∥,进而证明CED CPO POD PAB ∽,∽,根据相似三角形的性质求出OP ,得到答案. 【详解】解:∵四边形OABC 为矩形,()23B ,,∴32AB OC OA ===,,∵矩形OABC 与矩形ODEF 是位似图形,∴EF OC ∥,DE OP ∥,∴CED CPO POD PAB ∽,∽∴CD DE CO OP =,PO ODPA AB = ∴31323OD OP OD OP OP −==+,,解得:2OP =,32OD =∴点P 的坐标为()20−,,故选:A .根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A.A B.B C.C D.D【答案】B【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可.【详解】解:题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A,则参考人数得分的平均分为:36.21%5 1.8⨯≈,如果正确答案应为B,则参考人数得分的平均分为:33.85%5 1.7⨯≈,如果正确答案应为C,则参考人数得分的平均分为:17.7%50.9⨯≈,如果正确答案应为D,则参考人数得分的平均分为:11.96%50.6⨯≈,故选:B.【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.下列说法中正确的是()A.开口向下B.当0x>时,y随x的增大而增大C.对称轴为直线1x=D.函数的最小值是5−【答案】C【分析】本题主要考查了求二次函数解析式以及二次函数的性质,把二次函数化简成顶点式即可解题.【详解】解:把()1,2−−,()0,5−,()3,2−代入2y ax bx c=++,得:25932a b cca b c−+=−⎧⎪=−⎨⎪++=−⎩,解得∶125abc=⎧⎪=−⎨⎪=−⎩,∴()222516y x x x=−−=−−,∴10a =>抛物线开口向上,对称轴为直线1x =,顶点坐标为()1,6−,即当1x =时,函数取最小值6−,当1x >时,y 随x 的增大而增大, 故A ,B ,D 错误,C 正确,故选:C .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的 倍.【答案】1.2【分析】设被称物的重量为a ,砝码的重量为1,根据图中可图列出方程即可求解. 【详解】解:设被称物的重量为a ,砝码的重量为1,依题意得,2.531a =⨯,解得 1.2a =,故答案为:1.2.【点睛】本题考查了比例的性质,掌握杠杆的原理是解题的关键.【答案】1−(答案不唯一)【分析】本题考查了一元二次方程根的情况求参数.根据题意得()2=24110k ∆−⨯⨯−+<,进行计算即可得.【详解】解:∵一元二次方程2210x x k +−+=没有实数根,∴()2=24110k ∆−⨯⨯−+<,∴0k <,∴k 的值可能是1−(答案不唯一),故答案为:1−(答案不唯一).11.如图所示是地球截面图,其中AB ,EF 分别表示南回归线和北回归线,CD 表示赤道,点P 表示太原市的位置.现已知地球南回归线的纬度是南纬()23262326BOD ''︒∠=︒,太原市的纬度是北纬()37323732POD ''︒∠=︒,而冬至正午时,太阳光直射南回归线(光线MB 的延长线经过地心O ),则太原市冬至正午时,太阳光线与地面水平线PQ 的夹角α的度数是 .【答案】292'︒【分析】设PQ 与OM 交于点K ,先由三角形内角和定理求出.292OKP '∠=︒,再根据平行线的性质求解即可.【详解】如图,设PQ 与OM 交于点K ,∵2326BOD '∠=︒,3732POD '∠=︒,∴6058POM POD BOD '∠=∠+∠=︒, 在OPK 中,180POK OPK OKP ∠+∠+∠=︒,90OPK ∠=︒,∴292OKP '∠=︒, ∵PN OM ∥,∴292OKP α'∠=∠=︒,故答案为:292'︒.【点睛】本题考查了三角形内角和定理,平行线的性质,读懂题意并熟练掌握知识点是解题的关键.【答案】<【分析】直接利用反比例函数的增减性分析得出答案. 【详解】∵11(,)M x y ,22(,)N x y 两点都在反比例函数5y x −=的图象上,50k =−<,且120x x >>,∴该图象在第二、四象限上,且每个分支上y 随x 的增大而增大,12,00y y <>,∴12y y <.故答案为:<.【点睛】本题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题的关键.GB【答案】5【分析】本题考查了基本作图,掌握相似三角形的判定定理和性质定理是解题的关键.先根据作图得出AE 平分ABC∠,MN垂直平分AE,再根据平行四边形的性质和相似三角形的性质求解.【详解】解:四边形ABCD是平行四边形,4AB CD DE∴==,AD BC∥,AD BC=,AEB CBE∴∠=∠,由作图得:AE平分ABC∠,MN垂直平分AE,ABE CBE∴∠=∠,AF EF=,AEB ABE∴∠=∠,4AB AE CD ED∴===,2EF DE∴=,5BC AD DE∴==,AD BC,EFG BCG∴∽,∴25EG EFGB BC==,故答案为:25.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1+;(2)1x≤−【分析】(1)先代入三角函数值、计算负整数指数幂、化简二次根式,再去绝对值符号、计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找大大小小找不到确定不等式组的解集;【详解】(1)112cos301sin453−⎛⎫︒−︒⎪⎝⎭)2133=+−(4分)133=+−+(5分)1=+;(6分)(2)将()332x x+>−去括号得:336x x+>−(7分)解得:92x<;(8分)将15126x x+−≤−去分母得:()()3165x x+≤−−(9分)去括号得:3365x x+≤−+(10分)解得:1x≤−;(11分)故方程组的解集为:1x≤−.(12分)【点睛】本题主要考查解一元一次不等式组、实数的运算,特殊角三角函数,解题的关键是掌握实数的混合运算顺序和运算法则.15.(满分8分)中国城市基础设施的现代化程度显著提高,新技术、新手段得到广泛应用,基础设施的功能日益增加,承载能力、系统性和效率都有了显著的提升.城市经济发展了,居民生活条件改善了,如5G基础进设、新能源汽车充电桩、人工智能等,其中,随着人们对新能源汽车的认可,公共充电桩的需求量逐渐增大.根据巾商情报网信息:某月“特来电”“星星充电”“国家电网”“云快充”等企业投放公共充电桩的数量及市场份额的统计图如图所示请根据图中信息,解答下列问题:(1)①将统计图中“国家电网”的公共充电桩数量和市场份额补充完整;②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是万台.(2)小辉收集到下列四个企业的图标,并将其制成编号分别为A,B,C,D的四张卡片(除编号和内容外,其余部分完全相同),将四张卡片背面朝上洗匀,放在桌面上,从中任意抽取一张,不放回,再抽取一张.请你用列表或画树状图的方法,求抽取到的两张卡片恰好是“A”和“D“的概率.【答案】(1)①见解析;②2 (2)1【分析】本题考查的是从统计图中获取信息,求解中位数,利用画树状图求解随机事件的概率,掌握以上基础的统计知识是解本题的关键;(1)①由星星充电10万台充电桩占比20%求解总的充电桩的数量,再求解国家电网的充电桩的数量与占比即可;②根据11家企业的充电桩是数量按照从大到小顺序排列后,排在第6的数据是中位数,从而可得答案;(2)先画树状图得到所有的等可能的结果数,再得到符合条件的结果数,结合概率公式可得答案.【详解】(1)解:①公共充电桩的总数为1020%50÷=(万台),∴“国家电网”的公共充电桩数量为5015105222 1.510.538−−−−−−−−−−=(万台),“国家电网”的公共充电桩的市场份额为8100%=16% 50⨯;如图,(2分)②统计图中所涉及的十一种企业投放公共充电桩数量的中位数是2万台.(4分) (2)画树状图为:(6分)共有12种等可能的结果,其中抽取到的两张卡片恰好是“A”和“D“的结果数为2,(7分) 所以抽取到的两张卡片恰好是“A”和“D“的概率21126==.(8分)【答案】要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远【分析】本题考查了解直角三角形的应用-坡度坡角问题,过点E 作EH CF ⊥,垂足为点H ,根据EF 的坡度为1:0.75,设4m EH x =,则3m FH x =,求得3x =,进而求得1,,L H H 的长,根据该楼的日照间距系数不低于1.25,列出不等式141.2536.3 1.1CF +≥−,解不等式即可.【详解】解:过点E 作EH CF ⊥,垂足为点H (1分)90H ∴∠=︒,在Rt EFH △中,EF 的坡度为1:0.75,43EH FH ∴=,(2分)设4m EH x =,则3m FH x =,5mEF x ∴===,(3分)15m EF =Q ,515m x ∴=,3x =,39m FH x ∴==,412m EH x ==.(4分) 9514L CF FH EA CF CF ∴=++=++=+,(5分) 24.31236.3H AB EH =+=+=,1 1.1H =,(6分)由题意得:141.2536.3 1.1CF +≥− 解得:30CF ≥(7分)答:要使该楼的日照间距系数不低于1.25,底部C 距F 处至少30m 远 (8分)是O 的一条弦,是O 的切线.是O 的直径.【答案】(1)见解析(2)3AG =【分析】(1)本题考查等腰三角形的性质和判定和切线的性质,连接OB ,利用切线性质和等角的余角相等,再结合题干的条件证明HBE HEB ∠=∠,即可解题.(2)本题考查等腰三角形性质、勾股定理和相似三角形的性质和判定,作HM BE ⊥于点M ,利用等腰三角形性质、勾股定理和题干的条件,求得HM 、BM 、EM 、AE ,再证明AGE HME ∽△△,利用相似比,即可解题. 【详解】(1)解:连接OB ,如图所示:BC 是O 的切线.90OBH ∴∠=︒,90HBE OBA ∴∠+∠=︒,(1分)直线EF AD ⊥于点G ,有90A GEA ∠+∠=︒,(2分)GEA HED ∠=∠,90A HEB ∴∠+∠=︒,(3分)OA OB =,A OBA ∴∠=∠,HBEHEB ∴∠=∠,BH EH ∴=.(4分)(2)解:作HM BE ⊥于点M ,如图所示:90HMB HME ∴∠=∠=︒,(5分)BH EH =,BM EM ∴=,(6分)E 是AB 的中点,8AB =,4AE BE ∴==,2BM EM ∴==,(7分)103BH =,83HM ∴==,(8分)90AGE HME ∠=∠=︒,则AEG HEM ∠=∠,AGE HME ∴∽△△,(9分)AE AG ME HM ∴=,有4823AG=,解得163AG =.(10分):2:1OBCOBQSS=则当ODE【答案】(1)8y x =;(2)存在,点Q 的横坐标为3732+或3732−+,理由见解析;(3)5412−+或10.【分析】(1)过F 作FH x ⊥轴于H ,由矩形的性质得90BCO FHO ∠=∠=︒,根据相似三角形的判定和性质得4OH =2FH =,求得()4,2F ,代入即可;(2)分情况①当Q 在OB 下方时,②当Q 在OB 上方时讨论即可得解;(3)分45DOE ∠=︒和45OED ∠=︒两种情况讨论,构造全等三角形,然后根据交点坐标及直线解析式求出k 的值即可. 【详解】(1)如图,过F 作FH x ⊥轴于H ,∵四边形OABC 是矩形,∴90BCO FHO ∠=∠=︒,∴FH BC ∥, ∴OHF OCB ∽,∴OF OHOB OC =,(1分)∵2OF BF =,点()6,E m ,∴6OC =,∴263OH =,∴4OH =,∵1tan 2FH BOC OH ∠==,∴2FH =,∴()4,2F ,∴428k =⨯=,∴反比例函数解析式为8y x =;(2分)(2)存在,理由:①当Q 在OB 下方时,满足:2:1OBCOBQSS=,则需平行OB 且过OC 中点的直线,找OC 中点P ,过1PQ OB 交反比例函数图象于点1Q ,由(1)得:()4,2F ,∴直线OB 解析式为:12y x =,∵()6,B m ,∴()6,0C ,则点()3,0P ,∴设直线1PQ 为12y x a =+,∴1032a =⨯+,解得:32a =−,∴直线1PQ 为1322y x =−,(3分)联立13228y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点1Q的横坐标为;(4分)②当Q 在OB 上方时,满足:2:1OBCOBQSS=,则需平行OB 且过OA 中点的直线,找OA 中点M ,过2MQ OB∥交反比例函数图象于点2Q ,同(1)理:直线OB 解析式为:12y x =,∵()6,B m ,∴3m =,∴点()0,3A ,∴30,2M ⎛⎫ ⎪⎝⎭,则直线2MQ 为1322y x =+,(5分)联立13228y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)∴点2Q的横坐标为,综上可知:点Q的横坐标为或;(6分)(3)∵()2,1B ,(),1D k ,2,2k E ⎛⎫⎪⎝⎭,①如图,当45DOE ∠=︒时,作EM OE ⊥,交OD 延长线于点M ,作MN BC ⊥,交CB 延长线于N∴OEM △是等腰直角三角形,∴=OE EM ,∵90OEC EOC ∠+∠=︒,90OEC ∠+=︒,∴EOC MEN ∠=∠,又∵90OCE ENM ∠=∠=︒∴()AAS OCE ENM ≌,∴EN OC =,MN EC =,(7分)∴2,222k k M ⎛⎫−+ ⎪⎝⎭,设直线OD 的解析式为y gx =,∴1kg =,解得:1g k =, ∴直线OD 的解析式为xy k =,∴12222k k k ⎛⎫−=+⎪⎝⎭,解得:k =或k =(负值舍去),(8分)②当45OED ∠=︒,作OG OE ⊥,交ED 延长线于点G ,过点G 作GH x ⊥轴于点H ,同理①可证:GHO OCE ≌,∴OH EC =,GH OC =,∴,22k G ⎛⎫− ⎪⎝⎭,(9分)设直线DE 的解析式为y sx t =+,∴62122k s t ks t k s t ⎧−+=⎪⎪+=⎨⎪⎪+=⎩,解得:10124k s t =⎧⎪⎪=⎨⎪=⎪⎩或43734k s t ⎧=−⎪⎪⎪=−⎨⎪=⎪⎪⎩(不合题意,舍去) 综上,符合条件的k的值为52−或10.(10分)【点睛】本题主要考查了反比例函数,熟练掌握反比例函数的图象和性质,一次函数的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定和性质等知识是解题的关键.B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)【答案】2/0.5【分析】先算括号里,再算括号外,然后把2a 3a +的值代入化简后的式子进行计算即可解答.【详解】解:22313()93a a a a−+⋅−+2333(3)(3)a a a a a +−−=⋅+−23(3)(3)a a a a a −=⋅+−1(3)a a=+213a a =+, 2320a a +−=,232a a ∴+=,∴原式12=,故答案为:12.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.【答案】()()()2111a a a a a −+−+− ()()211a a a −++【分析】把图2可有两种计算方法:①三个长方体相加;②大正方体减去小正方体,按要求列出式子,即可解答.【详解】解:将图2看作三个长方体相加时,可得式子:()()()()()()2111111111a a a a a a a a a a a ⨯⨯−+⨯⨯⨯−−−+⨯=+−+−;原式两边提取1a −,可得原式()()211a a a =−++. 故答案为:()()()2111a a a a a −+−+−;()()211a a a −++.【点睛】本题考查了整式的乘法,因式分解,观察图形的体积如何计算是解题的关键.【答案】1【分析】本题考查了几何概率及频率估计概率,根据落在三个区域的豆子数比等于各部分面积比,用各个区域面积比估计概率计算即可.【详解】解:A 区域面积为22π24πcm ´=,B 区域面积为()22π224π=12πcm ´+-,C 区域面积为()()()2222π22π22=8ππcm a a a ´++-´++,又落在这三个区域中的豆子数依次为m ,n ,34n m−, 4π112π3m n \==,即3n m =,238ππ44πn m a a m -+\=,解得:121,9a a ==-(不合题意,舍去),故答案为:1. 为平面内任意一点,将ACD 绕点【答案】533,28⎛⎫−− ⎪⎝⎭或()2,3−【分析】根据题意,分别求出点,A C 的坐标,设(,)M m n ,根据旋转的性质,可用含,m n 的式子表示出对应点,,A C D '''的坐标,分类讨论,①当点,A C ''在抛物线213222y x x =−−上时;②当点,A D ''在抛物线213222y x x =−−上时;③当点,C D ''在抛物线213222y x x =−−上时;列二元一次方程组并求解即可.【详解】解:抛物线213222y x x =−−与x 轴交于,A B 两点,令0y =,∴2132022x x −−=,解得,11x =−,24x =,∴(1,0)A −,(4,0)B , ∵点C 的横坐标为5,∴213552322y =⨯−⨯−=,即(5,3)C ,∵将ACD 绕点M 旋转180︒得到对应的A C D '''△(点,,A C D 的对应点分别为A ',C ',D ¢),且(1,0)A −,(5,3)C ,()3,0D ,∴设(,)M m n ,根据旋转的性质,则点A 与点A '关于点M 中心对称,点C 与点C '关于点M 中心对称,点D 与点D ¢关于点M 中心对称, ∴()21,2A m n '+,()25,23C m n '−−,(23,2)D m n '−,①当点,A C ''在抛物线213222y x x =−−上时,如图所示,()()()()22132121222213252522322m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=−⎪⎩,解方程组得,232m n =⎧⎪⎨=⎪⎩, ∴点32,2M ⎛⎫⎪⎝⎭,则C '的坐标为(1,0)−,与点A 重合,不符合题意;②当点,A D ''在抛物线213222y x x =−−上时,如图所示,()()()()2213212122221323232222m m n m m n ⎧+−+−=⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,54916m n ⎧=⎪⎪⎨⎪=−⎪⎩, ∴点59,416M ⎛⎫− ⎪⎝⎭,则C '的坐标为533,28⎛⎫−− ⎪⎝⎭,符合题意;③当点,C D ''在抛物线213222y x x =−−上时,如图所示,()()()()22132525223221323232222m m n m m n⎧−−−−=−⎪⎪⎨⎪−−−−=⎪⎩,解方程组得,720m n ⎧=⎪⎨⎪=⎩, ∴点7,02M ⎛⎫⎪⎝⎭,则C '的坐标为()2,3−,符合题意;综上所示,点C '的坐标为533,28⎛⎫−− ⎪⎝⎭或()2,3−, 故答案为:533,28⎛⎫−− ⎪⎝⎭或()2,3−.【点睛】本题主要考查二次函数图形与几何图形的综合,掌握二次函数图像的性质,旋转的性质求点坐标,解二元方程组是解题的关键.,将ABE 沿BE【答案】①②④⑤【分析】①正确.由正方形ABCD 的性质可证明SAS BCP DCP ≌(),可得结论;②正确.证明CFB EFB ∠=∠,推出90CBF CFB ∠∠=︒+,推出22180CBF CFB ∠∠=︒+,由2180EFD CFB ∠∠=︒+,可得结论;③错误.可以证明PQ PA CQ <+;④正确.利用相似三角形的性质证明90BPF ∠=︒,可得结论;⑤正确.求出BD ,BH ,根据DH BD BH ≥−,可得结论.【详解】解:∵四边形ABCD 是正方形,∴CB CD =,190452BCP DCP ∠=∠=⨯︒=︒,在BCP 和DCP 中CB CD BCP DCPCP CP =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCP DCP ≌△△,∴PB PD =,故①正确;∵ABE 沿BE 翻折,点A 落在点H 处,直线EH 交CD 于点F ,∴ABE BHE ≌,则BH AB BC ==,90BHF BCF ∠=∠=︒,∵BF BF =,∴()HL BHF BCF ≌,则HBF CBF ∠=∠,∵ABE HBE ∠=∠,∴190452EBF HBE HBF ∠=∠+∠=⨯︒=︒,∵45QCF EBF ∠=∠=︒,PQB FQC ∠=∠,∴PQB FQC ∽,则BQ PQ CQ FQ =,BPQ CFQ ∠=∠,∴BQ CQ PQ FQ =, ∵PQF BQC ∠=∠,∴PQF BQC ∽,则QPF QBC ∠=∠,∵90QBC CFQ ∠+∠=︒,∴90BPF BPQ QPF ∠=∠+∠=︒,∴45PBF PFB ∠=∠=︒,∴PB PF =,则BPF △为等腰直角三角形,故④正确;∵90BPF BPQ QPF ∠=∠+∠=︒,∴90EPF ∠=︒,∵90EDF ∠=︒,∴P ,E ,D ,F 四点共圆,∴PEF PDF ∠=∠,∵PB PD PF ==,∴PDF PFD ∠=∠, ∵180AEB DEP ∠∠=︒+,180DEP DFP ∠∠=︒+,∴AEB DFP ∠=∠,∴AEB BEH ∠=∠,∵BH EF ⊥,∴90BAE BHE ∠=∠=︒,∵BE BE =,∴()AAS BEA BEH ≌,∴AB BH BC ==,∵90BHF BCF ∠∠=︒,BF BF =,∴()Rt Rt HL BFH BFC ≌,∴BFC BFH ∠=∠,∵90CBF BFC ∠∠=︒+,∴22180CBF CFB ∠∠=︒+,∵2180EFD CFH EFD CFB ∠∠=∠∠=︒++,∴2EFD CBF ∠=∠,故②正确,将ABP 绕点B 顺时针旋转90︒得到BCT ,连接QT ,∴ABP CBT ∠=∠,∴90PBT ABC ∠=∠=︒,∴45PBQ TBQ ∠=∠=︒,∵BQ BQ =,BP BT =,∴()SAS BQP BQT ≌,∴PQ QT =,∵QT CQ CT CQ AP <=++,∴PQ AP CQ <+,故③错误,连接BD ,DH ,∵BD ==,4BH AB ==,∴4DH BD BH ≥−=,∴DH 的最小值为4,故⑤正确.故答案为:①②④⑤.【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考填空题中的压轴题.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 24.(满分8分)(1)【阅读理解】倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司采购一批包含A 、B 两款不同型号的垃圾分拣机器人.已知1台A 型机器人和1台B 型机器人同时工作10小时,可处理垃圾5吨;若1台B 型机器人先工作5小时后,再加入1台A 型机器人同时工作,则还需工作8小时才能处理完5吨垃圾.问1台A 型机器人和1台B 型机器若垃圾处理厂采购的这批机器人(A、B两款机器人的总台数不超过80台)每小时共能处理垃圾20吨,请利用(2)中的数据回答:如何采购才能使总费用最省?最少费用是多少万元?【答案】(1)1台A型81台B型13小时的垃圾处理量(2)1台A型机器人和1台B型机器人每小时分别处理垃圾0.3吨和0.2吨(3)当采购A型机器人66台,B型机器人1台时,采购费用最低,为1334万元【分析】(1)根据第二个线段图可以得到解答;(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,由题意得到关于x、y的二元一次方程组并解方程组即可;(3)设采购A型机器人t台,由题意可以用t表示B型机器人的台数,并求得t的取值范围.然后用t表示出采购费用,根据一次函数的增减性即可得解.【详解】解:(1)根据第二个线段图可得:1台A型8小时的垃圾处理量1+台B型13小时的垃圾处理量5=吨;故答案为:1台A型8小时的垃圾处理量,1台B型13小时的垃圾处理量;(2分)(2)设1台A型机器人和1台B型机器人每小时分别处理垃圾x吨和y吨,则:101058135x y x y +=⎧⎨+=⎩,解之可得:0.30.2x y =⎧⎨=⎩,(3分)经检验,0.30.2x y =⎧⎨=⎩是原方程组的解,且符合题意,答:1台A 型机器人和1台B 型机器人每小时分别处理垃圾0.3吨和0.2吨;(4分)(3)设采购A 型机器人t 台,则采购B 型机器人200.3100 1.50.2t t −=−(台),则:()100 1.5800.3200.2100 1.520t t t t ⎧−+≤⎪≤⎨⎪−≤⎩,解之可得:4066t ≤≤(t 为整数),(5分)由题意可知,采购费用为:()2014100 1.51400w t t t =+−=−+,(6分)∵10−<,∴w 随t 的增大而减小,∴当66t =时,采购费用最低,为1400661334−=(万元),(7分)此时100 1.51t −=台,即采购A 型机器人66台,B 型机器人1台,答:当采购A 型机器人66台,B 型机器人1台时,采购费用最低,为1334万元.(8分)【点睛】本题考查一次函数的综合应用,熟练掌握二元一次方程组的应用、一元一次不等式组的应用及一次函数的增减性是解题关键.(1)求抛物线的解析式;(2)若点D 在抛物线上,E 在抛物线的对称轴上,以A B D E ,,,为顶点的四边形是平行四边形,且平行四边形的一条边,求点D 的坐标;(3)抛物线的对称轴交x 轴于点G F ,在对称轴上,且在第二象限,2FG BC =,不平行于y 轴的直线l 分别交线段BF CF ,(不含端点)于M N ,两点,直线l 与抛物线只有一个公共点,求证:MF NF +的值是个定值.【答案】(1)223y x x =−−+(2)D 的坐标为()4,5−−或()2,5−;(3)证明见解析 【分析】(1)先求解A 的坐标,再求解B ,C 的坐标,再利用待定系数法求解解析式即可;(2)设()1,E t −,()2,23D n n n −−+,而AB DE ∥,分两种情况讨论: 当平行四边形为平行四边形ABDE ,当平行四边形为平行四边形ABED ,再结合平行四边形的性质可得答案;(3)先求解()1,8F −,直线FB 为412y x =+,直线FC 为44y x =−+,设直线MN 为y kx e =+,由()2230x k x e +++−=有两个相等的实数根,可得()21234e k =++,求解直线MN 为()21234y kx k =+++,再求解M ,N 的坐标,结合勾股定理进行计算即可.【详解】(1)解:∵抛物线23y ax bx =++,当0x =时,3y =,即3OA =,()0,3A ,∵3OA OB OC ==,∴1OC =,3OB =,∴()3,0B −,()1,0C ,(1分)∴933030a b a b −+=⎧⎨++=⎩,解得:12a b =−⎧⎨=−⎩,∴抛物线为:223y x x =−−+;(2分)(2)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,设()1,E t −,()2,23D n n n −−+,而AB DE ∥,()0,3A ,()3,0B −,(3分)由平行四边形ABDE 的性质可得:2013233n t n n +=−−⎧⎨=−−++⎩,解得:42n t =−⎧⎨=−⎩,∴()4,5D −−,(4分)由平行四边形ABED 的性质可得:231323n t n n −=−⎧⎨+=−−+⎩,解得:28n t =⎧⎨=−⎩,∴()2,5D −;综上:D 的坐标为()4,5−−或()2,5−;(5分)(3)∵抛物线223y x x =−−+,∴对称轴为直线()2121x −=−=−⨯−,∵4BC =,2FG BC =,∴8FG =,即()1,8F −,设直线FB 为y mx n =+,∴308m n m n −+=⎧⎨−+=⎩,解得:412m n =⎧⎨=⎩,∴直线FB 为412y x =+,(6分)同理可得:直线FC 为44y x =−+,设直线MN 为y kx e =+,∴223y kx e y x x =+⎧⎨=−−+⎩,∴结合题意可得:223x x kx e −−+=+即()2230x k x e +++−=有两个相等的实数根, ∴()21234e k =++,∴直线MN 为()21234y kx k =+++,(7分) ∴()24121234y x y kx k =+⎧⎪⎨=+++⎪⎩,解得:844k x y k +⎧=−⎪⎨⎪=−+⎩,即8,44k M k +⎛⎫−−+ ⎪⎝⎭,同理可得:,44k N k ⎛⎫−+ ⎪⎝⎭, ∴()()22228171484416k MF k k +⎛⎫=−++−+−=+ ⎪⎝⎭,()()2222171484416k NF k k ⎛⎫=−+++−=− ⎪⎝⎭,(8分) 当直线MN 从左往右上升时,04k <<,∴)4MF k +,)4NF k =−,∴MF NF +=(9分) 当直线MN 从左往右下降时,40k −<<,)4MF k +,)4NF k =−,∴MF NF +=∴MF NF +为定值.(10分) 【点睛】本题考查的是利用待定系数法求解一次函数与二次函数的解析式,二次函数与一次函数的交点坐标问题,一次函数的交点坐标,勾股定理的应用,平行四边形的性质,本题难度大,计算量大,属于中考压轴题. 26.(满分12分)已知Rt ABC △,90ACB ∠=︒,30ABC ∠=︒,CD AB ⊥于点D ,AD AE =.(1)如图1,若60EAD ∠=︒,取BD 的中点F ,连接EF ,2AD =,求EF 的长度;(2)如图2,连接BE ,点G 在线段BE 上,且GE CD =,连接CG 、AG ,若90AGC GCB ∠+∠=︒,H 为BG 中点,证明:CH BH CD =+;(3)如图3,在(2)的条件下,将AEG △绕点A 逆时针旋转得APQ △,连接BQ ,点R 是BQ 中点,连接CR ,若5AC =,在APQ △旋转过程中,当2CR BR −最大时,直线CR 与直线AB 交于点T ,请直接写出BQT △的面积.【答案】(1)EF =见详解(3)【分析】(1)解2,5,AEF AE AF EAF ==∠V ,60=︒,进而求得结果;(2)连接CE ,作AT CE ⊥于T ,不妨设AD AE =2=,可证得AEG ADC V V ≌,从而AEG A ∠=∠90DC =︒,进而得出点A 、C 、B 、E 共圆,从而30,60AEC ABC CEB CAB ∠=∠=︒∠=∠=︒,从而求得,AT ET 的值,进而得出EH CE ==,从而得出CEH △是等边三角形,进一步得出结论;(3)取AB 的中点O ,连接OR ,在AB 上截取OT 54=,可推出点R 在以O 为圆心,52为半径的圆上运动,可证得ROT BOR V V ∽,从而得出12RT =BR ,进而推出22CR BR CT −≤,从而当C 、T 、R 共线时,2CR BR −最大;作OS CR ⊥于S ,作RV AB ⊥于V ,解Rt CRT 求得4CT =,根据TOS TCD V V ∽求得OS ST ==,解Rt ROS 求得SR =,从而得出RT =,根据RTV CTD V V ∽求得RV =【详解】(1)解:如图1,作EG AB ⊥于G ,90,AGE EGF ∴∠=∠=︒30,90,ABC ACB ∠=︒∠=︒Q 60,BAC ∴∠=︒(1分)90,ADC ∠=︒Q 24,AC AD ∴==28,AB AC ∴==6,BD AB AD ∴=−=∵F 是BD 的中点,13,2DF BD ∴==5,AF AD DF ∴=+=(2分)在Rt AEG 中,2,60AE AD EAD ==∠=︒,2cos 601,2sin 60AG EG ∴=︒==︒=4,FG AF AG ∴=−=EF ∴=(3分)(2)证明:如图2,连接CE ,作AT CE ⊥于T ,不妨设2AD AE ==,90,ACB ∠=︒90,ACG GCB ∴∠+∠=︒90,AGC GCB ∠+∠=︒Q ,AGC ACG ∴∠=∠,AG AC ∴=,,AE AD GE CD ==Q (),AEG ADC SSS ∴≌(4分)90,AEG ADC ∴∠=∠=︒180,AEG ACB ∴∠+∠=︒A C B E ∴、、、四点共圆,30,60,AEC ABC CEB CAB ∴∠=∠=︒∠=∠=︒11,2AT AE ET AE ∴====(5分)CT ==Q CE ET CT ∴=+=2,90,60,AD ADC CAD =∠=︒∠=︒2tan 60EG CD ∴==︒=2,8,AE AD AB ===Q EB ∴=BG BE EG ∴=−=(6分)H 是BG 中点,12BH GH GB ∴===EH EB BH ∴=−= ,EH CE ∴=CEH ∴是等边三角形,;CH EH EG GH CD BH ∴==+=+(7分)(3)解:如图3,取AB 的中点O ,连接OR ,在AB 上截取54OT =, ∵R 是BQ 的中点,115,222OR AQ AC ∴=== ∴点R 在以O 为圆心,52为半径的圆上运动,1,,2OT OR ROT BOR OR OB ==∠=∠Q ∴ROT BOR V V ∽,(8分)1,2RT OT BR OR ∴==1,2RT BR ∴=,CR RT CT ∴−≤ 222,CR RT CT ∴−≤22,CR BR CT ∴−≤∴当C 、T 、R 共线时,2CR BR −最大,(9分)作OS CR ⊥于S ,作RV AB ⊥于V ,在Rt CRT 中,5524CD DT OD OT ==+=+15,4=CT ∴== 由TOS TCD V V ∽得,,OS ST OT CD DT CT ==5154ST =(10分)OS ST ∴===在Rt ROS中,14SR =RT SR ST ∴=−=(11分) 由RTV CTD V V ∽得,,RV RT CD CT=RV ∴=154BQT S BT RV ∴=⋅==V (12分)【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件,解直角三角形,等边三角形的判定和性质等知识,解决问题的关键是较强的计算能力.。
【3套试卷】成都市中考模拟考试数学试题含答案

中考一模数学试卷及答案1.以下代数式中, x 1的一个有理化因式是()【A】x 1【B】x 1【C】x 1【D】x 12. 为了认识学生双休日造作业的时间,老师随机抽查了10 位学生双休日造作业时间,结果以下表所示:作业时间(分90100120150200钟)人数22231那么这 10 位学生双休日造作业时间的中位数与众数分别是()【A】150,150【B】 120,150【C】135,150【D】 150,1203. 已知 P是ABC 内一点,联接PA、PB、PC,把ABC 的面积三均分,则P 点必定是()【A】ABC 的三边中垂线的交点【B】ABC 的三条角均分线的交点【C】ABC 的三条高的叫点【D】ABC 的三条中线的交点4. 以下运算正确的选项是个数是①x2x3x6;② x2 x3x5;③ (3x 2 )39 x6;④(2 x2 )24x4()【A】1 个【B】2 个【C】3 个【D】4 个5.在平面直角坐标系内,点 A 的坐标为( 1,0),点 B 的坐标为( a,0),圆 A 的半径为 2,以下说法中不正确的选项是()【A】当 a=-1 时,点 B 在圆 A 上【B】当 a C a 【D】当 -11时,点 B在圆 A内-1B Aa3时,点 B在圆 A内6.以下命题中,属于假命题的是()【A】对角线相等的梯形是等腰梯形【B】两腰相等的梯形是等腰梯形【C】底角相等的梯形是等腰梯形【D】等腰三角形被平行于底边的直线截成两部分,所截得的四边形的等腰梯形一、填空题(本大题共12 题,每题 4 分,满分48 分)7.科学家发现一种病毒的直径为0.000104米,用科学计数法表示为 _______米8.方程的 2 x 3x 根是_______9.已知对于 x 的一元二次方程x2bx 10 有两个不相等的实数根,则 b 的值为_________10. 将抛物线y x2 2 x向左平移两个单位长度,再向下平移 3 个长度单位,获取的抛物线的表达式为_________11.已知反比率函数的图像经过点p ( 2,1) ,则这个函数的图像分别在第_________ 象限。
2019-2020年成都市初三中考数学一模模拟试卷【含答案】(1)

2019-2020年成都市初三中考数学一模模拟试卷【含答案】(1)一、选择题(本大题共12小题,共48分)1.若分式的值为零,则x的值是()A. 1B.C.D. 22.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.3.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差6.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.7.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.8.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.10.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化11.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)13.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>14.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.16.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.17.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.18.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.三、解答题(本大题共7小题,共78分)19.先化简,再求值:(-)÷(-1),其中a为不等式组的整数解.20.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C 位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上是否存在点E,使|AE-BE|有最大值?如果存在,请求出点E坐标;若不存在,请说明理由.22.为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(2)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?23.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.24.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.25.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.答案和解析1.【答案】A【解析】解:∵分式的值为零,∴|x|-1=0,x+1≠0,解得:x=1.故选:A.直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.此题主要考查了分式的值为零,正确把握相关定义是解题关键.2.【答案】A【解析】解:0.00000156m,这个数据用科学记数法可表示为1.56×10-6m.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:()-1+tan30°•sin60°=2+=2+=故选:C.根据实数的运算,即可解答.本题考查了实数的运算,解决本题的关键是熟记实数的运算.4.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1-)2+(x2-)2+…+(x n-)2]进行计算即可.此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.6.【答案】A【解析】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4-3=1,∴在直角△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.7.【答案】C【解析】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6-,BM=6-,∵△OMN的面积为10,∴6×6-×6×-6×-×(6-)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N (,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.本题考查了反比例函数的系数k的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.8.【答案】C【解析】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°-50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选:C.根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.9.【答案】D【解析】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.10.【答案】C【解析】解:连接CD,∵∠ACB=90°,CA=CB,∴DC=BD=2,∠BDC=90°,∠B=∠DCA=45°,∴∠BDH=∠CDG,在△BDH和△CDG中,,∴△BDH≌△CDG,∴图中阴影部分的面积=-×2×2=2π-4,故选:C.连接CD,证明△BDH≌△CDG,利用扇形面积公式、三角形面积公式计算即可.本题考查的是扇形面积的计算、全等三角形的判定和性质、等腰直角三角形的性质,债务扇形面积公式是解题的关键.11.【答案】C【解析】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=BD=,①当P在OB上时,即0≤x≤,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•BP=×2x×x=x2;②当P在OD上时,即<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2-x):,∴EF=2(2-x),∴y=EF•BP=×2(2-x)×x=-x2+2x,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.所以由此图我们会发现,EF的取值,最大是AC.当在AC的左边时,EF=2BP;所以此抛物线开口向上,当在AC的右边时,抛物线就开口向下了.故选:C.分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.此题的关键是利用三角形的面积公式列出二次函数解析式解决问题.12.【答案】B【解析】解:(1)-=2,∴4a+b=0,所以此选项不正确;(2)由图象可知:当x=-3时,y<0,即9a-3b+c<0,9a+c<3b,所以此选项不正确;(3)∵抛物线开口向下,∴a<0,∵4a+b=0,∴b=-4a,把(-1,0)代入y=ax2+bx+c得:a-b+c=0,a+4a+c=0,c=-5a,∴5a+7b+2c=5a-7×(-4a)+2×(-5a)=-33a>0,∴所以此选项正确;(4)由对称性得:点C(,y3)与(0.5,y3)对称,∵当x<2时,y随x的增大而增大,且-3<-<0.5,∴y1<y2<y3;所以此选项正确;(5)∵a<0,c>0,∵方程a(x+1)(x-5)=c的两根为x1和x2,故x1>-1或x2<5,所以此选项不正确;∴正确的有2个,故选:B.(1)根据抛物线的对称轴为直线x=-=2,则有4a+b=0;(2)观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;(3)由(1)得b=-4a,由图象过点(-1,0)得:c=-5a,代入5a+7b+2c中,根据a的大小可判断结果是正数还是负数,(4)根据当x<2时,y随x的增大而增大,进行判断;(5)由方程a(x+1)(x-5)=c的两根为x1和x2,由图象可知:x>-1或x<5可得结论.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线是轴对称图形,明确抛物线的增减性与对称轴有关,并利用数形结合的思想综合解决问题.13.【答案】m≥0且m≠1【解析】解:根据题意得m-1≠0且△=(-2)2-4(m-1)×(-1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)×(-1)≥0,然后解不等式求出它们的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【答案】10【解析】解:分式方程+=4的解为且x≠1,∵关于x的分式方程=4的解为正数,∴且≠1,∴a<6且a≠2.解不等式①得:y<-2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<-2,∴a≥-2.∴-2≤a<6且a≠2.∵a为整数,∴a=-2、-1、0、1、3、4、5,(-2)+(-1)+0+1+3+4+5=10.故答案为:10.根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<-2,即可得出a≥-2,找出-2≤a<6且a≠2中所有的整数,将其相加即可得出结论.本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<-2,找出-2≤a<6且a≠2是解题的关键.15.【答案】9+9【解析】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.16.【答案】【解析】解:连接OD,作EH⊥BC,如图,∵EF为直径,∴∠A=90°,∵∠B+∠C=90°,∠B+∠BEH=90°,∴∠BEH=∠C,∵直线l与⊙相切于点D,∴OD⊥BC,而EH⊥BC,EF∥BC,∴四边形EHOD为正方形,∴EH=OD=OE=HD=5,∴BH=BD-HD=7,在Rt△BEH中,tan∠BEH==,∴tan∠ACB=.故答案为.连接OD,作EH⊥BC,如图,先利用圆周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接着根据切线的性质得到OD⊥BC,易得四边形EHOD为正方形,则EH=OD=OE=HD=5,所以BH=7,然后根据正切的定义得到tan∠BEH=,从而得到tan∠ACB的值.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了正切的定义.17.【答案】①②③④【解析】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为:①②③④.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.18.【答案】5×()4030【解析】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2015B2015=()2015,∴S第2016个正方形的面积=S正方形C2015C2015B2015A2015=[()2015]2=5×()4030,故答案为5×()4030先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2015B2015=()2015,即可.此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.19.【答案】解:原式=[-]=•=,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.20.【答案】解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A 作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12海里,∠BCE=30°,∴BE=6海里,EC=6≈10.2海里,∴CD=20.4海里,∵20海里<20.4海里<21.5海里,∴轮船不改变航向,轮船可以停靠在码头.【解析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出∠BAC=30°,属于中考常考题型.21.【答案】解:(1)过点A作AD⊥x轴于点D,如图1所示.∵点A的坐标为(n,6),点C的坐标为(-2,0),∴AD=6,CD=n+2.又∵tan∠ACO=2,∴==2,∴n=1,∴点A的坐标为(1,6).∵点A在反比例函数的图象上,∴m=1×6=6,∴反比例函数的解析式为y=.将A(1,6),C(-2,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=2x+4.(2)联立一次函数及反比例函数解析式成方程组,得:,解得:,,∴点B的坐标为(-3,-2).(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,此时|AE-BE|取得最大值,如图2所示.∵点B的坐标为(-3,-2),∴点B′的坐标为(-3,2).设直线AB′的解析式为y=ax+c(a≠0),将A(1,6),B′(-3,2)代入y=ax+c,得:,解得:,∴直线AB′的解析式为y=x+5.当y=0时,x+5=0,解得:x=-5,∴在x轴上存在点E(-5,0),使|AE-BE|取最大值.【解析】(1)过点A作AD⊥x轴于点D,由点A,C的坐标结合tan∠ACO=2可求出n的值,进而可得出点A的坐标,根据点A的坐标利用反比例函数图象上点的坐标特征可求出m的值,进而可得出反比例函数解析式,再根据点A,C的坐标,利用待定系数法可求出一次函数的解析式;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组可求出点B的坐标;(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,利用两边之差小于第三边可得出此时|AE-BE|取得最大值,由点B的坐标可得出点B′的坐标,根据点A,B′的坐标,利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征可求出当|AE-BE|取得最大值时点E的坐标.本题考查了解直角三角形、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的三边关系,解题的关键是:(1)通过解直角三角形求出点A的坐标;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组求出点B的坐标;(3)利用三角形三边关系,确定当|AE-BE|取得最大值时点E的位置.22.【答案】解:(1)由题意得销售量=700-20(x-45)=-20x+1600,P=(x-40)(-20x+1600)=-20x2+2400x-64000=-20(x-60)2+8000,∵x≥45,a=-20<0,∴当x=60时,P最大值=8000元即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(2)由题意,得-20(x-60)2+8000=6000,解得x1=50,x2=70.∵每盒售价不得高于58元,∴x2=70(舍去),∴-20×50+1600=600(盒).答:如果超市想要每天获得6000元的利润,那么超市每天销售月饼600盒.【解析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量与每盒售价x(元)之间的函数关系式,然后根据利润=1盒月饼所获得的利润×销售量列式整理,再进行配方从而可求得答案;(2)先由(1)中所求得的P与x的函数关系式,根据这种月饼的每盒售价不得高于58元,且每天销售月饼的利润等于6000元,求出x的值,再根据(1)中所求得的销售量与每盒售价x(元)之间的函数关系式即可求解.本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒月饼所获得的利润×销售量,求得销售量与x之间的函数关系式是解题的关键.23.【答案】解:(1)∵CG⊥AB,∴∠AGC=∠CGB=90°,∵BG=1,BC=,∴CG==3,∵∠ABF=45°,∴BG=EG=1,∴CE=2,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,∴CF=CE=2,∴EF=CE=2;(2)如图,延长AE交BC于H,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠AHB=∠HAD,∵AE⊥AD,∴∠AHB=∠HAD=90°,∴∠BAH+∠ABH=∠BCG+∠CBG=90°,∴∠GAE=∠GCB,在△BCG与△EAG中,∠∠°∠∠,∴△BCG≌△EAG(AAS),∴AG=CG,∴AB=BG+AG=CE+EG+BG,∵BG=EG=BE,∴CE+BE=AB.【解析】(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.24.【答案】解:(1)由题意可得,解得,∴抛物线解析式为y=-x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(-1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=-x+,联立直线l和抛物线解析式可得,解得或,∴F(-,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,-t2+2t+3),M(t,-t+),∴PM=-t2+2t+3-(-t+)=-t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(-t2+t+)(3+)=-(t-)2+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=-t2+2t+3-3,即-t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=-t2+2t+3,AQ=t,KE=3-t,PQ=-t2+2t+3-3=-t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2-t-1=0,解得t=或t=<-(舍去),综上可知存在满足条件的点P,t的值为1或.【解析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM 的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、二次函数的性质、三角形的面积、直角三角形的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数示的应用,在(2)中用t表示出△PEF的面积是解题的关键,在(3)中分两种情况,分别利用等腰直角三角形和相似三角形的性质得到关于t的方程是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.25.【答案】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到==,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到=,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到结论.本题考查了相似三角形的判定与性质,全等三角形的判定中学数学一模模拟试卷一、选择题(本大题共12小题,共48分)26.若分式的值为零,则x的值是()A. 1B.C.D. 227.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.28.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.29.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.30.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差31.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.32.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.33.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.34.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.35.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化36.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.37.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A (-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)38.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>39.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.40.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.41.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.42.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.。
精选成都市初三中考数学第一次模拟试卷【含答案】

精选成都市初三中考数学第一次模拟试卷【含答案】一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试题二A 卷(共100分)一、选择题(每小题3分,共30分)1.下列一元二次方程中,没有实数根的是( )A .2210x x +-= B .22220x x ++= C .2210x x ++= D .220x x -++=2.如图,将三角尺(ABC 其中60,90)ABC C ∠=∠=o o绕B 点按顺时针方向转动一个角度到11A BC ∆的位置,使得点1,,A B C 在同一条直线上,那么这个角度等于( ) A .120oB .90oC .60oD .30o3.在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为( ) A .430.610⨯辆 B .33.0610⨯辆 C .43.0610⨯辆 D .53.0610⨯辆 4.顺次连接等腰梯形四边中点所得的四边形一定是( ) A .矩形 B .正方形 C .菱形D .直角梯形5.下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+ ②3(0)y x x=-< ③21y x =+ ④23y x =- A .①② B .②③ C .②④ D .①③6.在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A .6B .25C .35D .2137.若点123(2,),(1,),(1,)A y B y C y --在反比例函数1y x=-的图像上,则( )A . 123y y y >>B .321y y y >>C .213y y y >>D .132y y y >>8.如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =,则E ,F 两点到直线MN 距离的和等于( )A .12cmB .6cmC .8cmD .3cm9.反比例函数k y x=的图象如左图所示,则二次函数221y kx k x =--的图象大致为 ( ) y y y y10.如图,在ABC ∆中2,90,18,cos ,3ACB AB B ∠===o把ABC ∆绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ) A .6 5 B .7 5 C .8 5 D .95 二、填空题(每小题4分,共16分)11.2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12.方程2(34)34x x -=-的根是.13.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两OOAOB . OC OyxD_1_ A _1_ A_ C(第2题图)FOK M G EHN (第8题图)10题(第13题图)条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14.在Rt ABC ∆中,90,C D ∠=o为BC 上一点,30,2,DAC BD AB ∠===o 则AC 的长是 . 三.解答题(共6小题,满分54分)15.解答下列各题(每小题6分,共12分) (1)0(2)2cos30|2|-+-o(2)解方程:2430x x +-=.16.(6分)求不等式组的整数解:3(21)4213212x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩,①. ②≤17.(8分)把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。
(1)如果从中抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字。
当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢。
现请你利用数状图或列表法分析游戏规则对双方是否公平?并说明理由。
18.(8分)城市规划期间,欲拆除一电线杆AB (如图所示),已知距电线杆AB 水平距离14米的D 处有一大坝,背水坡CD 的坡度2:1i =,坝高CF 为2米,在坝顶C 处测得杆顶A的仰角为30o.,D E 之间是宽为2米的人行道.试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域). 1.732≈ 1.414≈)19.(10分)如图,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A . (1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式.BA( 第14题图)20.(10分)如图,已知//,ED BC EAB BCF ∠=∠. (1)四边形ABCD 为平行四边形;(2)求证:2OB OE OF =⋅;(3)连接,BD 若,OBC ODC ∠=∠求证,四边形ABCD 为菱形.B 卷(共50分)一、填空题(每小题4分,共20分)21.已知22222()()60a b a b +-+-=, 则=+22b a ______.22.如图:正方形ABCD 中,过点D 作DP 交AC 于点,M 交AB 于点,N 交CB 的延长线于点,P 若1,MN =3,PN =则DM 的长为 .23.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程2220x mx n -+=有实数根的概率为 . 24.如图O e 的直径EF 为10,cm 弦,AB CD 分别为6,8,cm cm 且////AB EF CD .则图中阴影部分面积之和为 .25.如图,PT 是O e 的切线,T 为切点,PA 是割线,交O e 于,A B 两点,与直径CT 交于点D .已知2,3,4,CD AD BD ===则PB =_______.26.(8分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?27.(10分)已知,如图,AB 是O e 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交E DCBFAO24题图第19题图PN MDCBA22题图 25题图于点,,P BE DC ⊥垂足为,//,E DF EB 交AB 于点,,F FH BD ⊥垂足为,4,3H BC CP ==. 求(1)BD 和DH 的长;(2)BE BF ⋅的值.28.(12分) 如图所示,在平面直角坐标系中,以点(2,3)M 为圆心,5为半径的圆交x 轴于,A B 两点,过点M 作x 轴的垂线,垂足为D ;过点B 作M e 的切线,与直线MD 交于N 点。
(1)求点,B N 的坐标以及直线BN 的解析式;(2)求过,,A N B 三点(对称轴与y 轴平行)的抛物线的解析式;(3)设(2)中的抛物线与y 轴交于点,P 以点,,D B P 三点为顶点作平行四边形,请你求出第四个顶点Q 的坐标,并判断Q 是否在(2)中的抛物线上PCEBOHFDAADO BMN xy2010级中考数学模拟试题答案一.选择题1.C2.A3.D4.C5.C6.B7.C8.B9.C 10.B 二、填空题:(每小题4分,共16分) 11、75 12、34,3521==x x13、16 14、3 三、15、(1)3-3 (2)-1,4317、(1)31(2)P (小李)=32,P (小王)=31, 3231≠不公平 18、AB ≈10.66m,BE=12m,BE>AB,无危险,不需封人行道。
五、19、(1)设A (m,3m ) (2)设一次函数:y=kx+b ∴B (0,b )(b>0) ∵A 在y=x 12上 ∵OB=AB ∴b=310,B(0,310) ∴3mm=12,m=±2 y=31034+x ∵A 在第一象限 ∴m=2,A(2,6)20、 (1) ∵DE ∥BC ∴∠D=∠BCF ∵∠EAB=∠BCF ∴∠EAB=∠D ∴AB ∥CD ∵DE ∥BCEDC BA∴四边形ABCD 为平行四边形 (2)∵DE ∥BC ∴OAOCOE OB =∵AB ∥CD∴OBOF OA OC = ∴OBOFOA OB =∴OF OE OB •=2(3)连结BD,交AC 于点H,连结OD ∵DE ∥BCE OBC ∠=∠∴ ODC OBC ∠=∠ΘDOEDOF EODC ∠=∠∠=∠∴ΘODF ∆∴∽OED ∆ODOB OE OF OB OF OE OD ODOFOE OD =∴•=•=∴=∴22Θ DH BH ABCD =中平行四边形ΘB D OH ⊥∴∴四边形ABCD 为菱形B 卷(共50分)一、填空题:(每小题4分,共20分) 21. 3 22. 2 23.4324.π225 25、20 二、(共8分)EDC BFAOH26.(1)解:设今年三月份甲种电脑每台售价x 元100000800001000x x =+ 解得:4000x =经检验:4000x =是原方程的根,所以甲种电脑今年每台售价4000元. (2)设购进甲种电脑x 台,4800035003000(15)50000x x +-≤≤ 解得610x ≤≤因为x 的正整数解为6,7,8,9,10,所以共有5种进货方案 (3)设总获利为W 元,(40003500)(38003000)(15)(300)1200015W x a x a x a =-+---=-+-当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利(利润相同,成本最低).三、(共10分)27. 已知,如图,AB 是⊙O 的直径,AD 是弦,C 是弧AB 的中点,连结BC 并延长与AD 的延长线相交与点P ,BE ⊥DC ,垂足为E ,DF ∥EB ,交AB 与点F ,FH ⊥BD ,垂足为H ,BC=4,CP=3. 求(1)BD 和DH 的长,(2)BE ·BF 的值(1) 107,528==DH BD (2) BE ·BF 598=PCEBOH FDA四、(共12分)28.1、B (-2,0);N (2,)316- 直线BN :3834--=x y 2、434312--=x x y 3、)4,0();4,4();4,4(321Q Q Q --- 2Q 在抛物线上。