2020年成都中考数学模拟试题六

合集下载

备战2020中考【6套模拟】成都市第八中学中考模拟考试数学试卷含答案

备战2020中考【6套模拟】成都市第八中学中考模拟考试数学试卷含答案

备战2020中考【6套模拟】成都市第八中学中考模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识10()请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】。

2020年四川省成都市中考数学模拟试卷(6月份) 解析版

2020年四川省成都市中考数学模拟试卷(6月份)  解析版

2020年四川省成都市中考数学模拟试卷(6月份)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣2.(3分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.3.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×105 4.(3分)下列计算正确的是()A.2x﹣x=1B.x2•x3=x6C.(﹣xy3)2=x2y6D.(m﹣n)2=m2﹣n25.(3分)在函数y=+中,自变量x的取值范围是()A.x<4B.x≥4且x≠﹣3C.x>4D.x≤4且x≠﹣3 6.(3分)在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 7.(3分)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣128.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.39.(3分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°10.(3分)对于二次函数y=2(x﹣2)2+1,下列说法中正确的是()A.图象的开口向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)若代数式1﹣8x与9x﹣4的值互为相反数,则x=.12.(4分)当直线y=(2﹣2k)x+k﹣4经过第二、三、四象限时,则k的取值范围是.13.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE 折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=4,CE=5,则矩形的对角线AC的长为.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(12分)(1)计算:(﹣)﹣1﹣3tan30°+3+(π﹣3.14)0﹣|﹣2|.(2)解不等式组.16.(6分)先化简,再求值:,其中a2+a﹣1=0.17.(8分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)18.(8分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.19.(10分)如图,已知反比例函数y1=的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例函数和一次函数的表达式;(2)求△OAB的面积;(3)直接写出y2>y1时自变量x的取值范围.20.(10分)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O 于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知x﹣2y+2=0,则x2+y2﹣xy﹣1的值为.22.(4分)设x1,x2是方程x2﹣x﹣2020=0的两实数根,则x13+2021x2﹣2020=.23.(4分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用圆内接或外切正多边形逐步逼近圆来近似计算圆的面积.下图是其中的一个图形,六边形ABCDEF是⊙O的外切正六边形,现随机向该图形掷一枚小针,则针尖落在⊙O内的概率是.(结果不取近似值).24.(4分)如图,已知直线y=﹣2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB翻折后,设点O的对应点为点C,双曲线y=(x>0)经过点C,则k的值为.25.(4分)在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,点P是对角线BD上一个动点,则P A+PE的最小值是.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(8分)奏响复工复产“协奏曲”,防疫复产两不误.2020年2月5日,四川省出台《关于应对新型冠状病毒肺炎疫情缓解中小企业生产经营困难的政策措施》,推出减负降成本、破解融资难、财政补贴和税收减免、稳岗支持等13条举措,携手中小企业共渡难关.某企业积极复工复产,生产某种产品成本为9元/件,经过市场调查获悉,日销售量y(件)与销售价格x(元/件)的函数关系如图所示:(1)求出y与x之间的函数表达式;(2)当销售价格为多少元时,该企业日销售额为6000元?(3)若该企业每销售1件产品可以获得2元财政补贴,则当销售价格x为何值时,该企业可以获最大日利润,最大日利润值为多少?27.(10分)如图1,在矩形ABCD中,AB=1,对角线AC,BD相交于点O,∠COD=60°,点E是线段CD上一点,连接OE,将线段OE绕点O逆时针旋转60°得到线段OF,连接DF.(1)求证:DF=CE;(2)连接EF交OD于点P,求DP的最大值;(3)如图2,点E在射线CD上运动,连接AF,在点E的运动过程中,若AF=AB,求OF的长.28.(12分)图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ 的解析式及Q点坐标;若不存在,请说明理由.2020年四川省成都市中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.3.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:22000=2.2×104.故选:A.4.(3分)下列计算正确的是()A.2x﹣x=1B.x2•x3=x6C.(﹣xy3)2=x2y6D.(m﹣n)2=m2﹣n2【分析】根据幂的乘方和积的乘方,同底数幂的乘法的运算方法,合并同类项的方法和完全平方公式,逐项判定即可.【解答】解:∵2x﹣x=x,∴选项A不符合题意;∵x2•x3=x5,∴选项B不符合题意;∵(﹣xy3)2=x2y6,∴选项C符合题意;∵(m﹣n)2=m2﹣2mn+n2,∴选项D不符合题意.故选:C.5.(3分)在函数y=+中,自变量x的取值范围是()A.x<4B.x≥4且x≠﹣3C.x>4D.x≤4且x≠﹣3【分析】根据分式有意义的条件、二次根式有意义的条件列出不等式,计算即可.【解答】解:由题意得,x+3≠0,4﹣x≥0,解得,x≤4且x≠﹣3,故选:D.6.(3分)在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用出现次数最多的数是众数找到众数即可.【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.7.(3分)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣12【分析】直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【解答】解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.8.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.9.(3分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.10.(3分)对于二次函数y=2(x﹣2)2+1,下列说法中正确的是()A.图象的开口向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【解答】解:二次函数y=2(x﹣2)2+1,a=2>0,∴该函数的图象开口向上,故选项A错误,函数的最小值是y=1,故选项B错误,图象的对称轴是直线x=2,故选项C错误,当x<2时y随x的增大而减小,故选项D正确,故选:D.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)若代数式1﹣8x与9x﹣4的值互为相反数,则x=3.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:1﹣8x+9x﹣4=0,移项合并得:x=3.故答案为:3.12.(4分)当直线y=(2﹣2k)x+k﹣4经过第二、三、四象限时,则k的取值范围是1<k<4.【分析】由直线经过的象限,利用一次函数图象与系数的关系即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵直线y=(2﹣2k)x+k﹣4经过第二、三、四象限,∴,∴1<k<4.故答案为:1<k<4.13.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE 折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=4,CE=5,则矩形的对角线AC的长为3.【分析】利用基本作图可判断MN垂直平分AC,则AE=CE=5,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:由作法得MN垂直平分AC,∴AE=CE=5,在Rt△ADE中,AD==3,在Rt△ADC中,AC==3.故答案为3.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(12分)(1)计算:(﹣)﹣1﹣3tan30°+3+(π﹣3.14)0﹣|﹣2|.(2)解不等式组.【分析】(1)直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案;(2)直接分别解不等式,进而得出不等式组的解集.【解答】解:(1)原式=﹣2﹣3×+3×+1﹣(2﹣)=﹣2﹣++1﹣2+=﹣3+;(2),解①得:x≥﹣1;解②得:x<3;故不等式组的解集为:﹣1≤x<3.16.(6分)先化简,再求值:,其中a2+a﹣1=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由等式得出a2=1﹣a,代入计算可得.【解答】解:原式=[﹣]÷=•=,当a2+a﹣1=0时,a2=1﹣a,则原式==﹣1.17.(8分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.18.(8分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有200人;在扇形统计图中,B所对应的扇形的圆心角的度数是144°;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为:200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率=.19.(10分)如图,已知反比例函数y1=的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例函数和一次函数的表达式;(2)求△OAB的面积;(3)直接写出y2>y1时自变量x的取值范围.【分析】(1)把点A坐标代入反比例函数求出m的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出n的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)先求出直线与x轴的交点坐标,从而x轴把△AOB分成两个三角形,结合点A、B 的纵坐标分别求出两个三角形的面积,相加即可;(3)根据函数的图象求得即可.【解答】解:(1)点A(1,4)在反比例函数y1=的图象上,∴k=1×4=4,∴反比例函数的表达式为y1=,∵点B(﹣4,n)也在反比例函数y1=的图象上,∴n==﹣1,即B(﹣4,﹣1),把点A(1,4),点B(﹣4,﹣1)代入一次函数y2=kx+b中,,解得,∴一次函数的表达式为y2=x+3;故反比例函数解析式为y1=,一次函数得到解析式为y2=x+3;(2)设直线与x轴的交点为C,在y2=x+3中,当y=0时,得x=﹣3,∴直线y2=x+3与x轴的交点为C(﹣3,0),∵线段OC将△AOB分成△AOC和△BOC,∴S△AOB=S△AOC+S△BOC=×3×4+×3×1=7.5;(3)从图象看,当﹣4<x<0或x>1时,y2>y1.20.(10分)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O 于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.【分析】(1)由∠OEB=∠ACD,∠ACD=∠ABD知∠OEB=∠ABD,由OF⊥BD知∠BFE=90°,即∠OEB+∠EBF=90°,从而得∠ABD+∠EBF=90°,据此即可得证;(2)连接AD,证△DCG∽△ACD即可得;(3)先证△CDF∽△GCF得=,再证△DCG∽△ABG得=,据此知=,由r=,BG=知AB=2r=5,根据tan∠CAB=tan∠ACO==可得答案.【解答】解:(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴=,∴=,∵r=,BG=,∴AB=2r=5,∴tan∠CAB=tan∠ACO===.一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知x﹣2y+2=0,则x2+y2﹣xy﹣1的值为0.【分析】由已知条件得到x﹣2y=﹣2.所求的代数式可以转化为含有(x﹣2y)形式的代数式,将其整体代入进行求值即可.【解答】解:∵x﹣2y+2=0,∴x﹣2y=﹣2,∴x2+y2﹣xy﹣1,=(x2﹣4xy+4y2)﹣1,=(x﹣2y)2﹣1,=×(﹣2)2﹣1,=1﹣1,=0,即x2+y2﹣xy﹣1=0.故答案是:0.22.(4分)设x1,x2是方程x2﹣x﹣2020=0的两实数根,则x13+2021x2﹣2020=2021.【分析】先根据一元二次方程根的定义得到x12=x1+2020,再用x1表示出x13,则x13+2021x2﹣2020=2021(x1+x2),然后根据根与系数的关系计算.【解答】解:∵x1是方程x2﹣x﹣2020=0的实数根,∴x12﹣x1﹣2020=0,∴x12=x1+2020,∴x13=x1(x1+2020)=x1+2020+2020x1=2021x1+2020,∴x13+2021x2﹣2020=2021x1+2020+2021x2﹣2020=2021(x1+x2),∵x1,x2是方程x2﹣x﹣2020=0的两实数根,∴x1+x2=1,∴x13+2021x2﹣2020=2021×1=2021.故答案为:2021.23.(4分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用圆内接或外切正多边形逐步逼近圆来近似计算圆的面积.下图是其中的一个图形,六边形ABCDEF是⊙O的外切正六边形,现随机向该图形掷一枚小针,则针尖落在⊙O内的概率是.(结果不取近似值).【分析】用⊙O的面积除以正六边形的面积即可.【解答】解:设⊙O的半径为r,则正六边形的边长为,∴正六边形的面积为:6××r=2r2,∴随机向该图形掷一枚小针,则针尖落在⊙O内的概率是=,故答案为:.24.(4分)如图,已知直线y=﹣2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB翻折后,设点O的对应点为点C,双曲线y=(x>0)经过点C,则k的值为8.【分析】作CD⊥y轴于D,CE⊥x轴于E,如图,设C(a,b),先利用一次函数解析式求出B(0,5),A(,0),再根据折叠的性质得BC=BO=5,AC=AO=,接着根据勾股定理得到a2+(5﹣b)2=52,(a﹣)2+b2=()2,从而解关于a、b的方程组得到C(4,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:作CD⊥y轴于D,CE⊥x轴于E,如图,设C(a,b),当x=0时,y=﹣2x+5=5,则B(0,5),当y=0时,﹣2x+5=0,解得x=,则A(,0),∵△AOB沿直线AB翻折后,设点O的对应点为点C,∴BC=BO=5,AC=AO=,在Rt△BCD中,a2+(5﹣b)2=52,①在Rt△ACE中,(a﹣)2+b2=()2,②①﹣②得a=2b,把a=2b代入①得b2﹣2b=0,解得b=2,∴a=4,∴C(4,2),∴k=4×2=8.故答案为8.25.(4分)在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,点P是对角线BD上一个动点,则P A+PE的最小值是2.【分析】连接DE,根据菱形的性质得到∠DAB=60°,AE=BE=2,推出△ABD是等边三角形,得到AD=BD,推出DE⊥CD,连接EC,与BD交于点P,连接AC,此时P A+PE =CP+EP=CE值最小,根据勾股定理即可得到结论.【解答】解:连接DE,∵在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,∴∠DAB=60°,AE=BE=2,∴△ABD是等边三角形,∴AD=BD,∴DE⊥AB,∵AB∥CD,∴DE⊥CD,连接EC,与BD交于点P,连接AC,此时P A+PE=CP+EP=CE值最小,∵DE=AD=2,∴CE===2,∴P A+PE的最小值是2,故答案为:2.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(8分)奏响复工复产“协奏曲”,防疫复产两不误.2020年2月5日,四川省出台《关于应对新型冠状病毒肺炎疫情缓解中小企业生产经营困难的政策措施》,推出减负降成本、破解融资难、财政补贴和税收减免、稳岗支持等13条举措,携手中小企业共渡难关.某企业积极复工复产,生产某种产品成本为9元/件,经过市场调查获悉,日销售量y(件)与销售价格x(元/件)的函数关系如图所示:(1)求出y与x之间的函数表达式;(2)当销售价格为多少元时,该企业日销售额为6000元?(3)若该企业每销售1件产品可以获得2元财政补贴,则当销售价格x为何值时,该企业可以获最大日利润,最大日利润值为多少?【分析】(1)设y=kx+b,将点(10,600),(25,0)代入解析式,通过解方程组得到k 与b的值;(2)由题意可知,x(﹣40x+1000)=6000,解出x即可;(3)设该企业每天获得利润为W元,则W=(﹣40x+1000)(x﹣9+2)=﹣40(x﹣16)2+3240,由此可知当x=16时,W的值最大.【解答】解:(1)设y=kx+b,∴,解得,∴y=﹣40x+1000;(2)由题意可知,x(﹣40x+1000)=6000,解得x=10或x=15,∴当销售价格为10元或15元时,该企业日销售额为6000元;(3)设该企业每天获得利润为W元,则W=(﹣40x+1000)(x﹣9+2)=﹣40(x﹣16)2+3240,∴当销售价格为16元/件时,每天的销售利润最大,最大利润为3240元.27.(10分)如图1,在矩形ABCD中,AB=1,对角线AC,BD相交于点O,∠COD=60°,点E是线段CD上一点,连接OE,将线段OE绕点O逆时针旋转60°得到线段OF,连接DF.(1)求证:DF=CE;(2)连接EF交OD于点P,求DP的最大值;(3)如图2,点E在射线CD上运动,连接AF,在点E的运动过程中,若AF=AB,求OF的长.【分析】(1)证明△FOD≌△EOC(SAS),则可得出结论;(2)证明△FDP∽△ODE,可得出,设DF=CE=x,则DE=1﹣x,则,得出DP=﹣x2+x=,由二次函数的性质可得出答案;(3)①如图1,过点F作FM⊥AD于点M,证明△AOF是等边三角形,得出OF=1.②过点A作AN⊥DF于点N,则∠FDA=30°,证明△OAF≌△AOD(SAS),得出OF =AD=.【解答】(1)证明:由题意知∠FOE=∠DOC=60°,∴∠FOE﹣∠DOC﹣∠DOE,即∠FOD=∠EOC,在矩形ABCD中,AC=BD=2OC=2OD,∴OC=OD,又∵OF=OE,∴△FOD≌△EOC(SAS),∴DF=CE;(2)解:在△ODC中,OD=OC,∠COD=60°,∴△OCD是等边三角形,∠OCD=60°,又△FOD≌△EOC,∴∠FDO=∠ECO=60°,在△OEF中,OE=OF,∠EOF=60°,∴△OEF是等边三角形,∠OEF=60°,∴180°﹣∠FDP﹣∠FPD=180°﹣∠OEP﹣∠OPE,即∠DEP=∠DOE,又∠FDP=∠ODE=60°,∴△FDP∽△ODE,∴,设DF=CE=x,则DE=1﹣x,∴,∴DP=﹣x2+x=,∴DP的最大值为.(3)解:①在矩形ABCD中,AB=1,∠COD=60°,∴AD=,∠OAD=∠ODA=30°,∴∠FDA=∠FDO﹣∠ODA=30°,如图1,过点F作FM⊥AD于点M,设FM=m,则MD=m,AM=m,又∵AF=AB=1,∴在Rt△AFM中,AM2+FM2=AF2,∴=1,∴m1=,m2=1(舍去),∴sin∠F AM=,∴∠F AM=30°,∴∠F AO=60°,且AF=AB=AO,∴△AOF是等边三角形,∴OF=1.②如图2,过点A作AN⊥DF于点N,则∠FDA=30°,∴∠DAN=60°,AN=,∴cos∠F AN=,∴∠F AN=30°,∴∠F AO=120°,又∠AOD=120°,∴∠F AO=∠AOD,又AF=AO=OD,∴△OAF≌△AOD(SAS),∴OF=AD=.综合以上可得,OF=1或.28.(12分)图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ 的解析式及Q点坐标;若不存在,请说明理由.【分析】(1)求出点B、C的坐标,利用待定系数法即可求解;(2)S=S△PHB+S△PHC=PH•(x B﹣x C),即可求解;(3)分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而求解.【解答】解:(1)对于直线y=x﹣2,令x=0,则y=﹣2,令y=0,即x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=,故抛物线的表达式为y=x2﹣x﹣2①;(2)如图2,过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣2),则点H(x,x﹣2),S=S△PHB+S△PHC=PH•(x B﹣x C)=×4×(x﹣2﹣x2+x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC===tan∠ROC=,则设RC=x=QB,则BC=2x,则RB==x=BQ,在△QRB中,S△RQB=×QR•BC=BR•QK,即2x•2x=KQ•x,解得:KQ =,∴sin∠RBQ===,则tan RBH=,在Rt△OBH中,OH=OB•tan∠RBH=4×=,则点H(0,﹣),由点B、H的坐标得,直线BH的表达式为y=(x﹣4)②,联立①②并解得:x=4(舍去)或,当x=时,y=﹣,故点Q(,﹣);②当点Q在BC上方时,同理可得:点Q的坐标为(﹣,);综上,点Q的坐标为(,﹣)或(﹣,).。

2020年四川省成都市中考数学模拟试卷含解析(6)

2020年四川省成都市中考数学模拟试卷含解析(6)

2020年四川省成都市中考数学模拟试卷(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .﹣6C .﹣6或6D .无法确定2.(3分)生物学家发现了一种病毒,其长度约为0.0000000052mm ,数据0.0000000052用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×10﹣9D .5.2×10﹣83.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算正确的是( )A .a 2+a 2=a 4B .(a 3)2=a 9C .a 2•a 3=a 5D .2a 3÷a 2=a5.(3分)如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是()A .34B .43C .45D .356.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.7.(3分)若不等式组{12x<1x>a有2个整数解,则a的取值范围为()A.﹣1<a<0B.﹣1≤a<0C.﹣1<a≤0D.﹣1≤a≤0 8.(3分)如图,D、E分别是AC、BD的中点,△ABC的面积为12cm2,则△BCE的面积是()A.6cm2B.3cm2C.4cm2D.5cm29.(3分)如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A.3.4m B.3.5m C.3.6m D.3.7m10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①4a+2b+c >0;②abc>0;③b<a+c;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()个.A.2B.3C.4D.5二.填空题(共4小题,满分16分,每小题4分)11.(4分)因式分解:x 3﹣2x 2y +xy 2= .12.(4分)已知方程组{x +2y =k 2x +y =4的解满足x +y =2,则k 的值为 . 13.(4分)如图,在平面直角坐标系中,已知C (1,√2),△ABC 与△DEF 位似,原点O是位似中心,要使△DEF 的面积是△ABC 面积的5倍,则点F 的坐标为 .14.(4分)二次函数y =x 2+bx +c 经过(5,3)和(﹣2,3),则当x = 时,函数取到最小值.三.解答题(共6小题,满分54分)15.(12分)(1)计算:|1−√2|﹣sin45°+2(−√2)﹣1﹣(π﹣3)0 (2)解不等式组:{5x −1<3(x +1)2x−13−1≤5x+1216.(6分)先化简,再求值:(x 2x−1+91−x )÷x+3x−1,其中x =2. 17.(8分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.18.(8分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;19.(10分)如图,一次函数y=−√33x+2的图象与x轴、y轴分别交于点A、B,以线段AB 为边在第一象限作等边△ABC.(1)若点C在反比例函数y=kx的图象上,求该反比例函数的解析式;(2)点P(4√3,m)在第一象限,过点P作x轴的垂线,垂足为D,当△P AD与△OAB 相似且P点在(1)中反比例函数图象上时,求出P点坐标.20.(10分)如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G 是CD与EF的交点.(1)求证:△BCF≌△DCE;(2)求证:BF=DE,BF⊥DE;(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.四.填空题(共5小题,满分20分,每小题4分)21.(4分)若m x−4−1−x 4−x =0无解,则m 的值是 .22.(4分)若函数y =x 2﹣2x +b 的图象与坐标轴有三个交点,则b 的取值范围是 .23.(4分)如图,点O 是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧AB 和弧BC 都经过圆心O ,已知⊙O 的半径为6,则阴影部分的面积是 .24.(4分)如图,矩形ABCD 中,AB BC =2,点D (﹣1,0),点A 、B 在反比例函数y =k x 的图象上,CD 与y 轴的正半轴交于点E ,若E 为CD 的中点,则k 的值为 .25.(4分)如图,在Rt △ABC 中,∠ACB =90°,D 是AC 边上一点,∠CBD =∠A ,E ,F 分别是AB ,BD 的中点.若AB =5,AC =4,则CF :CE = .。

2020年中考数学全真模拟试卷(四川成都专用)(六)(原卷版)

2020年中考数学全真模拟试卷(四川成都专用)(六)(原卷版)

2020年中考数学全真模拟卷(某某某某专用) (六)数学注意事项:1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的某某.某某号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回.3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整.笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸.试卷上答题无效. 5.保持答题卡清洁,不得折叠.污染.破损等.A卷(共100分)一.选择题(共10小题,每小题3分,满分30分)1.下面四个数中比﹣4小的是( )A.3B.2C.﹣3D.﹣52.下列几何体中,从正面看(主视图)是长方形的是( )A.B.C.D.3.我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27500亿米3 ,27500亿这个数保留两个有效数字为( )A.2.75×1012B.2.8×1010C.2.8×1012D.2.7×10104.下列运算正确的是( )A.x2+x2=x4B.a2•a3=a5C.(3x )2 =6x2D.(mn )5÷ (mn )=mn45.下列四个图案中,是轴对称图形的是( )A.B.C.D.6.使函数y=√x+1有意义的自变量x的取值X围为( )xA.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠07.如图,AB∥CD ,那么( )A.∥BAD与∥B互补B.∥1=∥2C.∥BAD与∥D互补D.∥BCD与∥D互补8.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是( )A.9.7m ,9.8m B.9.7m ,9.7m C.9.8m ,9.9m D.9.8m ,9.8m9.把二次函数y=x2﹣2x+4化为y=a (x﹣h )2+k的形式,下列变形正确的是( )A.y=(x+1 )2+3B.y=(x﹣2 )2+3C.y=(x﹣1 )2+5D.y=(x﹣1 )2+310.如图,四边形OABC为菱形,点A ,B在以O为圆心的弧上,若OA=2 ,∥1=∥2 ,则扇形ODE的面积为( )A.43πB.53πC.2πD.3π二.填空题(共4小题,每小题4分,满分16分)11.若|x﹣2|=3 ,则x=.12.如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直达A .B两点的点O处,再分别取OA .OB 的中点M .N ,量得MN=20m ,则池塘的宽度AB为m.13.若点A (2 ,y1 ) ,B (﹣1 ,y2 )都在直线y=﹣2x+1上,则y1与y2的大小关系是.14.如图,P A .PB是∥O的切线,A .B是切点,点C是劣弧AB上的一个动点(点C不与点A .点B重合) ,若∥P=30° ,则∥ACB的度数是°.三.解答题(共6小题,满分54分) 15.(12分)计算题:(1 )﹣24+√16−|﹣3|﹣(﹣π )0+2cos60° ;(2 )解不等式组:{2x−3>x+112(x+1)>x−2.16.(6分)如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C .楼顶D 处,测得塔顶A的仰角为45°和30° ,已知楼高CD为10m ,求塔的高度.(sin30°=0.50 ,cos30°≈0.87 ,tan30°≈0.58 )17.(8分)先化简,再求值: (m+2+52−m )÷3−m2m−4,其中m=﹣1.18.(8分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为23.(1 )布袋里红球有多少个?(2 )小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由.19.(10分)如图,已知一个正比例函数与一个反比例函数的图象在第一象限的交点为A (2 ,4 ).(1 )求正比例函数与反比例函数的解析式;(2 )平移直线OA ,平移后的直线与x轴交于点B ,与反比例函数的图象在第一象限的交点为C (4 ,n ).求B .C两点的距离.,0 ) . (m ,2m+b ) ,正方20.(10分)如图,在平面直角坐标系中,常数b<0 ,m>0 ,点A .B的坐标分别为(−b2形BCDE的顶点C .D分别在x轴的正半轴上.(1 )直接写出点D和点E的坐标(用含b .m的代数式表示) ;(2 )求BC的值;AC(3 )正方形BC′D′E′和正方形BCDE关于直线AB对称,点C′ .D′ .E′分别是点C .D .E的对称点,C′D′交y 轴于点M ,D′N∥x轴,垂足为N ,连接MN.∥若点N和点A关于y轴对称,求证:MN=MD′ ;∥若1AD−AO −1AD+AO=14AO,求BCOC的值.B卷(共50分)一.填空题(共5小题,每小题4分,满分20分)21.某学校计划开设A .B .C .D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.22.若关于x的方程3−2xx−3−mx−23−x=−1无解,则m的值是.23.如图都是由同样大小的黑棋子按一定规律摆出的图案,第∥个图案有4个黑棋子,第∥个图案有9个黑棋子,第∥个图案有14个黑棋子,… ,依此规律,第n个图案有1499个黑棋子,则n=.24.如图,在边长为4的菱形ABCD中,∥A=60° ,M是AD边的中点,点N是AB边上一动点,将∥AMN沿MN所在的直线翻折得到∥A′MN ,连接A′C ,则线段A′C长度的最小值是.25.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x 的取值X围是.二.解答题(共3小题,满分30分)26.(8分)在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x (m ) ,养鸡场的面积为y (m2 )(1 )求y与x之间的函数关系式,并写出自变量x的取值X围;(2 )养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;(3 )根据(1 )中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?27.(10分)如图,在平面直角坐标系中,∥M过原点O ,与x轴交于A (4 ,0 ) ,与y轴交于B (0 ,3 ) ,点C为劣弧AO的中点,连接AC并延长到D ,使DC=4CA ,连接BD.(1 )求∥M的半径;(2 )证明:BD为∥M的切线;(3 )在直线MC上找一点P ,使|DP﹣AP|最大.28.(12分)已知抛物线y=ax2+bx+3经过A (﹣3 ,0 ) ,B (﹣1 ,0 )两点(如图1 ) ,顶点为M.(1 )a .b的值;(2 )设抛物线与y轴的交点为Q (如图1 ) ,直线y=﹣2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M .Q间所夹的曲̂扫过的区域的面积;线MQ(3 )设直线y=﹣2x+9与y轴交于点C ,与直线OM交于点D (如图2 ).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD (含端点C )没有公共点时,试探求其顶点的横坐标的取值X围.。

2020届成都市中考数学模拟试题有答案(word版)(已纠错)

2020届成都市中考数学模拟试题有答案(word版)(已纠错)

2 4. 计算 x 3y 2的结果是( )56(A) x 5y (B) x 6y (C) 5. 如图, l ∥l ,∠1=56°, 则∠2 的度32xy(A) 34 ° (B) 56 (C) 124 ° (D)成都市高中阶段教育学校统一招生考试 (含成都市初三毕业会考) 数学 注意事项:1. 全卷分 A 卷和 B 卷, A 卷满分 100 分, B 卷满分 50 分;考试时间 120 分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人 员将试卷和答题卡一并收回。

3.选择题部分必须使用 2B 铅笔填涂; 非选择题部分必须使用 0.5 毫米黑色墨水签字笔书写, 字体工整、 笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、 试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共 100 分) 第Ⅰ卷(选择题,共30 分) 一、选择题(本大题共 10个小题,每小题 3 分,共 30 分,每小题均有四个选项,其中只有一项符合题目 要求,答案涂在答题卡上) 1. 在-3,-1,1,3 四个数中,比 -2 小的数是( ) (A ) -3 (B ) -1 (C ) 1 (D ) 32.如图所示的几何体是由 5 个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年 4 月 29 日成都地铁安全运输乘客约 181 万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示 181 万为( )(A) 18.1 ×105(B) 1.81×106 (C) 1.81 ×107(D) 181 × 1042)已知关于 x 的方程 3x 22x m 0 没有实数根,求实数 m 的取值范围 /6. 平面直角坐标系中,点 P (-2 , 3)关于 x 轴对称的点的坐标为( )(A ) (-2,-3) (B ) (2,-3) (C ) (-3,2) (D ) (3, -2 ) 7. 分式方程 2x1的解为( )x3(A ) x=-2 (B ) x=-3 (C ) x=2 (D ) x=38. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成甲 乙 丙 丁x7 8 8 7 2s1 1.211.8(A ) 甲 (B ) 乙 (C ) 丙 (D ) 丁9. 二次函数 y 2x 23 的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )(A ) 抛物线开口向下 (B ) 抛物线经过点( 2, 3) (C ) 抛物线的对称轴是直线 x=1 (D ) 抛物线与 x 轴有两个交点10.如图, AB 为⊙ O 的直径,点 C 在⊙ O 上,若∠ OCA=50°, AB=4,则 BC 的长为((A) (C) 10359(B ) (D10 9 5 18第Ⅱ卷(非选择题,共 70 分)、填空题 (本大题共 4个小题,每小题 4分,共 16 分,答案写在答题卡上 )11. 已知 |a+2|=0 ,则 a = .12. 如图,△ ABC≌△ A' B 'C ' ,其中∠ A=36°,∠ C′=24°,则∠B=___° 213. 已知 P 1( x 1,y 1), P 2(x 2 ,y 2)两点都在反比例函数 y 的图象上,且 x14. 如图,在矩形 ABCD 中,AB=3,对角线 AC ,BD 相交于点 O ,AE 垂直平分 、解答题 (本大题共 6 个小题,共 54分,解答过程写在答题卡上 )15. ( 本小题满分 12分,每题 6分)(1) 计算: 2 3 16 2sin30 o2016)x 1<OB 于点 E ,则 AD 的长为16.(本小题满分 6 分) 1化简: x 1x17.( 本小题满分 8 分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展 学校旗杆高度的实践活动,如图,在测点 A 处安置测倾器,量出高度 1.5m ,测得旗杆顶端 D 的仰角∠ DBE =32°,量出测点 A 到旗杆底部 距离 AC = 20m. 根据测量数据,求旗杆 CD 的高度。

(汇总3份试卷)2020年成都市中考数学毕业生学业模拟试题

(汇总3份试卷)2020年成都市中考数学毕业生学业模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02ba -<,∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=,∵12ba -=-,∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.2.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=【答案】B 【解析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.3.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A .60050x -=450x B .60050x +=450x C .600x =45050x + D .600x=45050x - 【答案】B【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x =+. 故选B .【点睛】 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.4.分式方程213x x =-的解为( ) A .x=-2B .x=-3C .x=2D .x=3【答案】B【解析】解:去分母得:2x=x ﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B .5.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°【答案】A 【解析】直接根据圆周角定理即可得出结论.【详解】∵A 、B 、C 是⊙O 上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A .6.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x 的图象于点B ,当点M 在y=a x 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3【答案】D 【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x 图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.7.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x (x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =k x(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .23【答案】C【解析】分析:先求出A 点坐标,再根据图形平移的性质得出A 1点的坐标,故可得出反比例函数的解析式,把O 1点的横坐标代入即可得出结论.详解:∵OB=1,AB ⊥OB,点A 在函数2y x=-(x<0)的图象上, ∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C 的位置,∴B 1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4(3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2【答案】B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.9.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5OE=,则四边形EFCD的周长为()A.14 B.13 C.12 D.10【答案】C【解析】∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.10.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有()A .1个B .2个C .3个D .4【答案】B 【解析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题包括8个小题)11.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 【答案】y 1<y 1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.12.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF【答案】①②④【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.13.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.【答案】210°【解析】根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.若分式的值为0,则a的值是.【答案】1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.【答案】2753x yx y+=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得2753x yx y+=⎧⎨=⎩,故答案是:2753x yx y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).【答案】AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.【答案】1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本题包括8个小题)19.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【答案】1【解析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.故代数式a3b+2a2b2+ab3的值是1.202112(1)6tan303π-︒⎛⎫--+-⎪⎝⎭解方程:544101236x xx x-++=--【答案】(1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=323169+-+=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.【答案】(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC=22OA OC-=2253-=4,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.22.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE =2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB =EF ,∵EF =GF ,∴NB =GF ,又∵NB ∥GF ,∴NBFG 是平行四边形,∵EF =BF ,∴NB =BF ,∴平行四边NBFG 是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN ≌△HFE 是解题的关键.23.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.【答案】(1)3y x=-;(2)P 在第二象限,Q 在第三象限. 【解析】试题分析:(1)求出点B 坐标即可解决问题;(2)结论:P 在第二象限,Q 在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B (﹣2,32),把B (﹣2,32)代入k y x=中,得到k=﹣3,∴反比例函数的解析式为3y x=-. (2)结论:P 在第二象限,Q 在第三象限.理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P 、Q 在不同的象限,∴P 在第二象限,Q 在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=33,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.【答案】(1)75;3(2)13【解析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出3(2)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出3Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】解:(1)∵BD ∥AC ,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA ,∴△BOD ∽△COA ,∴13OD OB OA OC ==. 又∵3,∴OD=133 ∴3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB ,∴3.(2)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB ,∴△AOD ∽△EOB , ∴BO EO BE DO AO DA==. ∵BO :OD=1:3, ∴13EO BE AO DA ==. ∵3∴3∴3∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC ,∴AB=2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即(32+BE 2=(2BE )2,解得:BE=4,∴AB=AC=8,AD=1.在Rt △CAD 中,AC 2+AD 2=CD 2,即82+12=CD 2,解得:13【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.25.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.26.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.【答案】(1)证明见解析;(2)24 5.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB. 试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 【答案】C【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化2.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A 既不是轴对称图形,也不是中心对称图形,故不正确;B 不是轴对称图形,但是中心对称图形,故不正确;C 是轴对称图形,但不是中心对称图形,故不正确;D 即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别3.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x 【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误; y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确;y=−1x的图象在二、四象限,故选项C 错误; y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.4.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小,又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.5.已知函数y=(k-1)x 2-4x+4的图象与x 轴只有一个交点,则k 的取值范围是( )A .k≤2且k≠1B .k<2且k≠1C .k=2D .k=2或1 【答案】D【解析】当k+1=0时,函数为一次函数必与x 轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k 的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x 轴只有一个交点;当k-1≠0,即k≠1时,由函数与x 轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k 的值为1或2,故选D .【点睛】本题主要考查函数与x 轴的交点,掌握二次函数与x 轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.6.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P 截得的弦AB的长为42,则a的值是()A.4 B.3+2C.32D.33【答案】B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=12AB=1222,在Rt△PBE中,PB=3,∴223-22(),∴22,∴2.故选B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.7.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A.6B.6 C.2D.3【答案】B【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5个数是6,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是6,则(1,5)与(13,1)表示的两数之积是1.故选B.8.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108B.5.6×108C.5.6×109D.0.56×1010【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.9.如图1,在等边△ABC 中,D 是BC 的中点,P 为AB 边上的一个动点,设AP=x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则△ABC 的面积为( )A .4B .23C .12D .3【答案】D【解析】分析: 由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可.详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点,∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时3∴BD=332sin 60PD ==, ∴BC=2BD=4,∴AB=4, ∴AD=AB·sin ∠B=4×sin60°=3∴S △ABC=12AD·BC=1234432⨯=故选D.点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=3”是解答本题的关键.x x+=的根是()10.方程(2)0A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2【答案】C【解析】试题解析:x(x+1)=0,⇒x=0或x+1=0,解得x1=0,x1=-1.故选C.二、填空题(本题包括8个小题)11.若4a+3b=1,则8a+6b-3的值为______.【答案】-1【解析】先求出8a+6b的值,然后整体代入进行计算即可得解.【详解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案为:-1.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.12.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.【答案】x1=1,x2=﹣1.【解析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.【详解】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x 2+bx+c =0的解为x 1=1,x 2=﹣1.故本题答案为:x 1=1,x 2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x 2+bx+c=0的解实质上是抛物线y=-x 2+bx+c 与x 轴交点的横坐标的值.13.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.【答案】13【解析】根据正方形的性质得出AD=AB ,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB ,根据AAS 推出△AED ≌△BFA ,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】∵ABCD 是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF ⊥a 于点F ,DE ⊥a 于点E ,∴在Rt △AFB 和Rt △AED 中,∵90{AFB DEA FBA EAD AB DA∠=∠=︒∠=∠=,∴△AFB ≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED ≌△BFA 是解此题的关键.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.【答案】20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴x=60%,50解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.15.一个多边形的每个内角都等于150°,则这个多边形是_____边形.【答案】1【解析】根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°•(n-2)=150°•n,解得n=1.故多边形是1边形.16.若a:b=1:3,b:c=2:5,则a:c=_____.【答案】2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;b:c=2:5=(2×3):(5×3)=6:1;,所以a:c=2:1;故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.17.因式分解:9a2﹣12a+4=______.【答案】(3a﹣1)1【解析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.18.27的立方根为.【答案】1。

2020成都中考数学模拟测试

2020成都中考数学模拟测试

绝密★启用前|2020年成都市中考模拟测试数学(考试时间:120分钟 试卷满分:150分)注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2020的相反数是( ) A .20201B .0C .20201-D . ﹣20202.如图,下列选项中不是正六棱柱三视图的是( )A .B .C .D .3.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( ) A .2.2×103B .22×103C .2.2×104D .0.22×1054.下列计算正确的是( ) A .2x ﹣x =1 B .x 2•x 3=x 6C .(﹣xy 3)2=x 2y 6D .(m ﹣n )2=m 2﹣n 25.在函数y =1x+3+√4−x 中,自变量x 的取值范围是( ) A .x <4B .x ≥4且x ≠﹣3C .x >4D .x ≤4且x ≠﹣36.在学校的体育训练中,小明投实心球7次的成绩如统计图所示,则这7次成绩的中位数和众数分别是( )A .9.7m ,9.7mB .9.7m ,9.8mC .9.8m ,9.8mD . 9.8m ,9.9m7.若点A (m ,n )和点B (5,﹣7)关于x 轴对称,则m +n 的值是( ) A .﹣2B .2C .﹣12D .128.关于x 的分式方程2x −5x−3=0的解为( )A .﹣3B .﹣2C .2D .39.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA =50°,则∠C 的度数为( )A .30°B .40°C .50°D .80°10.对于二次函数y =2(x ﹣2)2+1,下列说法中正确的是( ) A .图象的开口向下 B .函数的最大值为1C .图象的对称轴为直线x =﹣2D .当x <2时y 随x 的增大而减小二、填空题(本大题共4小题,每小题4分,共16分)11.若代数式1﹣8x 与9x ﹣4的值互为相反数,则x = .12.当直线y =(2﹣2k )x +k ﹣4经过第二、三、四象限时,则k 的取值范围是 .13.如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .………内………………○……………………线………………○…此卷………外………………○……………………线………………○…14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=4,CE=5,则矩形的对角线AC的长为.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分,每小题6分)(1)计算:(−12)−1−3tan30°+3√13+(π−3.14)0−|√3−2|;(2)解不等式组{x+3≤2x+4x3+1>3x−14;16.(本小题满分6分)先化简,再求值:(2a−1−1a)÷(a2+aa2−2a+1),其中a2+a﹣1=0.17.(本小题满分8分) 为如图,某商业区有甲、乙两座写字楼,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)18.(本小题满分8分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.19.(本小题满分10分)如图,已知反比例函数y1=kx的图象与一次函数y2=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求反比例和一次函数的表达式;(2)求△OAB的面积;(3)直接写出y2>y1时自变量x的取值范围.20.(本小题满分10分)已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BD 于点F ,交⊙O 于点D ,AC 与BD 交于点G ,点E 为OC 的延长线上一点,且∠OEB =∠ACD . (1)求证:BE 是⊙O 的切线; (2)求证:CD 2=CG •CA ;(3)若⊙O 的半径为52,BG 的长为154,求tan ∠CAB .B 卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分) 21.已知x ﹣2y +2=0,则14x 2+y 2﹣xy ﹣1的值为 .22.设x 1,x 2是方程x 2﹣x ﹣2020=0的两实数根,则x 13+2021x 2﹣2020=.23.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用圆内接或外切正多边形逐步逼近圆来近似计算圆的面积.下图是其中的一个图形,六边形ABCDEF 是⊙O 的外切正六边形,现随机向该图形掷一枚小针,则针尖落在⊙O 内的概率是 .(结果不取近似值).(23题图) (24题图) (25题图)24.如图,已知直线y =﹣2x +5与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线AB 翻折后,设点O 的对应点为点C ,双曲线y =kx (x >0)经过点C ,则k 的值为 .25.在菱形ABCD 中,AB =4,∠ABC =120°,点E 是AB 的中点,点P 是对角线BD 上一个动点,则P A +PE 的最小值是 .二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)某企业响应政府复工复产号召,做到防疫复产两不误.2020年2月5日,四川省出台《关于应对新型冠状病毒肺炎疫情缓解中小企业生产经营困难的政策措施》,推出减负降成本、破解融资难、财政补贴和税收减免、稳岗支持等帮扶措施,携手中小企业共渡难关.该企业生产的某种产品成本为9元/件,经过市场调查获悉,日销售量y (件)与销售价格x (元/件)的函数关系如图所示:(1)求出y 与x 之间的函数表达式;(2)当销售价格为多少元时,该企业日销售额为6000元?(3)若该企业每销售1件产品可以获得2元财政补贴,则当销售价格x 为何值时,该企业可以获最大日利润,最大日利润值为多少?………………○………………此卷只………………○………………27.(本小题满分10分)如图1,在矩形ABCD中,AB=1,对角线AC,BD相交于点O,∠COD=60°,点E 是线段CD上一点,连接OE,将线段OE绕点O逆时针旋转60°得到线段OF,连接DF.(1)求证:DF=CE;(2)连接EF交OD于点P,求DP的最大值;(3)如图2,点E在射线CD上运动,连接AF,在点E的运动过程中,若AF=AB,求OF的长.28.(本小题满分12分)图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(-1,0),并且与直线y=12x-2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.图①图②Q。

四川省成都市2020年中考数学模拟卷(六)(含解析)

四川省成都市2020年中考数学模拟卷(六)(含解析)

2020年四川省成都市中考数学模拟卷A卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1.估计13的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C.<<4,则13的值在3和4之间,故选C.【解析】∵9<13<16,∴3132.下面有4个汽车标志图案,其中是中心对称图形的是A.B.C.D.【答案】B.【解析】根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.3.下列计算正确的是A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.22=2【答案】D.【解析】2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;322=2D正确;故选D.4.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为A.60°B.65°C.72°D.75°【答案】C.【解析】由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选C.5.一组数据为:31,30,35,29,30,则这组数据的方差是A.22 B.18 C.3.6 D.4.4 【答案】D.【解析】这组数据的平均数为31303529305++++=31,所以这组数据的方差为15⨯[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选D.6.如图是一个几何体的三视图,则该几何体的展开图是A.B.C. D.【答案】B.【解析】主视图和左视图均为等腰三角形,底面为圆,所以该几何体为圆锥,∵圆锥的侧面展开图是扇形,底面是圆,∴B符合,故选B.7.已知一次函数y=kx+b的图象如图,则k、b的符号是A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 【答案】D.【解析】由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.8.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是A.﹣1 B.1 C.3 D.5【答案】A.【解析】∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故选A.9.如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A﹣D﹣C 的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B﹣C﹣D﹣A的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是A.B.C.D.【答案】A.【解析】当0≤t≤1时,S12=⨯2×(2﹣2t)=2﹣2t,∴该图象y随x的增大而减小,当1<t≤2时,S12=(2﹣t)(2t﹣2)=﹣t2+4t﹣4,∴该图象开口向下,当2<t≤3,S12=(t﹣2)(2t﹣4)=(t﹣2)2,∴该图象开口向上,故选A.10.如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l 上为止,点A运动经过的路径的长度为A.8833ππB.163πC.4433ππD163π【答案】A.【解析】如图,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径的长度为图中弧线长.由题意可知¶·23AD A A =,∠DOA 2=120°,DO =3所以点A 运动经过的路径的长度=26041204381803ππ⋅⋅⨯=π83π,故选A . 第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.124183= . 6.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解: 12418=266=63. 12.(2019·浙江中考模拟)圆心角为120º的扇形的面积为12π,则扇形的弧长为______.【答案】4π.【解析】解:令扇形的半径和弧长分别为R 和l ,则∵S =2120360R π =12π,∴R =6,∴l =1206180π⨯=4π. ∴扇形的弧长为4π.故答案为4π.【点睛】本题考查了弧长的计算和扇形面积的计算.解答该题需要牢记弧长公式和扇形的面积公式.13.(2019·上海中考模拟)不等式组1>011xxx+⎧⎨-≤⎩的解集是______.【答案】-1<x≤2.【解析】解1011 xx+>⎧⎨-≤⎩由10x+>得x>-1,由1x-≤1得x≤2,所以不等式组的解集为-1<x≤2.【点睛】这是一道考查解一元一次不等式组的题目,解题的关键是正确求出每个不等式的解集. 14.(2019·福建中考模拟)如图,在平行四边形ABCD中,点E在边DC上,△DEF的面积与△BAF的面积之比为9:16,则DE:EC=_____.【答案】3:1【解析】∵四边形ABCD为平行四边形,∴DE∥AB,DC=AB,∴△DEF∽△BAF.∵△DEF的面积与△BAF的面积之比为9:16,∴3=4 DEBA,∵3=343DE DEEC CD DE==--.故答案为3:1.【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,根据相似三角形的性质求出DE 、BA 之间的关系是解题的关键.三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)(2019·上海中考模拟)计算:(﹣1)2019﹣|121()3-. 【答案】119. 【解析】原式=111)19--+=119. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.(2)(2019·江苏中考模拟)解方程:x 2+2x ﹣3=0(公式法)【答案】x 1=1,x 2=﹣3.【解析】△=22﹣4×(﹣3)=16>0,x =2421-±⨯, 所以x 1=1,x 2=﹣3.【点睛】本题考查了解一元二次方程-公式法:用求根公式解一元二次方程的方法是公式法.16.(2019·北京中考模拟)已知:关于x 的一元二次方程x 2-4x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【答案】(1)m <2;(2)m=0.【解析】(1)∵方程有两个不相等的实数根,∴△>0.∴△=16-8m >0.∴m<2(2)∵m<2,且m为非负整数,∴m=0或1当m=0时,方程为x2-4x=0,解得x1=0,x2=4,符合题意;当m=1时,方程为x2-4x+2=0,根不是整数,不符合题意,舍去.综上m=0【点睛】本题考查了学生通过根的判别式来确定一元二次方程中待定系数范围,掌握代入法解题是解决此题的关键.17.(2019·天津中考模拟)某校九年级有600名学生,在体育中考前进行了一次模拟体测.从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为,图2中m的值为;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校九年级模拟体测中得12分的学生约有多少人?【答案】(Ⅰ)50,28;(Ⅱ)平均数:10.66;众数是:12;中位数是:11;【解析】解:(Ⅰ)本次参加跳绳的学生人数是4+5+11+14+16=50(人),m=100×1450=28.故答案是:50,28;(Ⅱ)平均数是:150(4×8+5×9+11×10+14×11+1612)=10.66(分),∵在这组数据中,12出现了16次,出现次数最多;∴这组样本数据的众数是:12;∵将这组样本数据自小到大的顺序排列,其中处于最中间位置的两个数都是11,有1111112+=; ∴这组样本数据的中位数是:11;(Ⅲ)∵该校九年级模拟体测中得12分的学生人数比例为32%,∴估计该校九年级模拟体测中得12分的学生有600×12%=72(人).答:该校九年级模拟体测中得12分的学生有72人.【点睛】本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(2019·海南中考模拟)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.(1)求∠APB 的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.【答案】(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】(1)在△APB 中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)只需算出航线上与P 点最近距离为多少即可过点P 作PH⊥AB 于点H在Rt△APH 中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50算出PH=25>25,不会进入暗礁区,继续航行仍然安全.考点:解直角三角形19.(2019·四川中考模拟)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.(1)求反比例函数的表达式;(2)点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P 在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.【答案】(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.20.(2019·黄冈市启黄中学中考模拟)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【答案】解:(1)证明见解析;(2)⊙O的半径是7.5cm.【解析】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴2235+=AD DE AE连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.∴3535=.则AC=15(cm).∴⊙O的半径是7.5cm.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.(2019·山东中考模拟)若关于x的方程2x m2x22x++=--有增根,则m的值是▲【答案】0.【解析】方程两边都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.22.(2019·河南中考模拟)已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是_____.【答案】a=1.【解析】解:∵方程ax2﹣(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵△=(a+2)2﹣4a×2=(a﹣2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1•x2=,∵x1、x2均为正整数,∴为正整数,∵a 为整数,a≠2且a≠0, ∴a=1, 故答案为:a=1. 【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:①找出△=(a-2)2≥0;②找出x 1•x 2=为正整数.本题属于中档题,难度不大,解决该题型题目时,由方程的两根均为整数确定a 的值是难点.23.(2019·浙江中考模拟)如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.【答案】3π﹣6. 【解析】解:把4×4的正方形分成a ,b ,c ,d ,e ,阴影部分6个部分.可得S 阴=S 正方形﹣a ﹣b ﹣c ﹣d ﹣e =4×4﹣229049034433360360ππ⎛⎫⎛⎫⋅⋅⋅⋅⨯--⨯- ⎪ ⎪⎝⎭⎝⎭22349021903112233236023602ππ⎛⎫⎛⎫+⋅⋅⋅⋅-⨯--⨯⨯--⨯⨯ ⎪ ⎪⎝⎭⎝⎭=3π﹣6,故答案为3π﹣6.【点睛】本题考查扇形的面积,弓形的面积,三角形的面积,正方形的面积等知识,解题的关键是学会用分割法解决问题,属于中考填空题中的压轴题.24.(2019·重庆初三)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=43,反比例函数y=﹣12x的图象经过点C,与AB交与点D,则△COD的面积的值等于_____;【答案】10.【解析】详解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC.∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE.∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO.∵tan∠AOC=43,∴OF=3x,∴OC=5x,∴OA=OC=5x.∵S菱形ABCO=AO•CF=20x2.∵C(﹣3x,4x),∴12×3x×4x=6,∴x2=1,∴S菱形ABCO=20,∴△COD的面积=10.故答案为10.点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.25.(2019·内蒙古中考模拟)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC 边上的动点(点M 不与B ,C 重合),CN⊥DM,CN 与AB 交于点N ,连接OM ,ON ,MN .下列四个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN 2+CM 2=MN 2;其中正确的结论是_____.(填写所有正确结论的序号)【答案】①②④ 【解析】∵正方形ABCD 中,CD =BC ,∠BCD=90°, ∴∠BCN+∠DCN=90°, 又∵CN⊥DM,∴∠CDM+∠DCN=90°, ∴∠BCN=∠CDM,在△CNB 和△DMC 中,∠∠∠∠90BCN CDMBC CD CBN DCM ⎧=⎪=⎨⎪==⎩o ,∴△CNB≌△DMC(ASA ),①正确; ∴CM=BN ,∵四边形ABCD 是正方形,∴∠OCM=∠OBN=45°,OC =OB =OD ,在△OCM 和△OBN 中,∠O ∠OBN OC OBCM CM BN ⎧=⎪=⎨⎪=⎩,∴△OCM≌△OBN(SAS ), ∴OM=ON ,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,在△CON 和△DOM 中,∠O ∠DOM OC OD CN ON OM ⎧=⎪=⎨⎪=⎩,∴△CON≌△DOM(SAS ),②正确; ∵∠BON+∠BOM=∠COM+∠BOM=90°, ∴∠MON=90°,即△MON 是等腰直角三角形, 又∵△AOD 是等腰直角三角形, ∴△OMN∽△OAD,③不正确; ∵AB=BC ,CM =BN , ∴BM=AN ,222又Rt BMN 中,BM BN =MN ,+Q V 222AN CM =MN ∴+,④正确;故答案为①②④. 【点睛】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键. 二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.) 26.(2019·湖北中考模拟)大学生小亮响应国家创新创业号召,回家乡承包了一片坡地,改造后种植优质称猴桃.经核算这批称猴桃的种植成本为16元/kg .设销售时间为x (天),通过一个月(30天)的试销得出如下规律:①称猴桃的销售价格p (元/kg )与时间x (天)的关系: 当1≤x <20时,p 与x 满足一次函数关系.如下表:当20≤x ≤30时,销售价格稳定为24元/kg ;②称猴桃的销售量y (kg )与时间x (天)的关系:第一天卖出24kg ,以后每天比前一天多卖出4kg .(1)填空:试销的一个月中,销售价p(元/kg)与时间x(天)的函数关系式为;销售量y(kg)与时间x(天)的函数关系式为;(2)求试售第几天时,当天的利润最大?最大利润是多少?【答案】(1)p=136(120)224(2030)x xx⎧-+≤<⎪⎨⎪≤≤⎩,y=4x+24;(2)销售第30天时,利润最大,最大利润为1152元.【解析】解:(1)依题意,当1≤x<20时,设p=kx+b,得352336k bk b=+⎧⎨=+⎩,解得p=﹣12x+36,故销售价p(元/kg)与时间x(天)的函数关系式为,p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩…剟,由②得,销售量y(kg)与时间x(天)的函数关系式为:y=4x+24,故答案为p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩…剟,y=4x+24;(2)设利润为W,①当1≤x<20时,W=(﹣12x+36﹣16)(4x+24)=﹣2(x﹣17)2+1058∴x=17时,W最大=1058,②当20≤x≤30时,W=(24﹣16)(4x+24)=32x+192∴x=30时,W最大=1152∵1152>1058∴销售第30天时,利润最大,最大利润为1152元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).27.(2019·上海中考模拟)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】(1)16(2)(3)或【解析】(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN=,∴∴AC=15∴AB==20∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∵AF⊥BC∴cos∠EAF=cos∠MBN=∴AE=20∴EF==16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH==16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△FAE∽△FCA∴,∠AEF=∠FAC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF=∴BE=BF+EF=∵∠MBN=∠ACB,∠AEF=∠FAC,∴△BDE∽△CFA∴∴∴y=(0<x≤)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC=×AB×AC=×BC×AF,∴AF==12,∴BF=,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN=,∴BE=,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠M BN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE=k,∵BC=BE﹣CE=25∴k=∴AE=,CE=,BE=∵∠ACB=∠FAE,∠AFC=∠AFE,∴△AFC∽△EFA,∴,设AF=7a,EF=20a,∴CF=a,∵CE=EF﹣CF=a=,∴a=,∴EF=,∵AC∥DF,∴,∴,∴DF=,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.28.(2019·天津二十中中考模拟)如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB⊥x 轴于点B ,PC⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE⊥PF;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m , ∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF, ∴PC PB PF PE=. ∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F(0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年成都中考数学模拟试题六班级姓名学号A卷(共100分)第Ⅰ卷(选择题,共30分)一.选择题(共10小题,每小题3分,共30分)1.2的倒数是(C)A.﹣2 B.2 C.D.2.绝对值等于3的数是(C)A.3 B.﹣3 C.3或﹣3 D.1 33.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为(C)A.2.3×109B.0.23×109C.2.3×108D.23×107 4.下面的几何体中,主视图为三角形的是(B)A.B.C.D.5.下列算式中,结果等于x6的是(A)A.x2•x2•x2 B.x2+x2+x2C.x2•x3D.x4+x26.如图,下列能判定AB∥EF的条件有(C)①∠B+∠BFE=180°②∠1=∠2 ③∠3=∠4 ④∠B=∠5.A.1个B.2个C.3个D.4个7.点M(﹣3,﹣1)关于y轴对称的点的坐标为(C)A.(﹣3,1)B.(3,1)C.(3,﹣1)D.(﹣3,﹣1)8.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是(C)动时间(小时)3456人数1121A.中位数是4,平均数是3.75 B.众数是2,平均数是4.25 C.中位数是5,平均数是4.6 D.众数是2,平均数是4.89.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是(B)A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<56题图 9题图 10.对于函数22(3)y x =--,下列说法不正确的是( D ) A .开口向下B .对称轴是3x =C .最大值为0D .与y 轴不相交第Ⅱ卷(非选择题,共70分)二.填空题(共4小题,每小题4分,共16分) 11.分解因式:xy 2﹣2xy + x = . 答案:x (y ﹣1)2.12.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC 绕点A 顺时针旋转90°得到(点B′与点B 是对应点,点C′与点C 是对应点),连接CC′,则∠CC′B′的度数是 . 答案:15°.12题图 14题图 13.二次函数y=x 2﹣bx +c 的图象上有两点A (3,﹣8),B (﹣5,﹣8),则此抛物线的对称轴是直线x= . 答案:﹣1. 14.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为 . 答案:﹣.三.解答题(本大题共6个小题,共54) 15(12分,每小题6分) (1)计算:2tan60°﹣+(2﹣π)0﹣()﹣1.答案:原式=﹣1(2)解不等式组:,并把解集在数轴上表示出来.答案:由①得x ≥4, 由②得x <1, ∴原不等式组无解,16.(6分)先化简,再求值:(﹣x ﹣1)÷,选一个你喜欢的数代入求值.解:原式=2﹣x.当x=0时,原式=2.17.(8分)如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)17.解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CDsin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CDcos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.18.(8分)某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表组别成绩x次频数(人数)频率A100≤x<1205B120≤x<140bC140≤x<1601530%D160≤x<18010E180≤x<200a(1)填空:a=,b=,本次跳绳测试成绩的中位数落在组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E 组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.18.答案为4,32%,C;(2)由(1)可知补全频数分布直方图如图所示:(3)设甲为A,乙为B,画树状图为:由树状图可知从E组中随机选取2人介绍经验,则甲、乙两人中至少1人被选中的概率==.19.(10分)已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B 两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2=,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.20.(10分)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O 为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.解:(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.B卷(共50分)一.填空题(共5小题,每小题4分,共20分)21.若方程kx2﹣6x+1=0有两个实数根,则k的取值范围是.答案:k≤9,且k≠022.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.答案:.23题图24题图25题图23.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.答案:24.如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP 与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S=;△PDQ④cos∠ADQ=,其中正确结论是(填写序号)答案:①②④.提示:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图2.则有CP=,BP==.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=,则PQ=﹣=,∴=.故②正确;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=,=DP•QH=××=.故③错误;∴S△DPQ④过点Q作QN⊥AD于N,如图4.易得DP∥NQ∥AB,根据平行线分线段成比例可得==,则有=,解得:DN=.由DQ=1,得cos∠ADQ==.故④正确.综上所述:正确结论是①②④.25.5个正方形如图摆放在同一直线上,线段BQ经过点E、H、N,记△RCE、△GEH、△MHN、△PNQ的面积分别为S1,S2,S3,S4,已知S1+S3=17,则S2+S4=.答案:68.解:∵四边形ABDC与四边形CDFE是正方形,∴BD=DF=EF,AE∥BF,∴∠EBF=∠AEB,∴tan∠EBF=tan∠AEB==,同理可得:∠GHE=∠MNH=∠PQN=∠EBF,设DR=a,则EF=BD=CD=CE=2a,∴CR=a,∵tan∠EBF==,∴FI=HI=GH=4a,∴GE=2a,同理可得:MH=4a,MN=8a,PN=8a,PQ=16a,∴S1+S3=×a×2a+×4a×8a=17,解得:a2=1,∴S2+S4=×2a×4a+×8a×16a=68a2=68.三.解答题(本大题共3个小题,共30分)26.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行与墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.解:(1)根据题意得:(30﹣2x)x=72,解得:x=3,x=12,∵30﹣2x≤18,x=12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=时,即平行于墙的一边长15>8米,y=112.5平方米;最大=88平方米;∵6≤x≤11,∴当x=11时,y最小(3)由题意得:﹣2x2+30x≥100,∵30﹣2x≤18解得:6≤x≤10.27.(10分)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)解:(1)如图①AH=AB .(2)数量关系成立.如图②,延长CB 至E ,使BE=DN . ∵ABCD 是正方形,∴AB=AD ,∠D=∠ABE=90°, 在Rt △AEB 和Rt △AND 中,,∴Rt △AEB ≌Rt △AND , ∴AE=AN ,∠EAB=∠NAD , ∴∠EAM=∠NAM=45°, 在△AEM 和△ANM 中,,∴△AEM ≌△ANM .∴S △AEM =S △ANM ,EM=MN ,∵AB 、AH 是△AEM 和△ANM 对应边上的高, ∴AB=AH .(3)如图③分别沿AM 、AN 翻折△AMH 和△ANH ,得到△ABM 和△AND , ∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分别延长BM 和DN 交于点C ,得正方形ABCD , 由(2)可知,AH=AB=BC=CD=AD . 设AH=x ,则MC=x ﹣2,NC=x ﹣3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2 ∴52=(x ﹣2)2+(x ﹣3)2(6分) 解得x 1=6,x 2=﹣1.(不符合题意,舍去) ∴AH=6.28.(12分)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在边OA 上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长及经过O ,D ,C 三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,∵BD=,DE==,∴BD=DE,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称轴为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即四边形ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EM,CN互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).。

相关文档
最新文档