二次根式课件

合集下载

二次根式的ppt课件

二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。

公开课课件二次根式

公开课课件二次根式

2 当x0且x1,1- x 有意义 4由题意可知: x-5 0 解得x5且x6
x6
当x 5且 6x时, x-+5x-6 0有意义
13
尝试与交流
22=4,( 即4)2= 4
32=9,( 即9)2= 9
同样地(,2)2= 2 ( 5)2= 5 你还能给出类似的例子吗?试试看 你有什么发现
当a0时(,a)2=a .
在实数范围内,负数没有平方根
11
例题讲解
例1 x为何值时, 下列各式在实数范围内有意义。
(1) 13x (2) 1x 3x (3) (x5)2
解: (1)由1-3x≥0得x≤
1
1
3
当x 3 时, 1-3x有意义
1+x 0
2 由题意可知:
解不等式组得到: -1x3
3-x 0
当 -x13时, 1+-x3-有 x 意义
斜边长为____a_2___2__5_0_0__米。
6
S
圆形的下球体在平面图上的面积为S,
S 则半径为____________.
7
b-3
如图示的值表示正方形的面积, 则
正方形的边长是 b 3
s
a2 2500
b3
表示一些正数的算术平方根.
一般地,式子a (a0) 叫做二次根式,
a称为是被开方数
3由于 x+520, 当x取一切实数 x+时 52有意义
12
挑战求自x为我何值时, 下列各式在实数范围内有意义。
3 1 2x-1
2
2
2 1-x
3 1-
x
4 x-5 + x-6 0
解:1由2x-1>0得x>12当x> 12

二次根式ppt课件

二次根式ppt课件
3. 代数式的概念是什么?
用基本运算符号把数或表示数的字母连接起来的式子,称为代数式.
随堂检测
1.计算( 0.04)2 的值是(
A.0.2
B.0.04
C.-0.2
B
).
D.-0.04
2.二次根式− ( 10 − 11)2 的值是(
A. 10 − 11
B.-1
A
C. 11 − 10
).
D.1
随堂检测
乘方和开方)把数或表示数的字母连接起来的式子,我们称这样
的式子为代数式.
课堂小结
1. 二次根式的性质有哪些?
平方在里面,夹上绝对值,分类来讨论.
( )2 =a(a≥0);
2 =a(a≥0)
平方在外面,直接去根号;
2 = ||.
2.运用二次根式的性质进行化简,需要注意什么?
取值a的取值范围,( )2 =a(a≥0); 2 =a(a≥0).
2.从以上的结论中你能发现什么规律?你能用一个式子表示这
个规律吗?
= ( ≥ )
典型例题
化简:
(1) 16
(2) (−5)2
解:(1) 16= 42 =4;
(2) ( − 5)2 = 52 =5.
= ( ≥ )
= ||
跟踪训练
1.计算:
(1) 9=
3
(3) ( − 7)2 =
7

(2) ( − 4)2 =
4

(4) (3 − )2 =
π-3
2.如果 (3 − )2 =x-3,那么x的取值范围是
x≥3
.

.
探究活动3


回顾我们学过的式子,如 5,, + ,−, ,− 3 , 3, ( ≥ 0)

二次根式及其性质课件

二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;

的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法

浙教版八年级下册 1.2 二次根式的性质 课件(共17张ppt)

浙教版八年级下册 1.2 二次根式的性质 课件(共17张ppt)

记作 a . 2. 2是什么数的平方根?所以 2的平方等于什么?
2的一个平方根.
3(. 7)2,( 1)2呢? 2
( 2)2 =2. ( 7)2 =7,( 1)2 = 1 .
22
你能猜想 ( a )2 ?
二次根式的性质1: 二次根式的平方等于被开方数
2
a aa 0
4.能用几何图形作出直观解释吗?
1.2 二次根式的性质
(1)
复习回顾
1.怎样的式子叫二次根式?
一般地,我们把形如 a(a≥0)的式子叫做二次根式。
2.怎样判断一个式子是不是二次根式?
(1)形式上: a ; (2)被开方数a≥0.
3.如何确定二次根式中字母的取值范围?
①被开方数不小于零; ②分母中有字母时,要保证分母不为零.
复习回顾
72
7
(5) 22 52
解:(1)原式=
4 7
1 2
4 7
1
4 7
1 2
1
4 7
=
4 7
1 2
4 7
+1=
1 2
.
(2)原式= 1 2 2+1 2-1+ 2+1 =2 2 .
拓展提升
1.若 (1 x)2 1 x,则x的取值范围为 ( )
A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
a2
|
a
|
a a≥0; a a<0.
1 102
2
15 ;
2
2
7
25 9 ;
(4)( 11)2 (-13)2 .
2
(5)
2 5

0.12-
1. 4

初中数学二次根式 PPT课件 图文

初中数学二次根式 PPT课件 图文

2 2 当x=3-
答案:2
时,原式=(3- -3)2=2.
【方法技巧】二次根式的混合运算,首先要搞清楚运算的顺序,其次是认真观察式子 的结构特点,能利用运算律或公式的,要优先考虑使用运算律或公式,简化运算.在有 理数范围内成立的运算律、运算法则、公式及因式分解、约分、通分等方法对二次 根式同样适用.
根式即可.
【自主解答】 (2 3 )2 - 2 4 5 26 - 26 5 .
答案:5
【母题变式】(改变条件)(2015·临沂中考)计算: (3 2 - 1 )(3 - 2 1 ).
提示:找出公式中的a,b的值,代入平方差公式计算,再 应用完全平方式计算:因为
(32- 1)(3- 21)
(2)由题意可知,x-3≥0,且3-x≥0, ∴x-3=0,解得,x=3,∴y=2,∴xy=32=9. 答案:9
【名师点津】二次根式有无意义的条件需注意的两个问题 (1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的 被开方数都必须是非负数.
(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为 零.
=________.
8 8.(2015·成都中考)计算:
4cos 45°+(-3)2.
-(2015-π )0-
2 2 【解析】原式=2 -1-2 +9=8.
【变式训练】(2015·泸州中考)计算:
8 ×sin 45°-20150+2-1.
【解析】原式=
222112113. 2 2 22
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份

最简二次根式二次根式PPT优秀课件

最简二次根式二次根式PPT优秀课件
尽量化简。
(1)
(2)
(3)
复习提问
上一页
3、计算:(1) (2)
解(1):方法1:
方法2:
解(2):方法1:
方法2:
复习提问
上一页
4、已知: ,如何求 与 的近似值?(结果保留两位有效数字)
解:
复习提问
上一页
满足下列条件的二次根式,叫做最简二次根式。(1)被开方数中的各因式的指数都为1(2)被开方数不含分母
(6) ( );
(7) ( );

×
×
× 课本P7
×
×

辨析训练一
满足下列条件的二次根式,叫做最简二次根式。(1)被开方数中的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含根号。
1、二次根式的乘法运算法则是什么?用文字语言怎么表达?对于运算的结果有什么要求?二次根式相乘:被开方数源自乘,根指数不变;尽量化简。
(1)
(2)
(3)
复习提问
2、二次根式的除法运算法则是什么?用文字语言怎么表达?对于运算的结果有什么要求?
二次根式相除:被开方数相除,根指数不变;
2.如何化二次根式为最简二次根式 .
课堂小结:
练习一
上一页
例2 把下列各式化成最简二次根式:(1) ;(2)
解(1)
(2)
例题选讲二
把下列各式化成最简二次根式:(1) (2)(3) (4)
练习二
上一页
判断下列各等式是否成立,若不成立请说出正确的解法和答案。(1) ( )(2) ( ) (3) ( )(4) ( )
最简二次根式的定义
判断下列各式是否为最简二次根式?

《二次根式》PPT课件(第一课时)

《二次根式》PPT课件(第一课时)
取值范围是__3___x___0
2x+6≥0 ∵
-2x>0
x≥-3 ∴
x<0
已知 a1有意义,那么A(a, a) 在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
12 n为一个整数 , 求自然数 n的值.
n为3,8,11,12
思考题
已知 2x 1 1 2x y 3,
再 见
1.表示a的算术平方根 2. a可以是数,也可以是式 3. 形式上含有二次根号
4. a≥0, a≥0 (双重非负性)
5.既可表示开方运算,也可表示运算的结果
例1.下列各式是二次根式吗?
(1) 32 , (2) 6, (3) 9,
(4) 12 , (5) m m 0 ,
(6) xy x, y异号 , (7) a2 ,(8) 3 5.
求代数式 xy的值.
解:依题意得,
2x 1 0 1- 2x 0
解得,x 1 2
y 3
xy 1 3 3 22
课堂练习
一艘轮船先向东北方向航行2小时,再向西 北方向航行t小时.船的航速是每小时25千米. 1)用关于t的代数式表示船离开出发地的距离; 2)求当t=3时,船离开出发地多少千米?(精确
第二十一章二次根式
21.1 二次根式(1)
知识回顾
什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个
数叫做a的平方根.
什么叫算术平方根? 正数的正平方根和零的平方根,统称算术平
方根.
用 a (a 0)表示.
塔座
50米 ?米 a米
塔座所形成的这个直角三角形的斜边长为 ____a_2___2_5_0_0___米.
②分母中有字母时,要保证分母不为零.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的性质:
a b a b (a≥0,b≥0),
a b a (a≥0,b>0) b
你学会了吗?
即:积的算术平方根,等于各因数(因式) 算术平方根 的积; 商的算术平方根,等于被除数的算术平方 根与除数算术平方根的商。
例1 化简:
(1) 81 64
5 (2) 25 6 (3) 9
• 它们有什么共同点?
一般地,形如 a (a≥0)的式子叫做 二次根式,a叫做被开方数。 二次根式有些什么性质呢?让我们 一起探索吧!
• (1)计算下列各式,你能得到什么猜想?
49 =
, 4 9 =

4 4 = , = ; 9 9 25 25 = , = 。 49 49 (2)如果把具体的数字换成字母应怎样表示 呢?
5 上述化简结果5 6, 3
例2 化简:
(1) 50
2 (2) 7
(3)
1 3
你是怎么发现 50含有开得尽方因数的?
14 你是怎么判断 是最简二次根式的? 7
解:
(1) 50 (2 )
25 2 5 2
2 7 7 7
2 2 7 7
14 7
1 1 3 3 (3) 3 3 3 3
a a (a≥0,b>0) b b
(3)最简二次根式:一般地,被开方数不 含分母,也不含能开得尽方的因数或因式, 这样的二次根式,叫做最简二次根式。
(4)化简时,通常要求最终结果中分母不含有 根号,而且各个二次根式是最简二次根式。
作业:
二次根式
探究
(1)要做一个两条直角边的长分别为7cm 和4cm的三角尺,斜边的长应为 65 cm (2)要修建一个面积为6.28m2的圆形喷 水池,它的半径为 2 m(π取3.14)
(3)观察下列代数式:
49 65, 2, 7.2, , (c b)(c b) 121 (其中b 24, c 25)
解: (1) 815 6 5 6
5 5 5 (3) 3 9 9
中,被开方数中 都不含分母,也不含能开得尽方的因数。 一般地,被开方数不含分母,也不含能 开得尽方的因数或因式,这样的二次根式, 叫做最简二次根式。 化简时,通常要求最终结果中分母不含 有根号,而且各个二次根式是最简二次根式。
将二次根式化成最简二次根式时,你有 哪些经验与体会?
随堂练习 化简 (1)
32
(2)
72
1 5
12 (3) 7
(4) 1.5
(5)
通过今天的学习,你有什么收获? (1)形如 a(a≥0)的式子叫做二次根式,a 叫做被开方数。 (2)二次根式性质:
a b a b (a≥0,b≥0);
相关文档
最新文档