【精品】2016-2017年湖北省宜昌二十五中八年级(上)期中数学试卷带答案

合集下载

湖北省宜昌市八年级上学期期中数学试卷

湖北省宜昌市八年级上学期期中数学试卷

湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共15题;共30分)1. (2分) (2017八下·诸城期中) 下列各数:3.14,,,﹣,,π,其中无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)下列满足条件的三角形中,不是直角三角形的是()A . 三内角之比为1:2:3B . 三边长的平方之比为1:2:3C . 三边长之比为3:4;5D . 三内角之比为3:4;53. (2分)估算+2的值是在()A . 5和6之间B . 6和7之间C . 7和8之间D . 8和9之间4. (2分) (2017八下·海淀期中) 下列计算正确的是().A .B .C .D .5. (2分) (2016七下·嘉祥期末) 下列选项中正确的是()A . 27的立方根是±3B . 的平方根是±4C . 9的算术平方根是3D . 立方根等于平方根的数是16. (2分) 2的算术平方根是()A .B .C . 4D . 47. (2分) (2019八上·萧山月考) 已知点M(a,2),B(3,b)关于y轴对称,则a+b=()A . -5B . -1C . 1D . 58. (2分)(2016·呼和浩特) 如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A .B .C .D .9. (2分)长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()A . 60cm2B . 64cm2C . 24cm2D . 48cm210. (2分) (2018九上·大石桥期末) 在平面直角坐标系中,点P(2,一 4)关于原点对称的点的坐标是()A . (2,4 )B . (一2,4)C . (一2,一4)D . (一4,2)11. (2分)若弹簧的总长度y(cm)是所挂重物x(千克)的一次函数,图象如图所示,由图可知,不挂重物时,弹簧的长度是()A . 10cmB . 9cmC . 8.5mD . 7cm12. (2分)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A . -3B . 3C . ±3D . ±213. (2分)下列计算正确的是()A . =﹣2B . (a2)5=a10C . a2+a5=a7D . 6×2=1214. (2分)计算-的结果是()A . 2B . ±2C . ﹣2或0D . 015. (2分)在平面直角坐标系中,点M(6,﹣3)关于x轴对称的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、耐心填一填 (共5题;共6分)16. (1分)计算(﹣)×的结果是________ .17. (1分)点P(a+1,2a﹣3)在第四象限,则a的取值范围________.18. (2分)(2015八下·潮州期中) 若,则 =________;,且,则x=________.19. (1分) (2017八下·宝安期中) 如图,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜边AB 的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为________.20. (1分)(2019·鄂州) 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=O B.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为________.三、细心做一做 (共8题;共48分)21. (5分) (2017八下·福建期中) 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.22. (8分) (2020八上·沈阳期末) 观察下列一组式子的变形过程,然后回答问题:例1:例2: = , = ,利用以上结论解答以下问题:(不必证明)(1) ________; ________;________。

宜昌第二十五中学八年级数学试题

宜昌第二十五中学八年级数学试题

2018年秋季宜昌市第二十五中学八年级数学试题(考试形式:闭卷。

本试卷共24小题,满分120分,考试时间120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.========================================================================== 一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分)1.A.B.C. D.2.A.3,3,5B. 2,2,5C. 1,2,3D. 2,3,63.下列图形中有稳定性的是A.正方形B. 长方形C. 直角三角形D. 平行四边形4.张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,A. 正三角形B. 正方形C. 正六边形D. 正八边形5.下列各组图形中,AD是△ABCA B C D6.已知△ABC≌△DEF,且△ABC的周长为15,若AC=4,EF=6,则AB=A. 4B. 5C. 6D. 5或67.在平面直角坐标系中,点P(-2,3)关于yA.第一象限B.第二象限C.第三象限D.第四象限8.A.8B.20C.40D.249.到△ABC的三个顶点距离相等的点是△ABCA.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边中垂线的交点10.已知等腰三角形的一个内角为50A. 50°B. 80°C. 50°或80°D. 40°或65°11.A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等12.如图,AD是△ABC的边BC上的中线,BE是△ABD的边AD上的中线,若△ABC的面积是16,则△ABEA. 16B. 8C. 4D. 213.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADCA.AC=ACB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D14.如图,AB=AC,AD=AE,则图中所有全等三角形共有()A. 3对B. 4对C. 5对D. 6对15.如图,AD是△ABC的外角∠CA E的平分线,∠B=40°,∠DAE=55°,则∠ACBA. 70°B. 80°C. 100°D. 110°第12题图第13题图第14题图第15题图二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.(6分)如图,已知△ABC中,∠B=60°AD是BC边上的高,AE是∠BAC的平分线,且∠DAE=10°,求∠C的度数.17.(6分)如图,点B、F、C、E在同一直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.18.(7分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.图1919.(7分)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.20.(8分)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,DF=BD.(1)求证:CF=BE.(2)若AB=12,AF=3,求CF的长.21.(8分)如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.22.(10分)低碳生活的理念已逐步被人们接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg.甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议.2014年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2014年两校响应本校倡议的人数分别是多少?(2)从2015年开始,甲校响应本校倡议的人数每年增加相同的数量;2016乙校响应本校倡议的人数比2015年增长了50%,且2015年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍多8;2016年两校响应本校倡议的总人数比2015年两校响应本校倡议的总人数多100人.求2015年两校响应本校倡议减排二氧化碳的总量.23.(11分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第二象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值;(3)如图3,将点A平移到点(2,2),点M(m,0)为x轴上的一个动点,连结AM,过点A作AN⊥AM,AN与y轴负半轴交于点N(0,n),当M点在x轴的正半轴上沿正方向运动时,求m、n之间的数量关系。

湖北省宜昌市2016年中考数学真题试题(含答案)

湖北省宜昌市2016年中考数学真题试题(含答案)

2016年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交. 3.参考公式弧长180n rl π=; 二次函数y =a 2+b +c 图象的顶点坐标是2424()b ac b aa--, ,对称轴为2b x a=-. 一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分) 1.如果“盈利5%”记作+5%,那么—3%表示( ).A .亏损3%B .亏损8%C .盈利2%D .少赚2%2.下列各数:1.414,13-,0,其中是无理数的是( ).A .1.414BC .13-D .0 3.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ).(第3题) A . B . C . D . 4.把50.2210⨯改写成科学计数法的形式,正确的是( ).A .2.2×103B . 2.2×104C .2.2×105D .2.2×1065.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ).A .a b >B .a b =C .a b <D .180b a =+6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ).A .甲组B .乙组C .丙组D .丁组 7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ).A .B .C .D .8.分式方程2112x x -=-的解为 ( ). A .1x =- B .12x =C .1x =D .2x = 9.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( ). A .42NOQ ∠= B .132NOP ∠=C .PON ∠比MOQ ∠大D .MOQ ∠与MOP ∠互补10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ). A .垂线段最短 B .经过一点有无数条直线 C .经过两点,有且仅有一条直线 D .两点之间,线段最短11.在6月26日“国际禁毒日”临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ).A . 18B .19C .20D .2112.任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示,若连接EH ,HF ,FG ,GE ,则下列结论中,不一定...正确的是( ). A .△EGH 为等腰三角形 B .△EGF 为等边三角形 C .四边形EGFH 为菱形 D .△EHF 为等腰三角形(第13题)13.在公园的O 处附近有E ,F ,G ,H 四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E ,F ,G ,H 四棵树中需要被移除的为( ).A .E ,F ,GB .F ,G ,HC .G ,H ,ED .H ,E ,F 14.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a b -,x y -,x y +,a b +,22x y -,22a b -分别对应下列六个字:昌、爱、我、宜、游、美.现将()()222222x ya xy b ---因式分解,结果..呈现的密码信息可能是( ) . A .我爱美 B .宜昌游 C .爱我宜昌 D .美我宜昌15.函数21y x =+的图像可能是( ) .二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)计算:()23214⎛⎫-⨯-⎪⎝⎭.17.(6分)先化简,再求值:()()42112x x x x ⋅+--,其中140x =.18.(7分)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等.AC ,BD 相交于O ,OD ⊥CD 垂足为D .已知AB =20米.请根据上述信息求标语CD 的长度.(第18题)19.(7分)如图,直线y =+A ,B 两点.(1)求∠ABO 的度数;(2)过点A 的直线l 交轴正半轴于C ,AB =AC ,求直线l 的函数解析式.(第19题)20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个.食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.21.(8分)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB .连接AC ,AD ,OD ,其中AC =CD .过点B 的切线交CD 的延长线于E .(1)求证:DA 平分∠CDO ;(2)若AB =12,求图中阴影部分的周长之和(参考数据: 3.1π≈1.4≈1.7≈).(第21题)22.(10分)某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.23.(11分)在△ABC中,AB=6,AC=8,BC=10.D是△ABC内部或BC边上的一个k ),动点(与B,C不重合).以D为顶点作△DEF,使△DEF∽△ABC(相似比1EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH,①如图1,连接GH,AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.(第23题图1)(第23题图2供参考用)(第23题图3供参考用)24.(12分)已知抛物线()()2213y x m x m m =+++-(m 为常数,14m -≤≤),A (1m --,1y ),B (2m,2y ),C (m -,3y )是该抛物线上不同的三点.现将抛物线的对称轴绕坐标原点O 逆时针旋转90°得到直线a ,过抛物线顶点P 作PH ⊥a 于H . (1)用含m 的代数式表示抛物线的顶点坐标;(2)若无论m 取何值,抛物线与直线y x km =-(k 为常数)有且仅有一个公共点,求k 的值;(3)当16PH <≤时,试比较1y ,2y ,3y 之间的大小.(第24题)。

湖北省宜昌 八年级(上)期中数学试卷(含答案)

湖北省宜昌 八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()的木棒.A. 10cmB. 20cmC. 50cmD. 60cm2.△ABC中,若∠A=60゜,∠B=65゜,则∠C等于()A. 65゜B. 55゜C. 45゜D. 75゜3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. ∠BCA=∠DCAB. ∠BAC=∠DACC. ∠B=∠D=90∘D. CB=CD4.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A. 9B. 12C. 7或9D. 9或125.一个多边形的内角和比外角和的3倍多180度,那么这个多边形的边数是()A. 7B. 8C. 9D. 106.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A. −1B. −7C. 1D. 77.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A. 6个B. 5个C. 4个D. 3个8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A. 30∘B. 45∘C. 60∘D. 75∘9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A. 30∘B. 45∘C. 60∘D. 75∘10.下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的二倍D. 等腰三角形的两个底角相等二、填空题(本大题共5小题,共15.0分)11.如图所示的方格中,∠1+∠2+∠3= 度.12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于______度.13.如图所示,已知∠A=27°,∠CBE=90°,∠C=30°,则∠D的度数为______度.14.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是______.15.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,则∠ACB的度数为______度.三、解答题(本大题共9小题,共75.0分)16.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠A=∠F.17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.18.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.19.如图,某货轮上午8时20分从A处出发,此时观测到海岛B的方位为北偏东60°,该货轮以每小时30海里的速度向东航行到C处,此时观测到海岛B的方位为北偏东30°,继续向东航行到D处,观测到海岛B的方位为北偏西30°.当货轮到达C 处时恰好与海岛B相距60海里,求该货轮到到达C,D处的时间.20.如图,△ABC中,∠BAC的角平分线AD和线段BC的垂直平分线FD相交于点D,DE⊥AC于点E.求证:AB+AC=2AE.21.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.22.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)设第一次书包的进价为x元/个,则第二次的进价为______元/个;设第一次购进书包y个,则第二次购进书包______个.(直接写答案)(2)根据(1)设的未知数,列方程组并解答:第一次每个书包的进价是多少元?(3)在第二次的销售过程中,若按80/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求利润不少于480元,问最低可打几折?23.如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;AF.(2)HE=1224.已知,点A,B分别在x轴,y轴上,K(2,2)是边AB上的一点,CK⊥AB交x轴于C.(1)如图①,求OB+OC的值;(2)如图②,延长KC交y轴于D,求S△ACK-S△OCD的值;(3)如图③,点P为AK上任意一点(P不与A,K重合),过A作AE⊥DP于E,连EK,求∠DEK的度数.答案和解析1.【答案】B【解析】解:设第三边的长为xcm,则30-20<x<30+20,10<x<50,四个选顶中只有答案B是20cm,在这个范围内,故选B.根据两边之和大于第三边,两边之差小于第三边,得出第三边x的取值为:10<x<50,作出判断.本题考查了三角形的三边关系,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.2.【答案】B【解析】解:∵∠A+∠B+∠C=180゜,∴∠C=180゜-60°-65°=55°.故选B.直接根据三角形内角和定理计算.本题考查了三角形内角和定理:三角形内角和是180°.3.【答案】A【解析】解:A、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故A选项符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故D选项不符合题意;故选:A.本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】B【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:根据题意可得:(n-2)•180°=3×360°+180°,解得:n=9.经检验n=9符合题意,所以这个多边形的边数是9.故选C.多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.本题考查了多边形内角与外角,解答本题的关键在于结合多边形的内角和公式寻求等量关系并构建方程.6.【答案】A【解析】解:∵点A(m-1,3)与点B(2,n+1)关于x轴对称,∴,∴,∴m+n=3+(-4)=-1.故选A.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.本题考查了对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】B【解析】解:图中45°的角有∠CBC',∠ABE,∠AEB,∠EDC′,∠DEC′.共5个.故选B.根据折叠的性质,∠CBC′=45°;∴∠ABE=∠AEB=∠EDC′=∠DEC′=45°.本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.8.【答案】B【解析】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°-∠A)=(180°-30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°-2∠ACB=180°-2×75°=30°,∴∠ACD=∠ABC-∠BCD=75°-30°=45°.故选:B.根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD=∠ABC-∠BCD计算即可得解.本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.9.【答案】D【解析】解:∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选D.根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.本题考查的是三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.10.【答案】D【解析】解:A、应为等腰三角形底边上的高、中线、顶角平分线互相重合,故错误;B、顶角相等的两个等腰三角形,若对应边不等,则不全等,故错误;C、等腰三角形中腰可以是底边的2倍的,故错误;D、等腰三角形的两个底角相等是正确.故选D.根据等腰三角形的性质分析各个选项.本题考查了对等腰三角形的性质的正确理解.11.【答案】135【解析】【分析】本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.【解答】解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△EDA(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135.12.【答案】72【解析】解:正五边形的一个内角为108°,正方形的每个内角是90°,所以∠α=360°-108°-90°-90°=72°.先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可.主要考查了多边形的内角和.多边形内角和公式:(n-2)•180°.13.【答案】33【解析】解:∵∠DFC=∠A+∠C=27°+30°=57°,∵∠FBD=∠CBE=90°,∴∠D=90°-∠DFB=33°,故答案为:33.根据外角的性质得到∠DFC=∠A+∠C=27°+30°=57°,由对顶角的性质得到∠FBD=∠CBE=90°,根据三角形的内角和即可得到结论.本题考查了三角形的内角和,三角形的外角的性质,熟练掌握三角形的内角和是解题的关键.14.【答案】33【解析】解:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×22×3=33.故答案为:33.根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15.【答案】70【解析】解:∵DA=DB=DC,∴∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,∴∠ACB=x+y,∵∠DAB=20°,∴∠ABD=20°,∵∠ABC+∠ACB+∠BAC=180°,∴20+y+x+y+20+x=180,x+y=70,∴∠ACB=70°,故答案为:70.先根据等边对等角得:∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,根据三角形的内角和列方程得:20+y+x+y+20+x=180,则x+y=70,所以∠ACB=70°.本题考查了等腰三角形的性质,明确等边对等角是本题的关键,还利用了整体的思想解决问题.16.【答案】证明:∵点B,C,D,E在同一直线上,BC=DE,∴BC+CD=DE+CD,即:BD=CE,在△ABD与△FEC中,∴ AB=FE∠B=∠E BD=CE,∴△ABD≌△FEC(SAS),∴∠A=∠F.【解析】先根据SAS判定△ABD≌△FEC,再根据全等三角形的对应角相等,得出∠A=∠F.本题主要考查了全等三角形的判定与性质的综合应用,解题时注意:两边及其夹角对应相等的两个三角形全等.17.【答案】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°-∠A=90°-30°=60°,∴∠CBD=∠ABC-∠ABD=60°-30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.【答案】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【解析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.19.【答案】解:由己知,得∠BAC=30°,∠ACB=120°,∠BCD=∠BDC=60°∴∠ABC=∠BAC=30°∴AC=BC=60(海里)∠CBD=60°∴t1=60÷30=2(小时)∴△BCD是等边三角形∴BC=CD=60(海里)∴t2=60÷30=2(小时),∴t3=2+2=4(小时).答:轮船到达C处是上午10时20分,轮船到达D处的时间是下午12时20分.或轮船到达C处用了2小时,到达D处用了4小时.【解析】根据题意,求得已知角的度数,根据特殊角的三角函数值求得AC、BC的值,从而求得CD的值,根据行程问题的求法再求轮船到达C处和D处的时间即可.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.【答案】证明:连接DB、DC,作DM⊥AB于M.∵FD是BC的垂直平分线,∴BD=CD,∵AD平分∠BAC,DM⊥AB,DE⊥AC,∴DM=DE,∠DMB=∠CED=90°,在Rt△DMB和Rt△DNC中,BD=DCDM=DE∴Rt△DMB≌Rt△DEC(HL),∴BM=CE,在Rt△ADM和Rt△ADE中,AD=AD,DM=DE∴△ADM≌△ADE,∴AM=AE,∴AB+AC=(AM-BM)+(AE+EC)=2AE.【解析】连接DB、DC,作DM⊥AB于M.根据HL证出Rt△DMB≌Rt△DNC,Rt△ADM≌△ADE即可.本题考查了全等三角形的性质和判定,线段的垂直平分线性质,角平分线的性质的应用,解题的关键是灵活运用所学知识,熟练掌握全等三角形的判定和性质,属于中考常考题型.21.【答案】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,AC=AB∠C=∠BAE,CD=AE∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°-∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【解析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.22.【答案】1.2x;(y-20)【解析】解:(1)设第一次书包的进价为x元/个,则第二次的进价为1.2x元/个;设第一次购进书包y个,则第二次购进书包(y-20)个.(直接写答案)故答案是:1.2x;(y-20);(2)设第一次每个书包的进价是x元,-20=,x=50.经检验得出x=50是原方程的解,且符合题意,即:第一次书包的进价是50元.设最低可以打z折.2400÷(50×1.2)=4080×20+80×0.1z•20-2400≥480y≥8故最低打8折.(1)根据信息“第一次每个书包的进价是x元,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个”填空.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.23.【答案】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=45°,∴∠ACB=∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°.(2)连结HB,∵AB=AC,AE平分∠BAC,∴AE⊥BC,BE=CE,∴∠CAE+∠C=90°,∵BD⊥AC,∴∠CBD+∠C=90°,∴∠CAE=∠CBD,∵BD⊥AC,D为垂足,∴∠DAB+∠DBA=90°,∵∠DAB=45°,∴∠DBA=45°,∴∠DBA=∠DAB,∴DA=DB,在Rt△BDC和Rt△ADF中,∠BDC=∠ADFBD=AD∠CAE=∠CBD∴Rt△BDC≌Rt△ADF(ASA),∴BC=AF,∵DA=DB,点G为AB的中点,∴DG垂直平分AB,∵点H在DG上,∴HA=HB,∴∠HAB=∠HBA=12∠BAC=22.5°,∴∠BHE=∠HAB+∠HBA=45°,∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,∴∠BHE=∠HBE,∴HE=BE=12BC,∵AF=BC,∴HE=1AF.2【解析】(1)根据等腰三角形性质和三角形内角和定理求出即可;(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理等知识点的应用,主要考查学生的推理能力,难度偏大.24.【答案】解:(1)如图①,过K作KM⊥x轴,KN⊥y轴,垂足分别为M、N,则∠KNO=∠KMO=90°,∵∠BOA=90°,∴四边形OMKN是矩形,∴∠NKM=90°,∴∠NKC+∠CKM=90°,∵K(2,2),∴KM=KN=2,∴矩形OMKN是正方形,∴OM=ON=2,∵CK⊥AB,∴∠BKN+∠NKC=90°,∴∠BKN=∠CKM,∵∠KNB=∠CMK=90°,∴△KNB≌△KMC,∴CM=BN,∴OB+OC=ON+BN+OC=ON+CM+OC=ON+OM=2+2=4;(2)如图2,∵∠AKC=∠MKN=90°,∴∠AKM=∠NKD=90°-∠CKM,∵∠KND=∠KMA=90°,KM=KN,∴△AMK≌△DNK,∴S△AMK=S△DNK,∴S△ACK-S△OCD=S△AMK+S△CKM-S△OCD,=S△DNK+S△CKM-S△OCD,=S正方形OMKN+S△OCD-S△OCD,=2×2,=4.(3)由(2)得:△AMK≌△DNK,∴AK=DK,在DE上截取DF=AE,连接KF,∵AE⊥EF,DK⊥AB,∴∠DKP=∠AEP=90°,∵∠KPD=∠EPA,∴∠KDF=∠KAE,∴△KDF≌△KAE,∴KF=KE,∠DKF=∠AKE,∵∠DKP=90°,∴∠DKF+∠FKP=∠AKE+∠FKP=∠FKE=90°,∴△FKE是等腰直角三角形,∴∠DEK=45°.【解析】(1)如图①,作辅助线,构建全等三角形,先证明四边形OMKN为正方形得:OM=ON=2,再证明△KNB≌△KMC,则CM=BN,代入OB+OC中可得结论;(2)如图②,证明△AMK≌△DNK,则S△AMK=S△DNK,所以S△ACK-S△OCD拆成和与差的形式并等量代换得结果为4;(3)如图③,作辅助线,构建全等三角形,证明△KDF≌△KAE,得KF=KE,∠DKF=∠AKE,再得△FKE是等腰直角三角形,所以∠DEK=45°.本题是三角形的综合题,考查了全等三角形、正方形、矩形的性质和判定;以证明三角形全等为关键,利用全等三角形对应边相等和对应角相等得出边与角的关系;同时利用了全等三角形的面积也相等,在求解三角形面积的差时,利用三角形面积相等关系进行变形并加减得出与正方形的面积相等,从而得出结论.。

2016~2017年秋季宜昌市八年级数学期中考试试卷及答案

2016~2017年秋季宜昌市八年级数学期中考试试卷及答案

八年级数学试题 第 1 页 共 3 页宜昌市2017年秋季学期期中考试八年级数 学 试 题(考试形式:闭卷 全卷共二大题24小题 卷面分数:120分 考试时限:120分钟)考生注意:请将解答结果填写在答题卡上相应的位置,否则答案无效,交卷时只交答题卡. 一、选择题。

( 本大题共15小题,每小题3分,计45分) 1、4的算术平方根是( ) A .2±B .2C .2±D .22、在实数0,1,2,π,0.1235中,无理数的个数为( ) A . 0个 B . 1个 C . 2个 D . 3个3、下列不能构成直角三角形的三边的长度是( ) A . 3、4、5 B .5、12、13 C .1、2、3 D .2 、3、54、327-的绝对值是( ) A .3B .3-C .13D .13-5、等腰直角三角形的三边之比为:( )A . 2:1:1B .2:1:1C . 2:2:1D . 2:2:3 6、下面计算正确的是( ) A . 3333=+ B .3327=÷ C . 532=⋅ D .24±=7、将图1所示的图案通过平移后可以得到的图案是( )8、下列命题中错误的是( )A .两组对边分别相等的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一组邻边相等的矩形是正方形D .对角线垂直的四边形是菱形 9、矩形具有而平行四边形不一定具有的特征( )A .对角线相等B .对边相等C .对角相等D .对角线互相平分10、已知ABCD 中,不能..判断该平行四边形是菱形的条件是( ) A .BD AC =B . BD AC ⊥ C .BC AB =D .AC 平分BAD ∠11、如下图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°12、如上图,ABCD 中,已知AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则CE 等于( ) A .5cmB .4cmC .6cmD .8cm13、如上图在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,△M 1N 1P 1,则其旋转中心可能是 ( )A .点AB .点BC .点CD .点D14、如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )15、如图,已知矩形ABCD ,将BCD △沿对角线BD 折叠,记点C 的对应点为C ′,若︒=∠20'ADC ,则BDC ∠的度数为( )A .︒55B .︒45C . ︒60D . ︒65 二、解答题.(本大题共9小题,计75分)16、化简:21636-⨯;(6分) 17、已知,如图,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.AB CDE F八年级数学试题 第 2 页 共 3 页求证:AE CF =. (6分)18、已知ABCD 的对角BAD ∠和BCD ∠互补.(1)求BAD ∠的度数;(3分)(2)若,33,13x BD x AC -+=++=,求x 的值.(4分)19、“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪正前方30米的点C 处(AC 与BC 垂直),过了2秒后,测得小汽车与车速检测仪A 间距离AB 为50米,这辆小汽车超速了吗?(7分)20、如图ABC Rt ∆中,︒=∠90C ,将ABC Rt ∆绕A 点旋转后,顶点B 的对应点为点D ,(1)请用直尺和圆规作出旋转后的ADE ∆;(3分)(不写作法,保留痕迹)(2)延长BC 和ED 交于点F ,若︒=∠90BAD ,说明四边形ACFE 是什么四边形?(5分)21、如图O 是菱形ABCD 的对角线的交点,作BD CE AC DE //,//,CE DE ,交于点E .(1)求证:四边形OCED 是矩形;(4分)(2)若菱形ABCD 的周长为20,矩形OCED 的周长为14,求菱形ABCD 的面积.(4分)22、已知:ABC ∆的周长是624+,26,4+==AC AB .(1)判断ABC ∆的形状;(5分)(2)若CD 是AB 上的中线,AB DE ⊥,ACB ∠的平分线交DE 于E ,交AB 于F ,连接BE .求证:DE DC =,并求DBE ∆的面积.(5分)23、如图,已知正方形ABCD ,设AB 、BC 的延长线分别为射线CN BK ,,点F 从A 点沿射线..AB 以一定的速度运动,同时点E 从B 点沿射线..BC 以相同的速度运动,FD 交AE 于点M .(1)求证:BEA AFD ∆≅∆.(3分)(2)在射线EN 的上方以EN 为边作BAE GEN ∠=∠,且使AE EG =.①求证:EGDF 为平行四边形;(5分)②当F E ,两点运动到某时刻时,使得M 为AE 中点,求此时G ∠的度数.(3分)24、我区的自然风光无限,最具特色的是青龙大峡谷()A 和文佛奇峰山()B ,它们位于笔直的高速公路X 同侧,km AB 10=,B A ,到直线X 的距离分别为km AE 5.10=和km BD 5.4=.(1)方案一:旅游开发公司计划在高速公路X 旁修建一服务区C ,并从服务区C 向A 、B 两景区修建笔直公路运送游客.公司选择较节省的方案(如图1:点B 关于直线X 的对称点是1B ,连接1AB 交直线X 于点C ),C 到A 、B 的距离之和BC AC S +=1,求1S .(6分)(2)方案二:在B A ,两景区之间有一条与高速公路X 垂直的省级公路Y ,且A 到省级公路Y 的距离km AH 7=(如图(2),)旅游开发公司打算在省级公路Y 旁修建一服务区P ,并从服务区P 向A 、B 两景区修建笔直公路运送游客.由于地形条件的限制,P 只能选择图2的位置,通过测量得PB PA =,P 到A 、B 的距离之和BP AP S +=2.请你通过计算比较21,S S 的大小.(6分)( 参考数据:414.12≈)XAE 10.5104.5图2B D HpY7ABCDF EM GKN第23题ABC DEFABCDOEABCDO第21题第18题第19题第17题 第20题AC 第22题第3 页共3 页一、选择题二、解答题16、017、略18、BCD∠=90°x=119、BC=40米v=72千米/小时>70千米/小时,超速了20、(1)略(2)四边形ACFE是正方形21、(1)略,(2)菱形ABCD的面积=2422、(1)ABC∆是直角三角形(2)提示:过点C作CM⊥AB交AB于M,可得CM∥DE,则∠DEF=∠MCF,又可得∠DCF=∠MCF,∴∠DCF=∠DEF,∴DEDC=。

湖北省 八年级(上)期中数学试卷-(含答案)

湖北省 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A. 2B. 3C. 4D. 83.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形4.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A. 4个B. 3个C. 2个D. 1个5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.B.C.D.6.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.B. 8C. 15D. 无法确定7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5B. 4C. 3D. 28.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A. B. C. D.二、填空题(本大题共7小题,共21.0分)9.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2+3= ______ .10.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为______ .11.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是______ .12.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=cm.13.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠1=20°,则∠2的度数为______.14.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为______ .15.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=______度.三、计算题(本大题共1小题,共11.0分)16.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是____; ②当∠BAD=∠ABD时,x=____;当∠BAD=∠BDA时,x=____;(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.四、解答题(本大题共7小题,共64.0分)17.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.求证:△BAE≌△CAD.18.如图,在△ABC中,∠A=46°,CE是∠ACB的平分线,点B、C、D在同一条直线上,FD∥EC,∠D=42°,求∠B的度数.19.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.21.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE求证:(1)AE=CF;(2)AE∥CF(3)∠AFE=∠CEF.22.已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.(1)求证:△ACE≌△BCD;(2)猜想:△DCE是______ 三角形;并说明理由.23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.答案和解析1.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】C【解析】解:由题意,令第三边为X,则5-3<X<5+3,即2<X<8,∵第三边长为偶数,∴第三边长是4或6.∴三角形的第三边长可以为4.故选C.根据三角形三边关系,可令第三边为X,则5-3<X<5+3,即2<X<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.3.【答案】C【解析】解:设所求正n边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.此题可以利用多边形的外角和和内角和定理求解.本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°.4.【答案】B【解析】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.5.【答案】A【解析】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.6.【答案】A【解析】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC•DE=×5×3=7.5.故选:A.如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.7.【答案】B【解析】解:如图,过D作于G,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.【答案】B【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.【答案】19【解析】解:∵点M(2,a+3)与点N(2,2a-15)关于x轴对称,∴a+3+2a-15=0,解得:a=4,∴a2+3=19,故答案为:19.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a+3+2a-15=0,再解方程即可.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.10.【答案】15°【解析】解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°.故答案为:15°.根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°-∠2计算即可得解.本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.11.【答案】65°【解析】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.本题考查了全等三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.12.【答案】7【解析】【分析】此题主要考查线段的垂直平分线的性质等几何知识;利用垂直平分线的性质后进行线段的等量代换是正确解答本题的关键.由已知条件,根据垂直平分线的性质得到AD=BD,进行等量代换后可得答案.【解答】解:∵DE为AB边的垂直平分线∴DA=DB∵△ACD的周长为7cm∴AD+AC+CD=AC+BC=7.故答案为7.13.【答案】100°【解析】【分析】本题考查了折叠前后两图形全等,即对应角相等,对应线段相等,也考查了三角形的内角和定理以及外角性质.先根据三角形的内角和定理可求出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,最后利用三角形的内角和定理以及外角性质计算即可.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°,∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠4=120°,∵∠A+∠B+∠4+∠2=360°,∴∠2=100°.故答案为100°.14.【答案】32【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15.【答案】36【解析】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n-2).16.【答案】(1)20°;120;60.(2)①当点D在线段OB上时,∵OE是∠MON的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20,若∠BAD=∠BDA=(180°-70°)=55°,则x=35,若∠ADB=∠ABD=70°,则∠BAD=180°-2×70°=40°,∴x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA=35°,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20、35、50、125.【解析】解:(1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°.②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAB=140°,∴∠OAC=∠OAB-∠BAD=120°.∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=∠OAB-∠BAD=60°.故答案为:①20°,②120,60.(2)根据D点在线段OB和在射线BE上两种情况来讨论,具体解答请参看答案.利用角平分线的性质求出∠ABO的度数是关键,分类讨论的思想.本题考查了三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.17.【答案】证明:∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中,∴△BAE≌△CAD(SAS).【解析】根据等腰直角三角形的性质和全等三角形的判定定理SAS可以得出:△BAE≌△CAD.本题主要考查全等三角形的判定与性质及等腰三角形的性质;充分利用等腰直角三角形的性质是解答本题的关键.18.【答案】解:∵FD∥EC,∠D=42°,∴∠BCE=∠D=42°,∵CE是∠ACB的平分线,∴∠ACB=2∠BCE=84°,∵∠A=46°,∴∠B=180°-84°-46°=50°.【解析】根据平行线的性质得出∠BCE的度数,进而利用角平分线的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出∠BCE的度数.19.【答案】(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°.【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.【答案】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.【解析】(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.21.【答案】解:(1)∵BF=DE,∴BF+EF=DE+EF,即BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF;(2)由(1)知:△ABE≌△CDF,∴∠AEB=∠CFD,∴AE∥CF;(3)在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠DEC,∴∠AFE=∠CEF.【解析】(1)易证BE=DF,即可求证△ABE≌△CDF,即可解题;(2)根据(1)中的△ABE≌△CDF可得∠AEB=∠CFD,即可解题(3)根据全等三角形的性质得到∠AFB=∠DEC,根据邻补角的定义即可得到结论.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABE≌△CDF是解题的关键.22.【答案】等腰直角【解析】(1)证明:∵∠ACB=90°,AC=BC,∴∠B=∠2=45°.∵AE⊥AB,∴∠1+∠2=90°.∴∠1=45°.∴∠1=∠B.在△ACE和△BCD中,∵∴△ACE≌△BCD(SAS).(2)猜想:△DCE是等腰直角三角形;理由说明:∵△ACE≌△BCD,∴CE=CD,∠3=∠4.∵∠4+∠5=90°,∴∠3+∠5=90°.即∠ECD=90°.∴△DCE是等腰直角三角形.(1)由已知可得△ABC是等腰直角三角形,由AE⊥AB即可得到∠1=∠B,从而可利用SAS判定△ACE≌△BCD.(2)根据已知可猜想其为等腰直角三角形,由第一问可得CE=CD,∠3=∠4,根据等角的性质可推出∠ECD=90°,从而即得到了答案.此题主要考查学生对全等三角形的判定方法及等腰直角三角形的判定的综合运用.23.【答案】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【解析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.。

湖北省宜昌市八年级上学期期中数学试卷

湖北省宜昌市八年级上学期期中数学试卷

湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共8题;共9分)1. (1分) (2020七下·揭阳期末) 若m(m-2)=3,则(m-1)²的值是________2. (1分)(2020·杭州模拟) 如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为________.3. (1分) (2022七上·滨江期末) 计算: ________(结果用科学记数法表示).4. (1分) (2019九上·虹口期末) 定义:如果△ABC内有一点P ,满足∠PAC=∠PCB=∠PBA ,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA=2,那么PC=________.5. (1分)如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=________.6. (2分)计算:①a5•a3•a=________②(a5)3÷a6=________7. (1分) (2020八上·广元期末) 如图,已知中,,于D ,于E , BD、CE交于点F ,、的平分线交于点O ,则的度数为________.8. (1分) (2017八下·岳池期中) 在平面直角坐标系中有以下几点:A(0,0),B(2,3),C(4,0),若以A、B、C为顶点,作一个平行四边形,请写出第四个顶点的位置坐标________.二、选择题 (共8题;共16分)9. (2分)下列图形中,是轴对称图形的是()A .B .C .D .10. (2分)如图,小明把一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法()A . 选①去B . 选②去C . 选③去D . 选④去11. (2分) (2017八上·平邑期末) 下列运算结果正确的是()A .B .C .D .12. (2分)(2019·湘西) 已知一个多边形的内角和是1080°,则这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形13. (2分)(2018·平南模拟) 若一个等腰三角形的两边长分别为和,则这个等腰三角形的周长是为().A .B .C . 或D . 或14. (2分)(2019·东阳模拟) 如图,DE∥GF,A在DE上,C在GF上△ABC为等边三角形,其中∠EAC=80°,则∠BCG度数为()A . 20°B . 10°C . 25°D . 30°15. (2分)如图所示,△ABC中,AB=BC=AC,BD=CE,AD与BE相交于点P,则∠APE的度数是()A . 45°B . 55°C . 75°D . 60°16. (2分)(2020·南充模拟) 如图,正方形中,点E是边的中点.将沿对折至,延长交边于点G,连接, .下列结论:① ;② ;③ ;④ .其中正确的有()A . ①②B . ①③④C . ②③④D . ①②③④三、解答题 (共8题;共47分)17. (10分) (2017七上·昆明期中) 已知某个长方形的周长为6m,长为2m+n.(1)用含m,n的整式表示该长方形的宽;(2)若m,n满足(m-6)2+|n-4|=0,求该长方形的面积.18. (5分)(1)分解因式:12a2﹣27b2(2)计算:x2+y2﹣(x+y)219. (10分) (2019八上·黔南期末) 如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),a(2,0),c(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法),并写出点A1 , B1 , C1的坐标;(2)求△ABC的面积.20. (5分)如图,线段AC,BD相交于点O,AB //CD, :A B=CD.线段AC上的两点E,F关于点O中心对称.求证:BF=DE.21. (5分) (2018八上·易门期中) 如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数。

湖北初二初中数学期中考试带答案解析

湖北初二初中数学期中考试带答案解析

湖北初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列式子是分式的是( )A.B.C.D.2.当分式的值为0时,x的值是(◆)A.0B.1C.-1D.-23.分式、、的最简公分母是(◆)A.B.C.D.4.计算–的结果为(◆)A.B.-C.-1D.1-a5.下列关系式中,哪个等式表示是的反比例函数(◆)A.B.C.D.6.反比例函数y=的图象位于(◆)A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限7.已知点A(-1,5)在反比例函数的图象上,则该函数的解析式为(◆)A.B.C.D.8.下列是勾股数的一组是(◆)A.4,5,6B.5,7,12C.12, 13,15D.21,28,359.在△ABC中,AB=12cm, BC=16cm, AC=20cm,则△ABC的面积是(◆)A.96cm2B.120cm2C.160cm2D.200cm210.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是(◆)A .40 cmB .cmC .20 cmD .cm二、填空题1.当= 时,分式的值为零.2.将分式约分后得 .3.计算:= .4.反比例函数中,比例系数= ;5.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为______ __.6.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 .7.函数 的图象,在每一象限内, y 随x 的增大而 (填“增大”或“减小”);8.已知圆柱的体积是50,若圆柱底面积为S ,高为 ,则与S 的函数关系式是 .9.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为_____ ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省宜昌二十五中八年级(上)期中数学试卷一、选择题(每小题3分,共计45分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.2.(3分)点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.(3分)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm4.(3分)下列各组数可能是一个三角形的边长的是()A.1 2 4 B.4 5 9 C.4 6 8 D.5 5 115.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个 B.2个 C.3个 D.4个6.(3分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A.15:01 B.10:51 C.10:21 D.12:017.(3分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS8.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°9.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.10.(3分)若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是()A.30°B.45°C.60°D.90°11.(3分)关于三角形的角平分线和中线,下列说法正确的是()A.都是直线B.都是射线C.都是线段D.可以是射线也可以是线段12.(3分)系统找不到该试题13.(3分)如图,△ABC沿BC折叠,使点A与点D重合,则△ABC≌△DBC,其中∠ABC的对应角为()A.∠ACB B.∠BCD C.∠BDC D.∠DBC14.(3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm15.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P 旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰=S△ABC;④BE+CF=EF.上述结论中始终正确的有()直角三角形;③2S四边形AEPFA.4个 B.3个 C.2个 D.1个二、解答题:(本大题共有9个小题,共计75分)16.一个多边形的内角和是外角和的2倍,它是几边形?17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.18.如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.19.将长方形ABCD按如图所示沿EF所在直线折叠,点C落在AD上的点C′处,点D落在点D′处.(1)求证:△EFC′是等腰三角形.(2)如果∠1=65°,求∠2的度数.20.已知:如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,AE=BE.(1)猜想:∠B的度数,并证明你的猜想.(2)如果AC=3cm,CD=2cm,求△ABD的面积.21.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?22.图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF+BF=AF.23.如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC.(1)求C点的坐标;(2)在y轴右侧的平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②延长CE交BA的延长线于点F,补全图形,探究BD与EC的数量关系,并证明你的结论;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2016-2017学年湖北省宜昌二十五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计45分)1.(3分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(3分)点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.3.(3分)已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选:B.4.(3分)下列各组数可能是一个三角形的边长的是()A.1 2 4 B.4 5 9 C.4 6 8 D.5 5 11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.5.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.6.(3分)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是()A.15:01 B.10:51 C.10:21 D.12:01【解答】解:电子表的实际时刻是10:21.故选:C.7.(3分)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.8.(3分)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.9.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.10.(3分)若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是()A.30°B.45°C.60°D.90°【解答】解:设这三个内角分别为x,2x,3x,由题意得,x+2x+3x=180°,解得:x=30°,即最小角为30°.故选:A.11.(3分)关于三角形的角平分线和中线,下列说法正确的是()A.都是直线B.都是射线C.都是线段D.可以是射线也可以是线段【解答】解:三角形的角平分线和中线都是线段.故选:C.12.(3分)系统找不到该试题13.(3分)如图,△ABC沿BC折叠,使点A与点D重合,则△ABC≌△DBC,其中∠ABC的对应角为()A.∠ACB B.∠BCD C.∠BDC D.∠DBC【解答】解:∵△ABC≌△DBC,∴∠ABC的对应角为∠DBC.故选:D.14.(3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.15.(3分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P 旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰=S△ABC;④BE+CF=EF.上述结论中始终正确的有()直角三角形;③2S四边形AEPFA.4个 B.3个 C.2个 D.1个【解答】解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,在△APE和△CPF中,,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S=S△ABC,①②③正确;四边形AEPF故AE=FC,BE=AF,∴AF+AE>EF,∴BE+CF>EF,故④不成立.始终正确的是①②③.故选:B.二、解答题:(本大题共有9个小题,共计75分)16.一个多边形的内角和是外角和的2倍,它是几边形?【解答】解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故是六边形.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.=×5×3=(或7.5)(平方单位).【解答】解:(1)S△ABC(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).18.如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.【解答】证明:在△ADB和△BCA中,AD=BC,AC=BD,AB=BA,∴△ADB≌△BCA(SSS).∴∠DBA=∠CAB.∴AE=BE.∴△EAB是等腰三角形.19.将长方形ABCD按如图所示沿EF所在直线折叠,点C落在AD上的点C′处,点D落在点D′处.(1)求证:△EFC′是等腰三角形.(2)如果∠1=65°,求∠2的度数.【解答】(1)证明:四边形EFC′D′是将长方形ABCD中的四边形CDEF沿EF所在直线折叠得到的,∴∠EFC′=∠1,∵AD∥BC,∴∠1=∠FBC′,∴∠EFC′=′FEC′,∴FC′=EC′,∴△EFC′是等腰三角形;(2)解:∵∠1=∠FEC′=∠EFC′,∠1=65°,∴∠EC′F=180°﹣∠FEC′﹣∠EFC′=180°﹣65°=65°=50°,∵∠D′C′F=∠2+∠EC′F=∠C=90°,∴∠2=90°﹣∠EC′F=40°,∴∠2=50°.20.已知:如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,AE=BE.(1)猜想:∠B的度数,并证明你的猜想.(2)如果AC=3cm,CD=2cm,求△ABD的面积.【解答】解:(1)猜想:∠B=30°,∵DE⊥AB且AE=BE,∴AD=BD,∴∠B=∠DAE,∵AD是△ABC的角平分线,∴∠DAE=∠DAC,∴∠B=∠DAE=∠DAC,∵∠C=90°,∴∠B+∠DAE+∠DAC=90°,∴∠B=30°;(2)∵∠C=90°,AD是△ABC的角平分线,DE⊥AB,在Rt△ACD与Rt△AED中,,∴Rt△ACD≌Rt△AED,∴AE=AC=3cm,DE=CD=2cm,∵AE=BE,∴AB=2AE=2×3=6,=AB•DE=×6×2=6cm2.∴S△ABD21.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B(9分)∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.22.图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF+BF=AF.【解答】证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,在△ABD和△CBE中,∵,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE,∴∠BCE=∠DAB,∵∠ABC=∠BCE+∠CEB=60°,∴∠ABC=∠DAB+∠CEB=60°,∵∠CFA=∠DAB+∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°,∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB+∠BCE=60°,∵∠ACB=60°,∴∠ACG+∠GCB=60°,∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,∵AF=AG+GF,∴AF=BF+CF.23.如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC.(1)求C点的坐标;(2)在y轴右侧的平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由.【解答】解:(1)过点C作CD⊥y轴于点D,如图1所示.∵△ABC为等腰直角三角形,∴∠ABC=90°,AB=BC.∵CD⊥BD,BO⊥AO,∴∠CDB=∠BOA=90°.∵∠CBD+∠ABO=90°,∠CBD+∠BCD=90°,∴∠ABO=∠BCD.在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴BD=AO,CD=BO,∵A(m,0),B(0,n),∴BD=﹣m,CD=n,∴点C的坐标为(﹣n,n﹣m).(2)△PAB与△ABC全等分两种情况:①当∠ABP=90°时,如图2所示.∵∠ABC=∠ABP=90°,△ABC≌△ABP,∴点C、P关于点B对称,∵C(﹣n,n﹣m),B(0,n),∴点P的坐标为(n,n+m);②当∠BAP=90°时,如图3所示.∵△ABC≌△BAP,∴∠ABC=∠BAP=90°,BC=AP,∴BC∥AP,∴四边形APBC为平行四边形.∵A(m,0)、B(0,n),C(﹣n,n﹣m),∴点P的坐标为(m+n,m).综上所述:在y轴右侧的平面内存在一点P,使△PAB与△ABC全等,P点坐标为(n,n+m)或(m+n,m).24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②延长CE交BA的延长线于点F,补全图形,探究BD与EC的数量关系,并证明你的结论;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②BD=2CE.证明:延长CE交BA的延长线于点F,如图1,∵BD平分∠ABC,CE⊥BD,∴CE=FE,在△ABD与△ACF中,,∴△ABD≌△ACF(AAS),∴BD=CF=2CE;(2)结论:BE﹣CE=2AF.证明:过点A作AH⊥AE,交BE于点H,如图2,∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.。

相关文档
最新文档