2019年黑龙江省中考数学模拟预测试卷(附答案)

合集下载

黑龙江省哈尔滨市2019中考模拟测试三数学试题及参考答案

黑龙江省哈尔滨市2019中考模拟测试三数学试题及参考答案

哈尔滨市2019中考模拟测试中考数学(三)考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.考生作答时,请按照题号顺序在答题卡各题目的区域内作答,超出答题卡区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须用2B 铅笔在答题卡上填涂;非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,笔迹清楚.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1.12的相反数是( ) A .12-B .12C .2-D .22.下列运算正确的是( ) A .224x x x += B .222()a b a b -=- C .236()a a -=-D .236326a a a =⋅3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,由八个相同的小正方体搭成的一个几何体,它的俯视图为( )A.B.C.D.5.如图,已知O的直径AB与弦AC的夹角为30︒,过点C的切线PC与AB的延长线交于点P,5PC=,则O的半径为()A B C.10D.56.将抛物线2y x=向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为()A.2(2)3y x=++B.2(2)3y x=-+C.2(2)3y x=+-D.2(2)3y x=--7.分式方程233x x=-的解为()A.0x=B.5x=C.3x=D.9x=8.如图,过矩形ABCD的对角线AC的中点O作EF AC⊥,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB,30DCF∠=︒,则EF的长为()A.2B.3C D9.若反比例函数(0)ky k x =≠的图象经过点(2,3)P -,则该函数的图象不经过的点是( )A .(3,2)-B .(1,6)-C .(1,6)-D .(1,6)--10.如图,D 、E 分别是ABC 的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( ) A .BD EOAD AO=B .CO CECD CB=C .AB COBD OD=D .BD ODBE OE=第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数67500用科掌记数法表示为____________. 12.函数221x y x -=-中,自变量x 的取值范围是____________. 13.把多项式2218a -分解因式的结果是____________. 14.不等式组1,212xx ⎧≥-⎪⎨⎪->-⎩的解集是____________.15____________. 16.二次函数243y x x =--的顶点坐标是___________.17.在一个不透明的袋子中装有红、白两种颜色的球(形状、大小、质地完全相同)共25个,其中白球有5个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中随机摸出一个红球的概率是________. 18.一个扇形的半径为3cm ,面积为22πcm ,则此扇形的圆心角为________度. 19.在ABC 中,AB AC =,30A ∠=︒,E 为直线BC 上一点(点E 不与点B 、C 重合),ABC ∠与ACE ∠的平分线相交于点D ,则BDC ∠的度数为________.20.(香坊名师原创)如图,正方形ABCD,6AB=,E、F为BC边上两点,1EF=,若135AEC BAF∠+∠=︒,则线段AE的长为________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(本题7分)先化简,再求代数式22693111x x x xx x x-+-+÷--+的值,其中2sin30tan60x︒︒=-.22.(本题7分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰Rt MON,使点N在格点上,且90MON∠=︒;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰Rt MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(画出一种即可).23.(本题8分)哈尔滨市礼乐中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成加图所示的两幅不完整的统计图.∠的度数是________;(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,α(2)通过计算补全条形统计图;(3)请你估计全校师生共捐赠了多少本文学类书籍.24.(本题8分)已知四边形ABCD是正方形,AC、BD相交于点O,过点A作BAC∠的平分线分别交BD、BC于点E、F.(1)如图1,求证:2=;CF EO(2)如图2,连接CE,在不添加其他字母和辅助线的条件下,直接写出图中所有的等腰三角形(等腰直角三角形除外).25.(本题10分)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(利润=销售价格-进货价格)(1)求A、B两种型号计算器的销售价格分别是多少元;(2)商场准备用不多于2500元的资金购进A、B两种型号的计算器共70台,问最少需要购进A型号的计算器多少台?26.(本题10分)(香坊名师原创)已知,四边形ABCD 内接于O ,BC CD =,连接AC 、BD 交于点E . (1)如图1,求证:BAC CAD ∠=∠;(2)如图2,过点D 作DF AC ⊥于点F ,若12BAD ACB ACD ∠+∠=∠,求证:2AD AB CF -=;(3)如图3,在(2)的条件下,作MAN CAD ∠=∠,AM 交BD 于点M ,AN 交FD 于点N ,且AM MN =,若65DN =,5AD CF =,求O 的半径.27.(本题10分)(香坊名师原创)如图1,在平面直角坐标系中,直线3y x =+x 轴交于点A ,与y 轴交于点B ,CD AB =,点C ,点D 在x 轴上. (1)求直线BD 的解析式;(2)点E 是直线BD 在第二象限内一点,直线EF BD ⊥交x 轴于点F ,设点E 的横坐标为t ,四边形ABEF 的面积为S ,求S 关于t 的解析式;(3)如图3,在(2)的条件下,P 、Q 是DE 延长线上的两点(点P 在点Q 的右侧),2PQ =,连接FP ,M 是FP 上一点,直线QM 交EF 于点N ,PM PQ =,EF FM =,若9FN =,求t 的值.中考数学(三)一、选择题1.A 2.C 3.A 4.D 5.A 6.B 7.D 8.A 9.D 10.C 二、填空题 11.46.7510⨯12.12x ≠13.2(3)(-3)a a +14.23x -≤<15 16.(2,7)- 17.4518.8019.15︒或105︒20.解析:如图,在CD 上取点M ,使DM BF =,连接AM 、EM ,在CD 延长线上取点N ,使得DN BE =,连接AN .∵正方形ABCD ,∴A B A D=,ADBC ,90BAD B ADC ∠=∠=∠=︒.∴135AEC BAF ∠+∠=︒,180EAD AEC ∠+∠=︒.∴45EAD BAF ∠=∠+︒.∵AD AB =,DM BF =,∴ADM ABF ≅.∴DAM BAF ∠=∠.∴45EAM ∠=.∴45BAE DAM ∠+∠=︒.∵A D A B=,DN BE =,∴D A N B A E≅.∴A N A E =,DAN BAE ∠=∠.∴45DAN DAM ∠+∠=︒.∴易证MAN MAE ≅.∴M N M E B E D M ==+.设D M a =.∵6AB =,1EF =,∴1BE a =+,6MC a =-.∴5E C a =-,21EM MN a ==+.在MEC 中,由勾股定理得222(21)(6)(5)a a a +=-+-,解得115a =-(舍去),22a =.∴3BE =.∴在ABE 中,由勾股定理得AE =三、解答题21.解:原式2(3)13·1(1)(1)31x x x x x x x x -+=+=-+---.∵2sin30tan 601x ︒︒=-==. 22.(1)如图1所示;(2)如图2、图3所示(答案不唯一).23.解:(1)200,40,36︒;(2)4020%200÷=(本),20040802060---=(本),补全图形如图所示; (3)603000900200⨯=(本). 答:估计全校师生共捐赠了900本文学类书籍.24.证明:(1)取AF 的中点M ,连接OM .∵正方形ABCD ,AC 、BD 交于点O ,∴AO OC =,45ACB ABD ∠=∠=︒.∵AM MF =,∴OM CF ,2CF MO =.∴OME AFB ∠=∠.∵AF 平方BAC ∠,∴BAF CAF ∠=∠.∴AFB AEO ∠=∠.∴OME AEO ∠=∠.∴OM OE =.∴2CF EO =. (2)AED ,BEF ,AEC ,DEC .25.解:(1)设A 型号计算器的销售价格是x 元,B 型号计算器的销售价格是y 元,根据题意,得5(30)(40)76,6(30)3(40)120,x y x y -+-=⎧⎨-+-=⎩解得42,56.x y =⎧⎨=⎩答:A 型号计算器的销售价格是42元,B 型号计算器的销售价格是56元.(2)设购进A 型号的计算器a 台,则购进B 型号的计算器(70)a -台.根据题意,得 3040(70)2500a a +-≤,解得30a ≥.答:最少需要购进A 型号的计算器30台.26.(1)证明:∵BC CD =,∴CBD CDB ∠=∠.∵C B D C A D∠=∠,CDB CAB ∠=∠,∴BAC CAD ∠=∠.(2)证明:∵BAC CAD ∠=∠,∴12CBD CAD BAD ∠=∠=∠.∴12BAD ACB DEC ∠+∠=∠.∵12BAD ACB ACD ∠+∠=∠,∴DEC ACD ∠=∠.∵DF AC ⊥,∴DE DC =,AEB ABD ∠=∠.∴AB AE =.∵BAC CAD ∠=∠,ABD ACD ∠=∠,∴AEB AD C ∠=∠.∴AD C ACD ∠=∠.∴AC AD =.∵CD DE =,DF AC ⊥,∴2CE CF =.∴2AD AB AC AE CF -=-=.(3)解:如图,过点M 作MH AN ⊥于点H ,MR AB ⊥于点R .∵5AD CF =,AC AD =,∴设CF a =,则EF a =,5AD a =.∴3AB AE a ==,4AF a =.∴3DF a =. ∴3tan 4CAD ∠=,tan tan 3ABD FCD ∠=∠=. ∵AM MN =,MH AN ⊥,∴AH HN =.∵MAN CAD ∠=∠,∴54AM AH =.∴58AM AN =.∵BAC CAD MAN ∠=∠=∠,∴RAM FAN ∠=∠.∴cos cos RAM FAN ∠=∠.∴AR AFAM AN=.∴58AR AM AF AN ==.∴52A R a =.∴12B R a =.∴3ta n 2M R B R A B D a =⋅∠=.∴3ta n ta n 5F A N R A M ∠=∠=.∵4A F a =,∴12tan 5AF FA a FN N =⋅∠==.∴3655DN DF FN a =-==,解得2a =.∴10AD =. 连接AO 、OD ,过点O 作OK AD ⊥于点K ,则tan tan 3AOK ABD ∠=∠=,5AK =.∴5tan 3AK OK AOK ==∠.∴在RtAOK 中,由勾股定理得AO O27.解:(1)∵36y x =+x 轴交于点A ,与y 轴交于点B ,∴(2A -,B .∵C ,∴CO OA =.∵CD AB =,90AOB COD ∠=∠=︒,∴Rt Rt AOB COD ≅.∴OD OB ==D .设直线BD 的解析式为y kx b =+,把B ,D 代入,解得1k =-,b =.∴y x =-+(2)过点E 作EH DF ⊥于点H .由(1)可知45EDF ∠=︒.∴E D F 是等腰直角三角形.∴2FD EH =.由题意知(,E t t -+,∴EH t =-+∴221·(722EFDSFD EH t t ==-+=-+.∵114822ABDSAD BO =⋅=⨯,∴224EFDABDS SSt =-=-+.(3)如图,过点F 作FR BD 交QM 的延长线于点R ,连接RD ,过点R 作RG FP 交ED 于点G ,在BD 延长线上截取DS FN =,连接RS .∵PQ PM =,∴Q PMQ ∠=∠.∵FR BD ,RGFP ,∴四边形FRGP 是平行四边形,FRN Q ∠=∠,NRC PMQ ∠=∠.∴FRN Q PMQ FMR ∠=∠=∠=∠.∴FE FM FR ==.易得PFE GRD ≅,∴90PEF CDR ∠=∠=︒.∴易证四边形DEFR 是正方形.∴FR DR =.∴R F N R D S≅.∴F N R R S G∠=∠,FRN SRD ∠=∠.∵F N R N R D∠=∠,∴G R S R S G∠=∠.∴F P RG G S ==.设EF a =,则2FP GS a ==+.∵9DS FN ==,∴7PE GD a ==-.∴在Rt EFP 中,由勾股定理得222(7)(2)a a a +-=+,解得115a =,23a =(舍去).∴15ED EF ==.∴DF =t ==。

精编2019级哈尔滨市中考数学模拟试卷(有标准答案)(Word版) (2)

精编2019级哈尔滨市中考数学模拟试卷(有标准答案)(Word版) (2)

黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C. D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F 分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C. D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4 .【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F 分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC =2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE 、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC =AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

黑龙江齐齐哈尔市2019届九年级中考一模考试数学试题及答案

黑龙江齐齐哈尔市2019届九年级中考一模考试数学试题及答案

二O 一九年初中数学试卷一、选择题(每小题3分,满分30分)1.9的平方根是( )A.3B.±3C.-3D.812.下面四个图案中,是中心对称图形的是( )A. B. C. D.3.下列计算正确的是( )A.428a a a -=B.428a a a +=C.()428a a =D.422a a a ÷= 4.代数式2345x x --的值为7,则2453x x --的值为( ) A.4 B.-1 C.-5 D.75.在一个不透明的袋子中有4个除颜色外完全相同的小球,其中白球l 个,黄球l 个,红球2个,先摸出1个球不放回,再摸出1个球,两次都换到红球的概率是( ) A.12 B.13 C.16 D.186.齐齐哈尔市某学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )A.2和2B.4和2C.2和3D.3和27.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°,在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12:00开始到12:30止,y 与t 之间的函数图象是( )A. B. C. D.8.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A.4种B.5种C.6种D.7种9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x=-和2y =的图象交于点A 和点B ,点C 是x 轴上一点,连接AC 、BC ,则ABC 的面积为( )A.3B.4C.5D.6 10.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为(3,0),其部分图象如图所示.现有下列结论:①0abc >;②240b ac -<;③0a b +>:④当0x >时,y 随x 的增大而减小;⑤30a c +=;⑥4c b <.其中正确的结论有( )A.l 个B.2个C.3个D.4个二、填空题(每小题3分,满分21分)11.近年来日本发生的一次地震及海啸给日本带来16万亿日元到25万亿日元的经济损失.25万亿日元用科学记数法表示为__________日元.12.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为__________个.13.如图,在Rt ABC 中,90C ︒∠=,8AC =,6BC =,点D 在AC 上,按图中所示方法将BCD 沿BD 折叠,使点C 落在边AB 上的点C '处,则折痕BD 的长为__________.14.一个圆锥的底面半径为3cm ,将其侧面展开,得到的扇形圆心角为120︒,则此圆锥的母线长为__________cm .15.关于x 的分式方程122a a x -=-的解是正数,则a 的取值范围是__________.16.矩形ABCD 的边6AB =,12BC =,点P 为矩形ABCD 边上一点,连接AP ,若线段AP 、BD 交点为点H ,PAB 为等腰三角形,则AH 的长为__________.17.在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,O 为坐标原点,1OA OB ==,过点O 作1OM AB ⊥于点1M :过点1M 作11M A OA ⊥于点1A :过点1A 作12A M AB ⊥于点2M :过点2M 作22M A OA ⊥于点2A …以此类推,点2019M 的坐标为__________.三、解答题(本题共8道大题,共69分)18.(本题满分61|3|2sin 60︒-+- 19.(本题满分4分)因式分解:243(2)a a --+20.(本题满分5分)解方程:2490x x --=21.(本题满分8分)Rt ABC 中,=90C ︒∠,点E 在AB 上,122BE AE ==,以AE 为直径作O 交AC 于点F ,交BC 于点D ,且点D 为切点,连接AD 、EF .(1)求证:AD 平分BAC ∠:(2)求阴影部分面积.(结果保留π)22.(本题满分l0分)某中学为了解学生业余时间的活动情况,从看电视、看书、上网和运动四个方面进行了统计调查,随机调查了某班所有同学(每名同学必选且只能选一项最喜欢的活动),并将调查结果绘成了如下两个不完整的统计图,请根据图中信息回答下列问题:(1)被调查的班级学生共有__________名:(2)补全条形统计图;(3)扇形统计图中“上网”的学生所对应的圆心角是__________度:(4)该校一共有1200名学生,根据抽样调查结果,请你计算出该校大约有多少名学生喜欢“运动”?23.(本题满分10分)周末,小明从家步行去书店看书.出发一小时后距家1.8千米时,爸爸驾车从家沿相同路线追赶小明,在A地追上小明后,二人驾车继续前行到达书店.小明在书店B看书,爸爸去单位C地办事.如图是小明与爸爸两人之间距离S(千米)与小明出发的时间t(小时)之间的函数图象,(小明步行速度与爸爸驾车速度始终保持不变,彼此交流时间忽略不计),请根据图象回答下列问题:(1)小明步行速度是__________千米/小时,爸爸驾车速度是__________千米/小时:(2)图中点A的坐标是__________:(3)求书店与家的路程;(4)求爸爸出发多长时间,两人相距3千米.24.综合与实践(本题满分12分)旋转是图形变化的方法之一,借助旋转知识可以解决线段长、角的大小、取值范围、判断三角形形状等问题,在实际生活中也有着十分重要的地位和作用.问题背景一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长.数学建模如图,等边三角形ABC 内有一点P ,已知PA =4PB =,PC =问题解决(1)如图,将ABP 绕点B 顺时针旋转60°得到CBP ',连接PP ',易证 P BP '∠=_______°,_______为等边三角形,∠_______90︒=,BPA ∠=_______°:(2)点H 为直线BP '上的一个动点,则CH 的最小值为________;(3)求AB 长;拓展延伸己知:点P 在正方形ABCD 内,点Q 在平面内,1BP BQ ==,BP BQ ⊥.(4)在图中,连接PA 、PC 、PQ 、QC ,AP =A 、P 、Q 在一条直线上,则cos PCQ ∠=________:(5)若2AB =,连接DP ,则________DP <…________;连接PQ ,当D 、P 、Q 三点在同一条直线上时,BDQ 的面积为________.25.综合与探究(本题满分14分)如图,抛物线24y ax bx =+-与x 输交于(3,0)A -、(4,0)B 两点,与y 轴交于点C .(1)求抛物线解析式:(2)抛物线对称轴上存在一点H ,连接AH 、CH ,当||AH CH -值最大时,求点H 坐标:(3)若抛物线上存在一点(,)P m n ,0mn >,当ABC ABP S S =时,求点P 坐标:(4)若点M 是BAC ∠平分线上的一点,点N 是平面内一点,若以A 、B 、M 、N 为顶点的四边形是矩形,请直接写出点N 坐标.数学学科参考答案及评分标准2019.4一、选择题(每小题3分,满分30分)1.B2.B3.C4.B5.C6.D7.A8.C9.A 10.C二、填空题(每小题3分,满分21分)(第16题:除两个正确答案外还有其他错误答案得2分;只有一个正确答案且没有错误答案得2分;有一个正确答案且有其他错误答案得1分.)11.132.510⨯ 12.8 13.14.9cm 15.0a >且1a ≠16.或17.20192019111,22⎛⎫- ⎪⎝⎭三、解答题(本题共8道大题,共69分)(部分试题解法不唯一,酌情给分)18.(本题满分6分)1|3|2sin 606︒--+-(32622=--+⨯-3=19.(本题满分4分)243(2)a a --+(2)(2)3(2)a a a =+--+(2)(5)a a =+-20.(本题满分5分)224(4)41(9)1636520b ac -=--⨯⨯-=+=>x ∴==422±==±12x ∴=22x =21.(本题满分8分)(1)证明:连接OD ,与EF 交点为M . BC 切O 于点D90ODC ︒∴∠=又90C ︒∠= 180ODC C ︒∴∠+∠=/OD AC ∴DAC ODA ∴∠=∠又OA OD =ODA DAO ∴∠=∠DAC DAO ∴∠=∠AD ∴平分BAC ∠(2)连接OF AE 为O 的直径90AFE ︒∴∠=EF BC ∴∥12CF BE AF AE ∴== 90C AFE ODC ︒∠=∠=∠=∴四边形DMFC 为矩形12DM CF AF ∴== 又12OM AF = 1122OM DM OD OE ∴===30OEL ︒∴∠=120EOF ︒∴∠= 122BE AE == 2OE ∴=1OM ∴=,EM =,EF =OE OEF F S S S ∆-=阴影部分扇形21202113602π⨯=-⨯43π=22.(本题满分10分)解:(1)50(2)看书14人,运动8人,补全 (3)72(4)101200128%36%100%50⎛⎫⨯---⨯ ⎪⎝⎭120016%192=⨯=名 答:该校大约有192名学生喜欢“运动”23.(本题满分10分)(1)7.2,48(2)5A ,017⎛⎫ ⎪⎝⎭(3)11481224⎛⎫⨯-= ⎪⎝⎭千米(4)1,02B ⎛⎫ ⎪⎝⎭,2,83C ⎛⎫ ⎪⎝⎭,直线BC 解析式为4824y x =- 当34824x =-时,916x = 91516416-=小时 答:爸爸出发516小时后,两人相距3千米. 24.综合与实践(本题满分12分)(1)60°,BPP ∆,CPP ∠,150°(2(3)AB =(4(5)1DP <…1425.综合与探究(本题满分14分)(1)211433y x x =-- (2)点114,23H ⎛⎫-⎪⎝⎭(3)142⎛⎫+ ⎪ ⎪⎝⎭(4)173,2N ⎛⎫--⎪⎝⎭,2814,55N ⎛⎫- ⎪⎝⎭。

2019年黑龙江佳木斯中考数学模拟试题卷(含答案)

2019年黑龙江佳木斯中考数学模拟试题卷(含答案)

二ʻ一九年升学模拟大考卷(四)数学试卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分题号一二三2122232425262728总 分得分得分评卷人一㊁填空题(每题3分,满分30分)1.2019年央视春晚创下了跨媒体收视传播新纪录.据统计,除夕当晚,海内外收视的观众总规模达11.73亿人.数据11.73亿人用科学记数法表示为 人.2.在函数y =x -23x -1中,自变量x 的取值范围是 .3.如图,әA B C 中,øA B C =90ʎ,O 为A C 的中点,连接B O 并延长到D ,连接A D ,C D .添加一个条件 ,使四边形A B C D 是矩形(填一个即可).4.在一个不透明的袋子中装有除颜色外其他均相同的6个红球,3个黑球,要使从中随机摸取1个球是黑球的概率为12,则要往袋中添加黑球 个.5.若关于x 的一元一次不等式组2x +1ȡ0,3x -2m ɤ0{有三个整数解,则m 的取值范围是 .6.如图,A B 是半圆的直径,O 为圆心,C 是半圆上的点,A B =10,B C =5,D 是A C ︵上的点,则øD 的度数为 .7.如图,圆锥的母线长为5c m ,高为3c m ,则该圆锥的侧面积为 c m 2.8.如图,A C 是矩形A B C D 的对角线,P ,E 分别是A C ,B C 上的动点,A B =3,B C =4,则B P +P E 的最小值为 .9.在әA B C 中,A C =5,A B 与B C 所在直线成45ʎ角,A C 与B C 所在直线形成的夹角的余弦值为45,则B C 的长是 .10.如图所示,正方形MNO K 和正六边形A B C D E F 边长均为1,把正方形放在正六边形中,使O K 边与A B 边重合,按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与B C 边重合,完成第1次旋转;再绕点C 顺时针旋转,使MN 边与C D 边重合,完成第2次旋转 在这样连续2019次旋转的过程中,点O 经过的路径长的总和是第题图第题图第题图第题图第题图得分评卷人二㊁选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.2x+3x2=5x3B.a3㊃a4=a12C.2x3ːx-1=2x2D.(x+2)(x-3)=x2-x-612.下列图形中,既是轴对称图形,又是中心对称图形的是()13.如图是由一些完全相同的小正方体构成的几何体的主视图和俯视图,则构成这个小正方体的个数可能有() A.2种B.3种C.4种D.5种14.甲㊁乙两位运动员在相同条件下各射击10次,成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10.根据上述信息,下列结论错误的是() A.甲㊁乙的众数分别是8,7B.甲㊁乙的中位数分别是8,8C.乙的成绩比较稳定D.甲㊁乙的平均数分别是8,815.我市郊区大力发展全域旅游产业,打造了大来岗风景区㊁敖其湾赫哲族风景区等精品旅游项目,郊区全年旅游人数逐年增加,据统计,2016年为30万人次,2018年为43.2万人次.设旅游人次的年平均增长率为x,则可列方程为() A.30(1+x)=43.2B.30(1-x)=10.8C.30(1+x)2=43.2D.30[(1+x)+(1+x)2]=43.216.已知关于x的分式方程1x-2+3-m x2-x=2有解,则m应满足的条件是()A.mʂ1且mʂ2B.mʂ2C.m=1或m=2D.mʂ1或mʂ217.如图,A,B是双曲线y=k x上两点,且A,B两点的横坐标分别是-1和-5,әA B O的面积为12,则k的值为()A.-3B.-4C.-5D.-618.如图,正方形A B C D的边长为6,点E在边A B上,连接E D,过点D作F DʅD E与B C的延长线相交于点F,连接E F,与边C D相交于点G,与对角线B D相交于点H.若B D=B F,则B E的长为() A.2B.6-2262 D.62第题图第题图第题图19.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有( )A.3种B .4种C .5种种第题图20.如图,E 是正方形A B C D 外一点,连接A E ,B E ,D E ,A F ʅA E 交D E 于点F ,若A E =A F =2,B F =25.下列结论:①әA F D ɸәA E B ;②B E ʅD E ;③四边形A E B F 的面积是1+6;④点B 到直线A E 的距离为3;⑤A B 2=16+46.其中结论正确的个数是( )A.1个B .2个C .3个 D.4个三㊁解答题(满分60分)得分评卷人21.(本题满分5分)先化简,再求值:x 2-4x -1ːx -2x -1æèçöø÷,其中x =3c o s 30ʎ-t a n45ʎ.得分评卷人22.(本题满分6分)如图,在平面直角坐标系中,әA B C的顶点A(-4,3),B(-2,4),C(-1,1)均在正方形网格的格点上.先将әA B C沿网格线平移,得到әA1B1C1,点B的对应点B1的坐标是(3,0),再将әA1B1C1绕原点顺时针旋转90ʎ,得到әA2B2C2,点B1的对应点为点B2.(1)画出әA1B1C1;(2)画出әA2B2C2;(3)在әA1B1C1旋转的过程中,求点B1旋转到点B2所经过的路径长.第题图得分评卷人23.(本题满分6分)如图,抛物线y=a x2+b x-3经过点A(2,-3),与x轴交于点B,D,与y轴交于点C,且O C=3O B.(1)求抛物线的解析式;(2)直线A E交x轴于点E,将әA B D的面积分为1ʒ3的两部分,请直接写出点E的坐标.第题图得分评卷人24.(本题满分7分)某校设有体育选修课,每位同学必须从羽毛球㊁篮球㊁乒乓球㊁排球㊁足球五项球类运动中选择一项且只能选择一项球类运动,在该校学生中随机抽取10%的学生进行调查,根据调查结果绘制成如图所示的尚不完整的频数分布表和扇形统计图第24题图请根据以上图㊁表信息解答下列问题:(1)频数分布表中的a=,b=;(2)补全扇形统计图;(3) 排球 所在的扇形的圆心角为度;(4)全校有多少名学生选择参加乒乓球运动?得分评卷人25.(本题满分8分)已知甲㊁乙两地相距400k m,A车和B车分别从甲地和乙地同时出发,相向而行,沿同一条公路驶往乙地和甲地,2h后,A车因临时需要,返回到这条公路上的丙地取物,然后又立即赶往乙地,结果比B车晚1h到达目的地.两车的速度始终保持不变,如图是A,B两车距各自出发地的路程y1(单位:k m),y2(单位:k m)与A车出发时间x(单位:h)的函数图象,请结合图象信息解答下列问题:(1)A车的速度为k m/h,B车的速度为k m/h;(2)求甲㊁丙两地的距离;(3)求A车出发多长时间,两车相距40k m?第题图已知菱形A B C D的对角线交于点O,øD A B=60ʎ,P是直线B D上任意一点(异于点B, O,D),过点P作平行于A C的直线交直线C D于点F,交直线B C于点E.(1)当点P在线段B D上时,如图①,易证:3B D=P E+P F(不用证明);(2)当点P在线段D B的延长线上时,如图②;当点P在线段B D的延长线上时,如图③,线段B D,P E,P F之间又有怎样的数量关系?请写出你的猜想,并选择其中一种情况加以证明.第26题图某文化用品商店准备购进甲㊁乙两种书包进行销售,经调查,乙书包的单价比甲书包贵35元,用280元购进乙书包的个数与用140元购进甲书包的个数相等.(1)求甲㊁乙两种书包的进价分别为多少元?(2)商户购进甲㊁乙两种书包共100个进行试销,其中甲书包的个数不少于20个,且甲书包的个数的3倍不大于乙书包的个数,已知甲书包的售价为65元/个,乙书包的售价为110元/个,且全部售出,设购进甲书包m个,求该商店销售这批书包的利润W与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该店将100个书包全部售出后,使用所获的利润又购进40个书包捐赠给贫困地区儿童,这样该商店这批书包共获利2000元.请求出该店第二次进货所选用的进货方案?如图,矩形O A B C的两条边O A,O C的长是方程x2-12x+32=0的两根(O A<O C),沿直线A C将矩形折叠,点B落在第一象限的点D处,A D交y轴于点E.(1)求点B和点E的坐标;(2)将直线A C以每秒1个单位长度的速度沿y轴向下平移,求直线A C扫过的三角形A C E的面积S关于运动的时间t(0ɤtɤ5)的函数关系式;(3)在(2)的条件下,在移动的直线A C上是否存在点M,使以O,E,D,M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.第题图二ʻ一九年升学模拟大考卷(四)数学试卷参考答案及评分标准一㊁填空题(每题3分,满分30分)1.1.173ˑ1092.x ȡ23.B O =D O 等4.35.3ɤm <926.120ʎ7.20π8.96259.1或7 10.1010+50526π二㊁选择题(每题3分,满分30分)11.D 12.C 13.B 14.C 15.C 16.A 17.C 18.C 19.C (提示:水笔和笔记本单价均为整数) 20.C三㊁解答题(满分60分)21.(本题满分5分)解:原式=(x +2)(x -2)x -1ːx 2-x -2x -1(1分) =(x +2)(x -2)x -1㊃x -1(x -2)(x +1)(1分) =x +2x +1.(1分) 当x =3c o s 30ʎ-t a n45ʎ=12时,(1分) 原式=12+212+1=53.(1分) 22.(本题满分6分)解:(1)әA 1B 1C 1如图.(2分)(2)әA 2B 2C 2如图.(2分) (3)点B 1旋转到点B 2所经过的路径长为90ˑπˑ3180=32π.(2分)23.(本题满分6分)解:(1)把x =0代入y =a x 2+b x -3,得y =-3.ʑO C =3.(1分)ȵO C =3O B ,ʑO B =1.ʑB (-1,0).(1分) 把点A ,B 的坐标代入y =a x 2+b x -3,得-3=4a +2b -3,0=a -b -3.{(1分)解得a =1,b =-2.{ʑ抛物线的解析式y =x 2-2x -3.(1分)(2)点E 的坐标是(0,0)或(2,0).(2分)24.(本题满分7分)解:(1)ȵ36ː30%=120(名),ʑa =120ˑ20%=24,b =120-30-24-36-12=18.故答案为24,18.(2分)(2)补图如图.(2分)(3) 排球 15%ˑ360ʎ=54ʎ.故答案为54.(1分)(4)全校选择参加乒乓球运动的学生有36ː10%=360(名).(2分)25.(本题满分8分)解:(1)由图可知,A 车的速度为200ː2=100(k m /h),甲㊁乙两地相距400k m ,B 车用5h 到达,则B 车的速度为400ː5=80(k m /h ).故答案为分)(2)设A 车返回的那段路程为s k m ,则100ˑ6=400+2s .(1分)ʑs =100.(1分)ʑ甲㊁丙两地的距离为200-100=100(k m ).(1分)(3)设A 车出发t h ,二车相距40k m .100t +80t +40=400.解得t =2;(1分)100(t -2)+80t +40=400,解得t =289;(1分) 100(t -2)+80t -40=400,解得t =329.(1分) ʑA 车出发2h 或289h 或329h 时,两车相距40k m .26.(本题满分8分)解:(2)图②的结论为3B D =P F -P E .(1分)图③的结论为3B D =P E -P F .(1分) 图②证明:如图,延长A B 交E F 于点G .ȵ四边形A B C D 是菱形,ʑA B ʊC D .ȵE F ʊA C ,ʑ四边形A G F C 是平行四边形.ʑA C =F G .(1分) ȵ四边形A B C D 是菱形,ʑB P 平分øE B G ,øB A C =øB C A .(1分) ȵE F ʊA C ,ʑøB E G =øB G E .(1分) ȵO P ʅE G ,ʑP E =P G .(1分)ȵ四边形A B C D 是菱形,øD A B =60ʎ,ʑA C =3B D .(1分)ʑA C =F G =P F -P G =P F -P E .(1分))佳( )页5共(页3第案答学数ʑ3B D =P F P E .27.(本题满分10分)解:(1)设甲书包进价为x 元,乙书包进价为(x +35)元.根据题意,得280x +35=140x.(1分) 解得x =35.(1分)经检验x =35是方程的根,且符合题意,则x +35=70.(1分)ʑ甲书包进价为35元,乙书包进价为70元.(1分)(2)ȵ购进甲书包m 个,ʑ购进乙书包(100-m )个.根据题意,得3m ɤ100-m .(1分)解得m ɤ25.ȵm ȡ20,ʑ20ɤm ɤ25且m 为正整数.(1分)ʑW =(65-35)m +(110-70)(100-m )=-10m +4000.(1分) (3)设第二次购进甲书包a 个,则购进乙书包(40-a )个.根据题意,得35a +70(40-a )=-10m +4000-2000.(1分) 即7a =2m +160.ȵ20ɤm ɤ25且m 为正整数,ʑ当m =25时,a 有整数解,a =30,则40-a =10.(1分)ʑ第二次进货方案是购进甲书包30个,乙书包10个.(1分)ʌ点评ɔ本题是对代数实际应用的综合考查,要求能够读懂题目中数量关系,正确列出相应的关系式,要注意在实际问题中,未知数的取值要有实际意义.28.(本题满分10分)解:(1)解方程x 2-12x +32=0,得x 1=4,x 2=8.ȵO A <O C ,)佳( )页5共(页4第案答学数ʑO A =4,O C =8.(1分)ʑB (-4,8).(1分) 设O E =a ,则C E =8-a .由折叠可得øB A C =øC A D .ȵA B ʊO C ,ʑøB A C =øA C E .ʑøA C E =øC A E .ʑA E =C E .在R t әA O E 中,a 2+42=(8-a )2.(1分) 解得a =3.ʑO E =3,E C =5.ʑE (0,3).(1分)(2)设直线A C 平移t 秒时,交C E ,A E 于点F ,G ,则әE F G ʐәE C A ,C F =t ,E F =5-t .ʑE F E C æèçöø÷2=S әE F G S әE C A.(1分) ʑ5-t 5æèçöø÷2=S әE F G S әE C A.ʑS әE F G =12ˑ5ˑ4ˑ5-t 5æèçöø÷2=25t 2-4t +10.(1分) ʑS =S әA C E -S әE F G =12ˑ5ˑ4-25t 2+4t -10=-25t 2+4t .(2分) (3)存在.M 1-125,-95æèçöø÷,M 2125,395æèçöø÷.(2分) )佳( )页5共(页5第案答学数。

2019年黑龙江省龙东地区中考数学模拟试卷(三) (解析版)

2019年黑龙江省龙东地区中考数学模拟试卷(三) (解析版)

2019年黑龙江省龙东地区中考数学模拟试卷(三)一、填空题.1.用360搜索关键词“一带一路”,为我们找到相关结果约18200000个.将18200000用科学记数法表示为.2.函数y=中自变量x的取值范围是.3.在▱ABCD中,对角线AC,BD相交于点O.使得四边形ABCD成为菱形,需添加一个条件是.4.一个不透明的袋中装有除颜色外均相同的8个红球和m个黄球,从中随机摸出一个,摸到红球的概率为,则m=.5.已知不等式组的解集是2<x<3,则ab的值是.6.如图,在⊙O中,点C在⊙O上,AB是弦,且OC⊥AB,垂足为D,AB=12,CD=2,则⊙O的半径长为.7.某圆锥的底面圆的半径为5,高为12,则圆锥的表面积为.(结果保留π)8.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.9.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.10.如图,在直角坐标系中,已知点P0的坐标为(,),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2…如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P2019的坐标为.二、选择题(每题3分,满分30分)11.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b212.下列四幅图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.由m个相同的正方体组成一个立体图形,主视图和俯视图如图所示,则m能取到的最大值为()A.6B.5C.4D.314.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分15.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个16.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2 17.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.1618.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2C.2D.19.小华准备购买单价分别为4元和5元的两种拼装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有()A.2种B.3种C.4种D.5种20.如图,在平行四边形中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:①BE=DF;②AG=GH=HC;③EG=DH;④S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个三、解答题(共60分.解答应写出文字说明、证明过程或演算步骤.)21.先化简,再求值:(﹣)÷,其中a=tan60°+2sin30°.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)23.如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线的对称轴于点B,对称轴与x轴交于点M,直线CP交x轴于点A.(1)求该抛物线的解析式;(2)如果△ABP的面积等于△ABC的面积,求点P的坐标.24.“校园手机”现象越来越受到社会的关注,“六一”期间,记者随机调查了某校若干名初四学生和家长对中学生带手机现象的看法,统计整理并制作了如下两幅统计图.(1)求这次调查的家长人数,并补全条形图;(2)求扇形图中表示家长“赞成”的圆心角的度数;(3)若南岗区共有初四学生10000名,请估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数是多少?25.小明和爸爸周末步行去游泳馆游泳,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.爸爸、小明离家的距离y1(单位:米),y2(单位:米)与小明所走时间x(单位:分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:(1)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;(2)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸?(3)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆?26.在Rt△ABC中,∠BAC=90°,AB=AC,P是直线AC上的一点,连接BP,过点C 作CD⊥BP,交直线BP于点D.(1)当点P在线段AC上时,如图①,求证:BD﹣CD=AD;(2)当点P在直线AC上移动时,位置如图②、图③所示,线段CD,BD与AD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.27.某工厂以每千克200元的价格购进甲种原料360千克,用于生产两种A,B产品,生产1件A产品或1件B产品所需甲.乙两种原料的千克数如表.乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完.设生产A产品x件,B产品m件,公司获得的总利润为y元.产品A B甲原料/千克94乙原料/千克310(1)写出m与x的关系式;(2)求y与x的关系式;(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?28.如图,已知直线y=x+b与x轴交于点A(3,0),与y轴交于点B,将△AOB沿x 轴折叠,使点B落在y轴的点C上,设P为线段BC上的一个动点,点P与点B,C不重合,连接AP.以点P为端点作射线PM交线段AB于点M,使∠APM=∠ABC.(1)求点C的坐标;(2)当CP=3时,求直线CM的解析式;(3)是否存在点P,使△PAM为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、填空题:本大题共10个小题,每小题3分,共30分.1.用360搜索关键词“一带一路”,为我们找到相关结果约18200000个.将18200000用科学记数法表示为 1.82×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:18 200 000=1.82×107,故答案为:1.82×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.函数y=中自变量x的取值范围是x<3.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:3﹣x>0,解得:x<3.故答案是:x<3.【点评】本题考查了函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.在▱ABCD中,对角线AC,BD相交于点O.使得四边形ABCD成为菱形,需添加一个条件是AC⊥BD(答案不唯一).【分析】依据菱形的判定定理进行判断即可.解:∵四边形ABCD为平行四边形,∴当AC⊥BD时,四边形ABCD为菱形.故答案为:AC⊥BD(答案不唯一).【点评】本题主要考查的是菱形的判定,熟练掌握菱形的判定定理是解题的关键.4.一个不透明的袋中装有除颜色外均相同的8个红球和m个黄球,从中随机摸出一个,摸到红球的概率为,则m=6.【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n的值.解:由题意得:,解得:m=6;故答案为:6.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.已知不等式组的解集是2<x<3,则ab的值是2.【分析】首先解不等式组进而得出a,b的值,即可得出答案.解:,解①得:x<2a﹣1,解②得:x>1+b,故不等式组的解集为:1+b<x<2a﹣1,∵2<x<3,∴1+b=2,2a﹣1=3,解得:b=1,a=2,∴ab=2.故答案为:2.【点评】此题主要考查了解一元一次不等式组,正确解不等式组是解题关键.6.如图,在⊙O中,点C在⊙O上,AB是弦,且OC⊥AB,垂足为D,AB=12,CD=2,则⊙O的半径长为10.【分析】由垂径定理得出AD=BD=AB=6,在Rt△AOD中,由勾股定理得出方程,解方程即可.解:如图,连接OA,设⊙O的半径长为r,∵AB是弦,且OC⊥AB∴AD=BD=AB=6,OD=OC﹣CD=r﹣2,在Rt△AOD中,由勾股定理得:OA2=AD2+OD2,即r2=62+(r﹣2)2,解得:r=10;即⊙O的半径长为10;故答案为:10.【点评】此题考查了垂径定理以及勾股定理;熟练掌握垂径定理,由勾股定理得出方程是解题的关键.7.某圆锥的底面圆的半径为5,高为12,则圆锥的表面积为90π.(结果保留π)【分析】利用勾股定理易得圆锥的母线长,那么侧面积=π×底面半径×母线长,圆锥的表面积=底面积+侧面积.解:∵圆锥的底面半径为5,高为12,∴圆锥的侧面积为13,∴它的侧面积=π×13×5=65π,它的底面积=π×5×5=25π,圆锥的表面积=90π,故答案为:90π【点评】考查圆锥的计算;用到的知识点为:圆锥的底面半径,高,母线长组成以母线长为斜边的直角三角形.8.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE 即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目9.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.10.如图,在直角坐标系中,已知点P0的坐标为(,),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2…如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P2019的坐标为(﹣22020,0).【分析】根据题意,可得,,,,发现规律,即可求出点P2019的坐标.解:由题意,可得,,,,…,,∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,2019÷8=252……3,∴点P2019是第253组的第3次变换对应的点,在x轴的负半轴上,∴点P2019的坐标为(﹣22020,0)故答案为(﹣22020,0)【点评】本题考查了坐标与图形变化﹣旋转,规律型﹣点的坐标,解决本题的关键是掌握旋转的性质.二、选择题(每题3分,满分30分)11.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b2【分析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.【点评】本题考查了合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.12.下列四幅图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不合题意;D、不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.由m个相同的正方体组成一个立体图形,主视图和俯视图如图所示,则m能取到的最大值为()A.6B.5C.4D.3【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:由题中所给出的主视图知物体共两列,且左侧一列最高两层,右侧一列高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最多5个.故选:B.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.某班第一小组共有6名同学,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数和中位数分别是()A.81分、80.5分B.89分、80.5分C.81分、81分D.89分、81分【分析】根据众数和中位数的概念求解.解:将数据重新排列为72,77,80,81,81,89,所以这组数据的众数为81分,中位数为=80.5(分),故选:A.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂二、三月份平均每月的增长率为20%,那么可以分别表示二、三月份的产量,然后根据题意可得出方程.解:设该工厂第一季度共生产零件x万个.根据题意,得x﹣100(1+20%)﹣100(1+20%)2=100,解得x=364.答:该工厂第一季度共生产零件364万个.故选:D.【点评】本题考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.16.关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.17.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.16【分析】延长BA,交y轴于M,作AN⊥x轴于N,根据反比例函数系数k的几何意义得出S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,由已知条件得出k﹣4=2×6,解得k=16.解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.【点评】本题考查了反比例函数系数k的几何意义,明确图中矩形的面积为即为比例系数k的绝对值.18.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.19.小华准备购买单价分别为4元和5元的两种拼装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有()A.2种B.3种C.4种D.5种【分析】利用二元一次方程的解法进而分别代入正整数求出即可.解:设购买单价为4元的饮料x瓶,购买单价为5元的饮料y瓶,根据题意可得:4x+5y=50,当x=5,y=6,当x=10,y=2,故符合题意的方案有2种.故选:A.【点评】此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.20.如图,在平行四边形中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:①BE=DF;②AG=GH=HC;③EG=DH;④S△ABE=3S△AGE.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由ABCD为平行四边形,根据平行四边形的性质对边平行且相等,得到AD与BC平行且相等,又E和F分别为AD与BC的中点,利用等量代换得到ED与BF相等,且平行,根据一组对边平行且相等的四边形为平行四边形得到DEFB为平行四边形,从而得到对边DF与BE相等,选项①正确;由DF与EB平行得到两对同位角相等,利用两对对应角相等的三角形相似得到三角形AEG与三角形ADH相似,且相似比为1:2,故得到G为AH中点,同理得到H为CG中点,即可得到AG=GH=HC,选项②正确;从而得到EG为三角形ADH的中位线,根据中位线性质得到EG等于DH的一半,选项③正确;由AD与BC平行得到两对内错角相等,从而得到三角形AEG与三角形GCB 相似,且相似比为1:2,得到EG与GB之比为1:2,根据三角形AEG与三角形AGB 底边分别为EG与GB时,高相同,故两三角形面积之比为1:2,从而得到S△ABE=3S△AGE.故选项④正确,从而得到正确选项的个数为4个.解:如右图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BE=DF,选项①正确;∵E、F是AD、BC中点,∴DE=AD,BF=BC,∴DE=BF,∵DE∥BF,∴四边形DEBF是平行四边形,∴BE∥DF,BE=DF,∴∠AEG=∠ADH,∠AGE=∠AHD,∴△AEG∽△ADH,又AE:AD=1:2,∴AG:AH=1:2,即G为AH中点,∴EG为△ADH的中位线,∴EG=DH,选项③正确;同理H为CG的中点,HF也为△BCG的中位线,∴AG=GH=CH,选项②正确;又AD∥BC,∴∠EAG=∠BCG,∠AEG=∠GBC,∴△AEG∽△BCG,又AE:BC=1:2,∴EG:GB=1:2,∵△AEG和△AGB分别以EG和GB为底边时,高相同,∴两三角形的面积之比也等于1:2,即2S△ABG=S△AGB,∴S△ABE=3S△AGE,选项④正确,则正确的结论有4个.故选:D.【点评】此题考查了平行四边形的判定与性质,相似三角形的判定与性质,以及三角形的中位线定理,本题属于结论开放型题,由已知一定的条件,需探求问题的结论,解题的方法也多样化,解决此类问题往往采用执因索果,逐步推理的方法.三、解答题(共60分.解答应写出文字说明、证明过程或演算步骤.)21.先化简,再求值:(﹣)÷,其中a=tan60°+2sin30°.【分析】直接将括号里面通分运算进而利用分式的加减运算法则计算,再结合分式的除法运算法则计算即可,结合特殊角的三角函数值得出a的值求出答案.解:原式===,∵a=tan60°+2sin30°=+2×=+1,∴原式=.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)【分析】(1)利用轴对称的性质画出A、B、C的定义点A1、B1、C1,而从得到△A1B1C1;(2)利用旋转的性质和网格特点,画出A、B的定义点A2、B2而从得到△A2B2C;(3)由于线段BC旋转到B2C所经过的扇形的半径为CB,圆心角为90度,然后利用扇形的面积公式可计算它的面积.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;(3)BC==,所以线段BC旋转到B2C所经过的扇形的面积==π.【点评】本题考查了作图﹣旋转:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称.23.如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线的对称轴于点B,对称轴与x轴交于点M,直线CP交x轴于点A.(1)求该抛物线的解析式;(2)如果△ABP的面积等于△ABC的面积,求点P的坐标.【分析】(1)由对称轴公式,以及已知顶点C坐标,利用待定系数法确定出解析式即可;(2)设出P坐标,由两三角形面积相等得到AC=AP,过点P作PQN⊥x轴于点N,证明△ACM≌△APN得PN=CM,由此列出关于t的方程,求出方程的解确定出t的值,即可求出P坐标.解:(1)∵抛物线y=ax2+bx的顶点为C(1,﹣1),∴,解得,∴抛物线的表达式为y=x2﹣2x;(2)设P(t,t2﹣2t).∵△ABP的面积等于△ABC的面积,∴AC=AP.如图,过点P作PN⊥x轴于点N.在△ACM和△APN中,,∴△ACM≌△APN(ASA),∴CM=PN=1.可得t2﹣2t=1.解得(舍去),∴点P的坐标为.【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,全等三角形的判定与性质,熟练掌握待定系数法和构造全等三角形是解本题的关键.24.“校园手机”现象越来越受到社会的关注,“六一”期间,记者随机调查了某校若干名初四学生和家长对中学生带手机现象的看法,统计整理并制作了如下两幅统计图.(1)求这次调查的家长人数,并补全条形图;(2)求扇形图中表示家长“赞成”的圆心角的度数;(3)若南岗区共有初四学生10000名,请估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数是多少?【分析】(1)利用无所谓的家长的个数除以它所占的百分比即可得到所调查家长的总数;(2)先计算出反对的家长的个数,再补全条形统计图,然后用360°乘以表示“赞成”的所占的百分比得到表示“赞成”的圆心角的度数;(3)用10000乘以在样本中持“无所谓”态度的学生家长所占的百分比即可.解:(1)80÷20%=400,答:这次调查的家长人数为400人.反对的家长的个数为:400﹣40﹣80=280;如图所示:(2)×360°=36°,答:扇形图中表示家长“赞成”的圆心角的为36°.(3)10000×≈2258,答:估计在这些学生中,对中学生带手机现象持“无所谓”态度的人数约为2258人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.25.小明和爸爸周末步行去游泳馆游泳,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.爸爸、小明离家的距离y1(单位:米),y2(单位:米)与小明所走时间x(单位:分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:(1)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;(2)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸?(3)若游泳馆离小明家2000米,请你通过计算说明谁先到达游泳馆?【分析】(1)利用待定系数法即可解决问题;(2)把y=1400代入解析式解答即可;(3)根据题意计算解答即可.解:(1)y1=k1x+b,把(0,210)和(7,700)代入,得,解得,∴解析式为y1=70x+210.设y2=k2x,将(7,700)代入,得700=7k2.解得k2=100.∴解析式为y2=100x.(2)把y=1400代入y2=100x,解得x=14将y=1400代入y1=70x+210,解得x=17.17﹣14=3(分钟).答:小明在报亭休息了3分钟遇到姗姗来迟的爸爸.(3)小明到达游泳馆的时间为(2000﹣1400)+100+20=26(分钟).设爸爸到达游泳馆的时间为t分钟.根据题意得70t+210=2000,解得,∵,∴爸爸先到达游泳馆.答:爸爸先到达游泳馆.【点评】本题考查一次函数的应用,待定系数法确定函数解析式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.在Rt△ABC中,∠BAC=90°,AB=AC,P是直线AC上的一点,连接BP,过点C 作CD⊥BP,交直线BP于点D.(1)当点P在线段AC上时,如图①,求证:BD﹣CD=AD;(2)当点P在直线AC上移动时,位置如图②、图③所示,线段CD,BD与AD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.【分析】(1)在BD上截取BE=CD,连接AE,可先证得△ABE≌△ACD(SAS),则AE=AD,∠BAE=∠CAD,进而可证得△AED为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的CD,BD,与AD之间的数量关系.解:(1)证明:如图1,在BD上截取BE=CD,。

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

黑龙江省哈尔滨市建华区2019年4月中考数学模拟试卷(解析版)

黑龙江省哈尔滨市建华区2019年4月中考数学模拟试卷(解析版)

2019年黑龙江省哈尔滨市区中考数学模拟试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.若x与3互为相反数,则|x|+3等于()A.﹣3B.0C.3D.62.下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a33.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.正六边形C.正方形D.圆4.反比例函数y=,当x>0时,y随x的增大而减小,那么m的取值范围是()A.m<3B.m>3C.m<﹣3D.m>﹣35.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC上找一点B,取∠ABD =145°,BD=500m,∠D=55°,要使A,C,E成一直线,那么开挖点E离点D的距离是()A.500sin55°m B.500cos55°m C.500tan55°m D.m7.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A .30°B .35°C .40°D .50°8.某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( )A .2500+2500(1+x )+2500(1+x )2=8000;B .2500x 2=8000C .2500(1+x )2=8000D .2500(1+x )+2500(1+x )2=80009.如图l 1∥l 2∥l 3,若=,DF =10,则DE =( )A .4B .6C .8D .910.如图,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是AB 的中点,连结CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①=;②点F 是GE 的中点;③AF =AB ;④S △ABC =6S △BDF ,其中正确的个数是( )A .4B .3C .2D .1二.填空题(共10小题,满分30分,每小题3分)11.日地最近距离:147 100 000千米,用科学记数法表示为 .12.二次根式中,x 的取值范围是 .13.计算2﹣= .14.因式分解:x 3y 2﹣x 3= .15.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.16.不等式组的解集是.17.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若﹣4<m<﹣3,则a的取值范围是.18.从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是19.Rt△ABC中,∠C=90°,cos A=,AC=6cm,那么BC等于.20.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(x﹣3﹣)的值,其中x=3tan45°+2cos30°.22.(7分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.23.(8分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题(1)本次调查共抽取了学生多少人?(2)求本次调查中喜欢踢足球人数,并补全条形统计图;(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.24.(8分)△ABC为等边三角形,AF=AB.∠BCD=∠BDC=∠AEC.(1)求证:四边形ABDF是菱形.(2)若BD是∠ABC的角平分线,连接AD,找出图中所有的等腰三角形.25.(10分)某学校准备购买若干台电脑和打印机,如果购买1台电脑和2台打印机,一共花费5900元;如果购买2台电脑和1台打印机,一共花费8200元;(1)求每台电脑和每台打印机的价格分别是多少元?(2)如果学校购买电脑和打印机的预算费用不超过67000元,并且购买打印机的台数要比购买电脑的台数多1台,那么该学校最多能购买多少台打印机?26.(10分)如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:=;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=,CF=5,求BE 的长.27.(10分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年黑龙江省哈尔滨市jianhua区中考数学模拟试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】先根据相反数的定义求出x的值,再根据绝对值的性质进行求解.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x|+3=|﹣3|+3=3+3=6.故选:D.【点评】本题考查了互为相反数的定义,绝对值的性质,是基础题,比较简单.2.【分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方的运算法则,分别对每一项进行分析即可得出答案.【解答】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不能合并,故本选项错误;D、a5÷a2=a3,故本选项正确.故选:D.【点评】此题考查了单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方,熟练掌握运算法则是解题的关键.3.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:等边三角形是轴对称图形但不是中心对称图形,A正确;正六边形是轴对称图形,也是中心对称图形,B错误;正方形是轴对称图形,也是中心对称图形,C错误;圆是轴对称图形,也是中心对称图形,D错误;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣3>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣3>0,解得:m>3.故选:B.【点评】本题主要考查了反比例函数的性质,根据反比例函数的性质找出m﹣3>0是解题的关键.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据已知利用已知角的余弦函数表示即可.【解答】解:在直角△BDE中,cos D=,∴DE=BD•cos D=500cos55°.故选:B.【点评】此题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.7.【分析】旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【解答】解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=30°.故选:A.【点评】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.8.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入2000万元,预计2012年投入8000万元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则2011的教育经费为:2500×(1+x)2012的教育经费为:2500×(1+x)2.那么可得方程:2500+2500(1+x)+2500(1+x)2=8000.故选:A.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.9.【分析】根据平行线分线段成比例定理由l1∥l2∥l3可以得出==,再根据条件就可以求出结论.【解答】解:l1∥l2∥l3,∴==,又∵DF=10,∴DE=DF=6,故选:B.【点评】本题考查了平行线分线段成比例定理的运用,解答时找准对应线段是解答的关键.10.【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【解答】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=2,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC==,∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即,∴DE=,BE=,在△GAB和△DBC中,∴△GAB ≌△DBC (ASA )∴AG =DB =1,BG =CD =, ∵∠GAB +∠ABC =180°,∴AG ∥BC ,∴△AGF ∽△CBF ,∴,且有AB =BC ,故①正确,∵GB =,AC =2,∴AF ==,故③正确,GF =,FE =BG ﹣GF ﹣BE =,故②错误,S △ABC =AB •AC =2,S △BDF =BF •DE =××=,故④正确. 故选:B .【点评】本题考察了相似的判定与性质、全等的判定与性质以及等腰直角三角形的相关性质,要注意合理的运用特殊值法解题.二.填空题(共10小题,满分30分,每小题3分)11.【分析】科学记数法就是将一个数字表示成(a ×10的n 次幂的形式),其中1≤|a |<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.【解答】解:147 100 000=1.471×108.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动8位,应该为1.471×108.12.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x +1≥0,解得x ≥﹣1,故答案为x ≥﹣1.【点评】本题考查二次根式有意义的条件,解题的关键是掌握二次根式中的被开方数必须是非负数,本题属于基础题型.13.【分析】直接化简二次根式进而合并得出答案.【解答】解:2﹣=﹣2=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.14.【分析】先提取公因式x3,再利用平方差公式分解可得.【解答】解:原式=x3(y2﹣1)=x3(y+1)(y﹣1),故答案为:x3(y+1)(y﹣1).【点评】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤﹣﹣先提取公因式,再利用公式法分解.15.【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【解答】解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°【点评】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识,属于中考常考题型.16.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x≥4,由②得:x<6,不等式组的解集为:4≤x<6,故答案为4≤x<6.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【分析】由=﹣1可得出二次函数图象与x轴的交点位于y轴的两侧.分a>0及a<0两种情况找出关于a的一元二次不等式组,解之即可得出a的取值范围.【解答】解:∵=﹣1,∴二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的交点位于y轴的两侧.当a>0时(如图1),有,解得:3<a<4;当a<0时(如图2),有,解得:﹣<a<﹣.故答案为:3<a<4或﹣<a<﹣.【点评】本题考查了抛物线与x轴的交点以及解一元二次不等式组,分a>0及a<0两种情况找出关于a的一元二次不等式组是解题的关键.18.【分析】画树状图展示所有6种等可能的结果数,再找出组成的两位数是4的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的两位数是4的倍数的结果数为2,所以组成的两位数是4的倍数的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.【分析】由cos A=得AB==10,再利用勾股定理求解可得.【解答】解:在Rt△ABC中,∵cos A=,∴AB===10(cm),则BC===8(cm),故答案为:8cm.【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的定义和勾股定理.20.【分析】延长FP交AB于M,得到FP⊥AB时,点P到AB的距离最小,根据相似三角形的性质求出FM,根据折叠的性质QCPF,计算即可.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,∵∠C=90°,AC=3,BC=4,∴AB==5,∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,即=,解得,FM=,由折叠的性质可知,FP=FC=1,∴PM=,故答案为:.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置.三.解答题(共7小题,满分60分)21.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角三角函数值得出x的值,继而代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,当x=3tan45°+2cos30°=3×1+2×=3+时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及特殊锐角的三角函数值.22.【分析】(1)直接利用勾股定理结合网格得出符合题意的答案;(2)直接利用勾股定理结合网格得出符合题意的答案.【解答】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.23.【分析】(1)根据打篮球的人数和百分比即可解决问题;(2)求出本次调查中喜欢踢足球人数即可解决问题;(3)总人数乘以样本中喜欢跳绳学生人数所占比例可得;【解答】解:(1)总人数=5÷10%=50(人);(2)本次调查中喜欢踢足球人数=50﹣5﹣20﹣8﹣5=12(人),条形图如图所示:(3)估计我校喜欢跳绳学生有1200×=192(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【分析】(1)根据邻边相等的平行四边形是菱形即可证明.(2)根据等腰三角形的定义一一判断即可.【解答】(1)证明:如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点评】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【分析】(1)设每台电脑的价格为x元,每台打印机的价格为y元,根据“1台电脑的钱数+2台打印机的钱数=5900,2台电脑的钱数+1台打印机的钱数=8200”列出二元一次方程组,解之可得;(2)设学校购买a台打印机,则购买电脑为(a﹣1)台,根据“(a﹣1)台电脑的钱数+a台打印机的钱数≤67000”列出不等式,解之可得.【解答】解:(1)设每台电脑的价格为x元,每台打印机的价格为y元,根据题意,得:,解得:,答:每台电脑的价格为3500元,每台打印机的价格为1200元;(2)设学校购买a台打印机,则购买电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤67000,解得:a≤15,答:该学校至多能购买15台打印机..【点评】本题主要考查一元一次不等式与二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程组与不等式.26.【分析】(1)连接OC,由∠ACO+∠OCB=∠ACO+∠ABC=90°,根据∠PCA=∠ABC可知∠PCA+∠ACO=90°,据此可得;(2)证△PCA∽△PBC得=,证△ACD∽△ABC得=,从而得证=;(3)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到=,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r﹣4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=,得到=,于是求得结论.【解答】解:(1)如图所示,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,∴PC是⊙O的切线;(2)∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴=,∵CG⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴=,∴=;(3)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴=,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴FA=FC,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,∴FD=3,AD=4,CD=8,在Rt△COD中,设CO=r,则有r2=(r﹣4)2+82∴r=10,∴AB=2r=20,∵AB是直径,∴∠AEB=90°,∴sin ∠EAB =,∴=,∴=,∴EB =12.【点评】本题考查了圆的综合问题,熟练掌握切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,连接OC 构造直角三角形是解题的关键.27.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:,解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴,解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2,∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m =n 2﹣3n +1,即m =(n ﹣)2﹣,∵0≤n ≤4,当n =上,M 最小值=﹣,n =4时,M 最小值=5,综上,m 的取值范围为:﹣≤m ≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

2019年黑龙江省哈尔滨市中考数学模拟试卷

2019年黑龙江省哈尔滨市中考数学模拟试卷

2019年黑龙江省哈尔滨市中考数学模拟试卷(5月份)一.选择题(满分30分,每小题3分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是()℃.A.44B.34C.﹣44D.﹣342.下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.若反比例函数y=图象经过点(5,﹣1),该函数图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.6.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+7.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=()A.1:3B.1:4C.1:5D.1:68.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1 9.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有()A.1个B.2个C.3个D.4个二.填空题(满分30分,每小题3分)11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.函数y=中,自变量x的取值范围是.13.计算﹣=.14.因式分解:x3﹣2x2y+xy2=.15.若关于x的不等式组无解,则a的取值范围是.16.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为.17.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为.18.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了道题.19.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM 的最大值是.20.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则∠BCD=°,cos∠MCN=.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(x﹣)的值,其中x=2cos45°+1.22.(7分)如图,网格中每个小正方形的边长均为1,线段AB的顶点在校正方形的顶点上,按要求画出图形.(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;(3)直接写出线段AD的长.23.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.(8分)如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF.求证:四边形ADEF是平行四边形.25.(10分)潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?26.(10分)已知,在△P AB中,P A=PB,经过A、B作⊙O.(1)如图1,连接PO,求证:PO平分∠APB;(2)如图2,点P在⊙O上,P A:AB=:2,E是⊙O上一点,连接AE、BE.求tan∠AEB的值;(3)如图3,在(2)的条件下,AE经过圆心O,AE交PB于点F,过F作FG⊥BE于点G,EF+BG=14,求线段OF的长度.27.(10分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于A(﹣2,0),点B(4,0).(1)求抛物线的解析式;取得最大值时,求点(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBCM的坐标;(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019黑龙江省中考数学模拟预测试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题 卡上填写清楚。

3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书 写的答案无效;在草纸、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹 的签字笔书写,字体工整、笔记清楚。

5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修 正带、刮纸刀。

第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每题3分,共计30分)1.某日的最高气温为8℃,最低气温为-4℃,则这一天的最高气温比最低气温高 ( ) A.-12℃ B.-6℃ C.6℃ D.12℃2.下列运算正确的是( ) A.(a+b)(a-b)=a 2-b 2B.a 2·a 3=a6C.(a+b)2=a 2+b 2D.a 10÷a 2=a 53.下列图案中,轴对称图形的个数为( )A.1个B.2个C.3个D.4个4.如图所示的几何体由5个大小相同的小正方体紧密摆放而成,下列关于其三视图面积 大小的说法中正确的是( )A.主视图和左视图面积相等B.主视图和俯视图面积相等C.左视图和俯视图面积相等D.三个视图面积都相等 5.双曲线y =x3-k 的图像分布在二、四象限,则k 的取值范围是 ( ) A. k ≤ 3 B.k <3 C.k >3 D.k ≥36.如图,某飞机在空中B 处探测到它的正下方地平面上目标C ,此时飞行高度BC=1200m ,从飞机上看地平面指挥台A 的附角α的正切值为43,则飞机B 与指挥台A 的距离为( )A . 1200mB . 1600mC . 1800mD . 2000m 7.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交 AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结 论错误的是( ). A.AD AE BD EC = B.AF DFAE BE=C第7题图第9题图C.AE AF EC FE = D.DE AFBC FE=8.现有一块长方形绿地,它的长边为100米,现将其长边缩小到与短边相等(短边不变),使缩小后的绿地的形状是正方形,且缩小后的绿地面积比原来减少1200㎡,设缩小后的小正方形边长为xm ,则下列方程正确的是( )A.1200)100(=-x xB.1200)100(=-x xC.1200)100(100=-xD.1200)-100(100=x9.如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠CAB,交BC 边于点D ,若AC=3,则线段BD 的长为( )A. 32B. 1C.6 D. 210.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆。

如图是甲、乙两人在跑步的全过程中经过的路程y (米)与甲出发的时间x (秒)的函数图象,则乙在途中等候甲用了( )秒A.200B.150C.100D.80第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.将120 000 000用科学记数法表示为_________. 12.在函数y=2x-4x中,自变量x 的取值范围是__________. 13.计算:27-34= ..14.分解因式:3222a a b ab -+ =_________________.15.不等式组20321x x -≥⎧⎨+>-⎩的解集是__________.16.小明的卷子夹里放了大小相同的试卷共12页,其中语文6页、数学4页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为 . 17.一个扇形的半径为3cm ,面积为π cm 2,则此扇形的圆心角为 度. 18.近来房地产市场进入寒冬期,某楼盘原价为每平方米8000元, 连续两次降价a %后售价为6480元,则a 的值是 . 19.在等边△ABC 中,作以DB 为直角边的等腰Rt△DBC(A 、D 两点 在BC 的同侧),则∠ADB= °20.在△ABC 中,AC=10,∠BAC=60°,D 为BC 中点,连接AD , AD —AB=1,则BC=_________.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分) 21.(本题7分)第10题图第20题图先化简,再求代数式329632-÷--+a a a a 的值,其中a=tan60º-6sin30º.22. (本题7分)如图,在每个小正方形的边长均为1的方格纸中有线段AB 和CD ,点A 、B 、C 、D 均在小正方形的顶点上.(1)画出一个以AB 为一边的△ABE,点E 在小正方形的顶点上,且∠BAE=45°,△ABE 的面积为5; (2)画出以CD 为一腰的等腰△CDF,点F 在小正方形的顶点上,且△CDF 的面积为7.5;(3)在(1)、(2)的条件下,连接EF ,请直接写出线段EF 的长.23. (本题8分)为评估九年级学生的学习成绩状况,以应对即将到来的中考做好教学调整,某中学抽取了部分参加考试的学生的成绩作为样本分析,绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)求样本中成绩类别为“中”的人数,并将条形统计图补充完整; (2)该校九年级共有1000人参加了这次考试,请估算该校九年级共有多少名学生的数学成绩达到优秀?24. (本题8分)已知:如图在△ABC 中,AC=BC ,∠C=90°,AD 平分∠BAC,BE⊥AE. (1) 求证:BE=21AD ; (2) 连结CE ,求∠CED 的度数.25. (本题10分)一个电器超市购进A 、B 两种型号的电风扇进行销售,若一台A 种型号的进价比一台B 种型号的进价多30元,用2000元购进A 种型号的数量是用3400元购进B 种型号的数量的一半. (1)求每台A 种型号和B 种型号的电风扇进价分别是多少元;(2)该超市A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A 种型号的电风扇至少是多少台?26.(本题10分)已知:AB 、CD 是⊙O 的弦,连接AC 、DB 并延长交于E , (1)求证:∠ECD=∠EBA;(2)若∠E=90°,过O 作OH⊥CD 于H ,求证:OH=21AB ; (3)在(2)的条件下,过O 作OG//AB 交⊙O 于G ,连接OB 、OC ,若∠ECO=∠COG+∠BOG ,AC=72,332tan =∠ABO ,求DP 长.27.(本题10分) 已知:二次函数231x y =上一点D ,DA ⊥x 轴于点A ,C 为y 轴上一点,且OA =OC ,直线CD 交抛物线第一象限一点B ; (1)若C (0,2),求点B 的坐标; (2)若C 为y 轴正半轴任意一点,(1)中结论是否成立,如成立,请给出证明;不成立说明理由; (3)在(2)的条件下,点B 关于y 轴的对称点为点E ,连接BE 、OE ,OE 交BD 于点K ,当∠FKB =2∠KBO 时,求点D 的坐标.一、选择题:DACBB DDBDC 二、填空题:11、8102.1⨯; 12、2≠x ; 13、3-; 14、2)(b a a -; 15、21-≤<x 16、31; 17、20; 18、10; 19、 13575或; 20、192 三、解答题: 21、原式=33+-a a ;33-=a ,代入结果=32-1 22、略23、(1)50%4422=÷,50-10-22-8=10(2)2001000%1005010=⨯⨯,答:___________________ 24、(1) (2)45°25、(1)解:设每台B 种型号的电风扇进价x 元,每台A 种型号进价为(x+30)元213400302000⨯=+x x解得170=x经检验170=x 是分式方程的解 ∴2003017030=+=+x答:________________(2)解:设本次购进A 型号的电风扇a 台1400)30)(170190()200260(≥--+-a a 20≥a答:___________27、(1)B (3,3)(2)成立,理由如下:设C(0,c),则A (-c ,0),D (-c,231c )可得DC :c x c y +-=)31(与抛物线联立,解得)(,321舍c x x -== ∴B(3,3)(3)延长BD 交x 轴于G ,如图,可证△OKG ≌△OKF ,得G(-3,0),则BG :2321+=x y , 与抛物线联立,解得D(4323-,)。

相关文档
最新文档