2015-2016学年湖南省常德市澧县张公庙中学九年级下入学数学试卷
【解析版】张公庙中学2015-2016学年九年级上第一次月考试卷

)
A.ax2+bx+c=0
B.x2﹣ 2=(x+3)2
C.2x+3x﹣ 5=0 D.x2﹣ 1=0
3.方程 x2+ax+1=0 和 x2﹣ x﹣ a=0 有一个公共根,则 a 的值是( ) A.0 B.1 C.2 D.3
4.用配方法解方程 x2+10x+9=0,配方后可得(
)
A.(x+5)2=16
B.(x+5)2=1
23.如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3. (1)求 EC 的值; (2)求证:AD•AG=AF• AB.
24.如图,四边形 ABCD 为正方形,点 A 的坐标为(0,1),点 B 的坐标为(0,﹣ 2),反
比例函数 y= 的图象经过点 C,一次函数 y=ax+b 的图象经过 A、C 两点
的值;
21.用恰当的方法解下列方程 (1)x2﹣ 10x+25=7 (2)3x(x﹣ 1)=2﹣ 2x.
22.某商场销售一种品牌羽绒服和防寒服,其中羽绒服的售价是防寒服售价的 5 倍还多 100 元,2014 年 1 月份(春节前期)共销售 500 件,羽绒服与防寒服销量之比是 4:1,销 售总收入为 58.6 万元. (1)求羽绒服和防寒服的售价; (2)春节后销售进入淡季,2014 年 2 月份羽绒服销量下滑了 6m%,售价下滑了 4m%,防 寒服销量和售价都维持不变,结果销售总收入下降为 16.04 万元,求 m 的值.
B.x1<x3<x2
C.x2<x1<x3
D.x2<x3<x
1
7.如图,在直角坐标系中,有菱形 OABC,A 点的坐标是(10,0),双曲线
湖南省常德市九年级下学期开学数学试卷

湖南省常德市九年级下学期开学数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣2的倒数是()A . 2B . ﹣2C .D .2. (2分)(2018·南山模拟) 下列运算正确的是()A . 5a2+3a2=8a4B . a3•a4=a12C . (a+2b)2=a2+4b2D . (a-b)(-a-b)=b2-a23. (2分)(2017·河北模拟) 如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A .B .C .D .4. (2分) (2018九上·汨罗期中) 如图,D、E是AB的三等分点,DF∥EG∥BC,图中三部分的面积分别为S1 , S2 , S3 ,则S1:S2:S3=()A . 1:2:3B . 1:2:4C . 1:3:5D . 2:3:45. (2分) (2019九上·榆树期中) 用配方法解方程时,原方程应变形为()A .B .C .D .6. (2分)(2017·娄底模拟) 关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A . ﹣1或5B . 1C . 5D . ﹣17. (2分)(2020·江都模拟) 如图,在平面直角坐标系中,已知点A坐标(0,3),点B坐标(4,0),将点O 沿直线对折,点O恰好落在∠OAB的平分线上的O’处,则b的值为()A .B .C .D .8. (2分) (2020八下·香坊期末) 菱形的周长为8厘米,两相邻角度数比是1:2,则菱形的面积是()平方厘米.A . 2B . 2C . 4D . 49. (2分)(2017·潮南模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A .B .C .D .10. (2分)(2019·婺城模拟) 一元一次不等式组的解集是()A . x>﹣1B . x≤2C . ﹣1<x≤2D . x>﹣1或x≤2二、填空题 (共8题;共8分)11. (1分)下列函数:①xy=1;②y=;③y=5x﹣1;④y=3﹣x,其中y不是x的反比例函数的有________12. (1分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________ 米.13. (1分)(2017·商河模拟) 如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=________.14. (1分) (2019八下·邗江期中) 如图,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且点A 在反比例函数的图象上,若,则k的值为 ________.15. (1分)已知一元二次方程(m﹣2)x2﹣3x+m2﹣4=0的一个根为0,则m=________.16. (1分)如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为________.17. (1分) (2017八下·湖州期中) 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2 ,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________ m.18. (1分)(2020·武汉模拟) 如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直x =1线,下列结论中:①abc>0;②若A(x1 , m),B(x2 , m)是抛物线上的两点,当x=x1+x2时,y=c;③若方程a(x+2)(4﹣x)=﹣2的两根为x1 , x2 ,且x1<x2 ,则﹣2<x1<x2<4;④(a+c)2>b2;一定正确的是________(填序号即可).三、解答题: (共8题;共101分)19. (10分) (2020八下·扬州期末) 计算或化简:(1)+( - )0-|- |-2-1-;(2)20. (15分) (2017七下·金乡期末) 商场销售A、B两种商品,它们的进价和售价如表所示.A商品B商品进价(元/件)3040售价(元/件)5070(1)若该商场购进A、B两种商品共60件,恰好用去2050元,求购进A、B两种商品各多少件?(2)该商场第二次购买A、B两种商品,而B商品数量比A商品数量的2倍少6件,且购买总额不超过2840元,总利润不少于1900元.请你帮助该商场设计相应的进货方案;(3)若一个星期该商场销售A、B两种商品的总利润恰好是140元,求销售A、B两种商品各多少件?21. (5分) (2020八下·定边期末) 如图,小红想测量离A处30m的大树的高度,她站在A处仰望树顶B,仰角为30°(即∠BDE=30°),已知小红身高1.52m.求大树的高度.22. (15分)(2018·香洲模拟) 为响应香洲区全面推进书香校园建设的号召,班长小青随机调查了若干同学一周课外阅读的时间t(单位:小时),将获得的数据分成四组,绘制了如下统计图(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A组的扇形统计图的圆心角的度数;(3)如果小青想从D组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或树状图的方法求出恰好选中甲的概率.23. (11分)(2020·新疆) 为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x <60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是________;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.24. (15分) (2020·淄博) 如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1 , y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.25. (10分)(2017·青浦模拟) 已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.26. (20分)(2020·云南模拟) 如图,抛物线y=ax2+bx+3经过点 B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共101分)19-1、答案:略19-2、答案:略20-1、答案:略20-2、答案:略20-3、21-1、答案:略22-1、22-2、答案:略22-3、答案:略23-1、23-2、答案:略23-3、24-1、答案:略24-2、答案:略24-3、答案:略25-1、答案:略25-2、答案:略26-1、答案:略26-2、答案:略26-3、答案:略26-4、答案:略。
湖南省澧县张公庙中学2016届中考数学第一轮复习第6单元《图形的变化》检测试卷与解答

湖南省澧县张公庙中学2016届中考数学第一轮复习第6单元《图形的变化》检测试卷与解答一、选择题(题型注释)1.在△ABC中,已知∠1=∠A+∠C,则下列比例式中成立的是()A.B.C.D.2.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A. B.C.D.3.平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=﹣图象上的一个动点,过点P作PQ⊥x轴,垂足为Q.若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A.1个 B.2个 C.3个D.4个4.如图所示是两个重叠的直角三角形,将其中的一个直角三角形沿着BC方向平移BE的长得到此图形,已知AB=8,BE=5,DH=3,则四边形ABEH的面积是()A.65 B.32.5 C.55 D.27.55.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0) B.33,22⎛⎫⎪⎝⎭ C .(2,2) D .(2,2)6.如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长( )A .4B .25C.181313D.12137.当∠A+∠B=90°时,下列结论错误的是( )A .cosA=sinB B .sinA=cosBC .sinA=cos (90°-A )D .sin (90°-A )=sinA8.若某人沿坡度ⅰ=1:8的斜坡前进了65m ,则他所在的位置比原来的位置上升的高度是( )A .mB .mC .mD .m9.如图,从A 处观测C 处的仰角为30°,从B 处观测C 处的仰角为45°,则从C 处观测A 、B 两处的视角∠ACB 为( )A .15°B .30°C .45°D .60°10.如图,已知∠ABC=90°,BD⊥AC 于D ,AB=4,AC=10,则AD=( )A .B .2C .D .1二、填空题(题型注释)11.若,则= .12.已知∠A是Rt△ABC的一个内角,且sinA<,那么∠A的取值范是.13.已知∠α为锐角,且sinα=,则cosα= .14.(1)若sin(α+45°)=,则cos(45°-α)的值为;(2)若tanα=3,则= .15.如图,在相距100m的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别为和.16.某地图的比例尺为1:1000 000,如果有人在地面上行走了2000米,那么在地图上的距离为米(结果用科学记数法表示)17.宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2cm,则其宽为cm.18.如图,平行四边形ABCD中,过点B的直线顺次与AC、AD及CD的延长线分别相交于点E、F、G.若BE=6,EF=2,则FG等于.19.如图,将平行四边形AEFG变换到平行四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述正确的有(填序号,多选不给分,少选可以酌情给分).①这种变换是相似变换;②对应边扩大到原来的2倍;③各对应角扩大到原来的2倍;④周长扩大到原来的2倍;⑤面积扩大到原来的4倍.20.有下列四种说法:①任意两个等腰三角形都相似;②有两角和一边对应相等的两个三角形全等;③真命题的逆命题都是真命题;④任意两个等腰直角三角形都相似.其中叙述正确的有(把你认为叙述正确的序号全部填上).三、解答题(题型注释)21.将图中的△ABC作下列变换,画出相应的图形.(1)沿y轴正向平移2个单位,得△A1B1C1;(2)以点B为位似中心,放大到2倍,得△A2B2C2.(3)写出坐标:B1(______),C2(______)22.计算(1)2cos230°+4sin60°•cos45°-tan30°(2).23.如图1,四边形ABCD是一张矩形纸片,∠BAC=α(0°<α<45°),现将其折叠,使A,C两点重合.(1)作出折痕EF;(2)设AC=x,EF=y,求出y与x的函数关系式;(3)如图2,当45°<α<90°时,(2)题中求得的函数关系式是否成立?若成立,请说明理由;若不成立,请求出当45°<α<90°时,y与x的函数关系式.24.如图,在等腰△ABC中,AB=AC=5 cm,BC=6 cm,点P从点B开始沿BC边以每秒1cm的速度向点C运动,点Q从点C开始沿CA边以每秒2cm的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q运动到点A 时,点Q、P停止运动,设它们运动的时间为x( s).(1)当点Q运动多少秒时,射线DE经过点C;(2)当点Q运动多少秒时,△PQC与△PDE相似;(3)当点Q运动时,设四边形ABPQ的面积为y( cm2),求y与x的函数关系式(不写自变量取值范围).25.如图1,O为正方形ABCD的中心,分别延长OA,OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1,如图2.(1)探究AE1与BF1的数量关系,并给予证明;(2)当时α=30°,求证:△AOE1为直角三角形;(3)判断△EOF在旋转过程中与正方形ABCD重合部分的面积是否改变?如果改变,分别写出重合面积的最大值和最小值各是多少;如果不变,请说明理由.参考答案1.分析:由∠1=∠A+∠C,∠1=∠A+∠ANM,易证得MN∥BC,然后由平行线分线段成比例定理,即可求得答案,注意排除法的应用.解答:解:∵∠1=∠A+∠C,∠1=∠A+∠ANM,∴∠ANM=∠C,∴MN∥BC,∴,故A错误;,故B正确;,故C错误;,故D错误;故选B.点评:此题考查了平行线分线段成比例定理与平行线的判定.此题难度不大,解题的关键是注意比例线段的对应关系.2.A【解析】首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE为等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,证明△ABE∽△FCE,再分别求出△ABE的面积,然后根据面积比等于相似比的平方即可得到答案.解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE•BG=×4×=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=故选A.3.D【解析】可以分别从△PQO∽△AOB与△PQO∽△BOA去分析,首先设点P(x,y),根据相似三角形的对应边成比例与反比例函数的解析式,联立可得方程组,解方程组即可求得点P 的坐标,即可求得答案.解:∵点P在反比例函数y=﹣图象上,∴设点P(x,y),当△PQO∽△AOB时,则,又PQ=y,OQ=﹣x,OA=2,OB=1,即,即y=﹣2x,∵xy=﹣1,即﹣2x2=﹣1,∴x=±,∴点P为(,﹣)或(﹣,);同理,当△PQO∽△BOA时,求得P(﹣,)或(,﹣);故相应的点P共有4个.故选D.4.分析:先根据平移的性质,得出DE=8,则HE=5,再根据梯形的面积公式即可解答.解答:解:由平移的性质知,DE=AB=8,∵DH=3,∴HE=DE-DH=8-3=5,∴S梯形ABEH=(AB+EH)•BE=(8+5)×5=32.5.故选B.点评:本题主要考查了平移的性质和梯形的面积公式,还可以运用相似三角形的判定与性质求解,但是较为麻烦.5.C【解析】∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,∴OA∶OD=1∶2∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形.∴DE=OD=2,∴E点的坐标为(2,2).故选C.6.A【解析】∵cos B=23,∴CBAB=23,∵AB=6,∴CB=23×6=4.7.分析:根据三角函数的定义得出各角三角函数值,从而得出若∠A+∠B=90°,那么sinA=cos(90°-A),sinA=cosB或sinB=cosA,即可得出答案.解答:解:A.∵cosA=,sinB=,∴cosA=sinB,故选项A正确;B.∵sinA=,cosB=,∴sinA=cosB,故选项B正确;C.∵sinA=,cos(90°-A)=cosB=,∴sinA=cos(90°-A),故选项C正确;D.∵sin(90°-A)=sinB=,sinA=,∴sin(90°-A)≠sinA,故D选项错误.故选:D.点评:此题主要考查了互余两角三角函数的关系,根据两角关系画出直角三角形得出各三角函数值是解题关键.8.分析:已知坡面的坡度,可用勾股定理求出坡面的铅直高度与坡面长度的比.解答:解:如图.坡面AC=65m,坡度i==,则AB=8BC.Rt△ABC中,由勾股定理得:AB2+BC2=AC2,即(8BC)2+BC2=652,解得BC=.故选A.点评:本题需注意的是坡角的正切等于坡度,不要混淆概念.9.分析:∠ACB=∠CBD-∠A.根据仰角定义求解.解答:解:由于从A处观测C处的仰角为30°,从B处观测C处的仰角为45°,则∠A=30°,∠CBD=45°.∠ACB=∠CBD-∠A=45°-30°=15°.故选A.点评:本题考查了俯仰角的定义以及三角形的内角和定理.10.分析:根据射影定理每一条直角边是这条直角边在斜边上的射影和斜边的比例中项即可得出BC的长.解答:解:根据射影定理得:AB2=AD•AC,∴AD==.故选A.点评:本题考查射影定理的知识,属于基础题,注意掌握每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.11.分析:根据得到x=5y,代入所求的代数式即可求值.解答:解:由得x=5y,原式===,故答案为:.点评:本题考查了比例的性质,利用比例的性质将化为x=5y是解决此题的关键.12.分析:根据锐角三角函数值的变化规律正弦值随着角的增大而增大可以求出∠A的取值范围.解答:解:∵∠A是Rt△ABC的一个内角,∴∠A<90°,,∴0°<∠A<45°.点评:考查了锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.13.分析:根据sinα2+coaα2=1可求出coaα的值.解答:解:∵sin2α+coa2α=1,sinα=,∴cosα=±,又∵∠α为锐角,∴cosα=.故答案为:.点评:本题考查同角的三角函数的关系,比较简单,关键是掌握sinα2+coaα2=1.14.分析:(1)根据sin(α+45°)=,求得α的值,将α代入cos(45°-α)求值即可;(2)做出直角三角形ABC,根据tanα=3,设AB=1,BC=3,根据勾股定理求得AC的值,然后求出sinα和cosα代入计算即可.解答:解:(1)∵sin(α+45°)=,∴α+45°=60°,则α=15°,∴cos(45°-α)=cos30°=;(2)根据tanα=3,设AB=1,BC=3,则AC==,则sinα===,cosα==,则==.故答案为:,.点评:本题考查了特殊角的三角函数值以及同角三角函数的关系,难度适中,解答本题的关键是熟练掌握几个特殊角的三角函数值以及同角三角函数的关系.15.分析:过C作CD⊥AB于点D,设CD为x,在Rt△ACD和Rt三角形BCD中,分别用x表示AD、BD,然后根据AB=AD+BD=100求出x的值,继而可求得A,B两处到工厂C的距离.解答:解:过C作CD⊥AB于点D,设CD为x,在Rt△ACD和Rt△BCD中,AD==,BD=x,则+x=100,解得:x=150-50=50(3-),又∵=sin60°,∴AC=100(-1),BC=CD=50(3-).故答案为:100(-1)m,50(3-)m.点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形并解直角三角形.16.分析:由比例尺定义可知,图上距离=实际距离×比例尺.解答:解:根据图上距离=实际距离×比例尺,得图上距离=2000÷1000 000=0.002m=2×10-3m.点评:能够熟练运用比例尺进行有关计算,注意单位的转换.17.分析:判断黄金矩形的依据是:宽与长之比为:1,根据已知条件即可得出答案.解答:解:∵矩形是黄金矩形,且长为2cm,设宽为xcm,则,解得x=-1.故答案为:(-1).点评:本题主要考查了黄金分割点的概念,需要熟记黄金比的值,难度适中.18.分析:根据平行四边形可判定△AEB∽△EGC,△AEF∽△BEC,利用其对应边成比例,可求出EG,然后用EG减去EF即可.解答:解:∵AD∥BC,∴△AEF∽△CEB,∴=,又∵△ABE∽△EGC,∴=,∴,将BE=6,EF=2,代入求得EG=18,FG=EG-EF=18-2=16.故答案为:16.点评:此题考查学生相似三角形的判定与性质和平行四边形的性质的理解与掌握,利用相似三角形中的对应边成比例是解答此题的关键.19.分析:根据相似多边形的性质,平行四边形的性质对各小题分析判断利用排除法求解.解答:解:①这种变换是相似变换,正确;②∵E,G分别是AB,AD的中点,∴对应边扩大到原来的2倍,正确;③各对应角大小不变,故本小题错误;④根据相似多边形周长的比等于相似比,周长扩大到原来的2倍,正确;⑤根据相似多边形面积的比等于相似比的平方,面积扩大到原来的4倍,正确;综上所述,叙述正确的有①②④⑤.故答案为:①②④⑤.点评:本题考查了相似多边形的性质,平行四边形的性质,熟记性质是解题的关键.20.分析:根据相似三角形的判定定理,全等三角形的判定定理,命题的定义,逐一判断.解答:解:①任意两个等腰三角形不能判断它们的底角或顶角对应相等,不能判断相似;②根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,可判断全等;③真命题的逆命题不一定是真命题,真命题:若a=b,则a2=b2,其逆命题不成立;④任意两个等腰直角三角形都有一个角为45°,一个角为90°,可判断相似.∴其中叙述正确的有②④.故答案为:②④.点评:本题考查了三角形的全等,相似的判定定理,命题的定义.关键是明确各判定定理,特殊三角形的性质.21.分析:(1)把三角形3个顶点向上平移2个单位后顺次连接即可;(2)延长BC到C2,使BC2=2BC,同法得到其余点的对应点,顺次连接即可;(3)根据所在象限和距离坐标轴的距离可得相应坐标.解答:解:(1)(2)如图,;(3)由图中可以看出,B1(3,1),C2(1,3),故答案为3,1;1,3.点评:考查平移问题和位似变换问题;用到的知识点为:图形的变换,关键是关键点的变换.22.分析:(1)将各特殊角的三角函数值代入即可得出答案.(2)将各特殊角的三角函数值代入即可得出答案.解答:解:(1)原式=2×()2+4××-=+-.(2)原式=2×+1-+1=2.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.23.分析:(1)作AC的中垂线EF,交AB、CD与E、F,EF即为折痕;(2)连接CE、AF,则四边形AFCE为菱形,即OE=OF,OA=OC,AC⊥EF.在RT△AOE中,AO=x,OE=y,且OE=tanα•OA,由此以得到所求函数关系;(3)当45°<α<90°时,∵∠CAB=α,∴∠DAO=90°-α.在Rt△AOF中,OF=tan(90°-α)•OA,有成可以求出函数关系.解答:解:(1)如图,作AC的中垂线与CD,AB分别交于F,E.EF即为折痕;(2)设AC与EF交于O点,则点O是矩形的对称中心,∴AO=x,OE=y.在Rt△AOE中,OE=tanα•OA,即y=xtanα.(3)当45°<α<90°时,∵∠CAB=α,∴∠FAO=90°-α.所以(2)题中求得的函数关系式不成立.在Rt△AOF中,OF=tan(90°-α)•OA,点评:此题主要考查了三角函数中正切和余切的运用,题目虽复杂,但解题相对简单.24.分析:(1)由于DE垂直平分PQ,所以只要CP=CQ,根据等腰三角形的性质,DE又是顶角的平分线,所以列出方程,求出x=2.(2)过点A作AM⊥BC垂足为M.利用PQC∽△PDE得到AM⊥BC∠C=∠C,从而证得△PQC∽△AMC 列出比例式求得x的值即可;(3)由于四边形AQPB的形状不规则,所以可以用△ABC的面积减去△PQC的面积,而△PQC 的面积可以用x表达,则四边形AQPB的面积也可以用x表达出来.解答:解:(1)如图(1),当DE经过点C∵DE⊥PQ,PD=QD∴PC=CQ,PC=6-x,CQ=2x,即6-x=2x得x=2∴当点Q运动了2秒时,直线DE经过点C;(2)如图(2),过点A作AM⊥BC垂足为M.∵AB=AC,AM⊥BC,∴∵DE⊥PQ∴当PQ⊥AC时,△PQC∽△PDE…(4分)∵AM⊥BC∠C=∠C∴△PQC∽△AMC∴即解得当点Q运动了秒时,△PQC与△PDE相似.…(3)如图(3),分别过点Q、A作QN⊥BC,AM⊥BC垂足为M、N.∵AB=AC=5cm,BM=3cm,∴(cm)∵QN∥AM∴△QNC∽△AMC∴即解得…(7分)又∵PC=6-x∴S△PCQ=•QN=•∴y=S△ABC-S△PCQ=-•即.点评:本题需先证得三角形相似和待定系数法求二次函数解析式,再通过相似形的性质,解决问题,全面的考查了相似形的性质和判定.25.分析:(1)首先证明△AOE1≌△BOF1,根据全等三角形的对应边相等,即可证得;(2)延长OA到M,使AM=OA,则OM=OE1.易证△OME1是等边三角形,利用三线合一定理即可证得;(3)作ON⊥AB于点N,作OH⊥AD于点H,即可证明:△ONQ≌△OHP,则S四边形OPAQ=S四边形OHAN,从而得到.解答:解:(1)∵正方形ABCD中,OA=OD=OB,又∵OF=2OA,OE=2OD,∴OE=OF,则OE1=OF1,在△AOE1和△BOF1中,,∴△AOE1≌△BOF1∴AE1=BF1;(2)延长OA到M,使AM=OA,则OM=OE1.∵正方形ABCD中,∠AOD=90°,∴∠AOE1=90°-30°=60°,∴△OME1是等边三角形,又∵AM=OA,∴AE1⊥OM,∴△AOE1为直角三角形;(3)作ON⊥AB于点N,作OH⊥AD于点H.在△ONQ和△OHP中,,∴△ONQ≌△OHP,∴S四边形OPAQ=S四边形OHAN,则在旋转过程中与正方形ABCD重合部分的面积不变.点评:本题考查了全等三角形的判定与性质,以及正方形的性质,正确证明三角形全等是关键.。
湖南省常德市澧县张公庙镇中学九年级数学12月月考试题(含解析) 新人教版

湖南省常德市澧县张公庙镇中学2016届九年级数学12月月考试题一、选择题(共10 小题)1.一元二次方程 x2﹣3x+4=0 的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.有一个实数根D.没有实数根2.关于x 的方程ax2﹣3x+2=x2 是一元二次方程,则a 的取值范围为()A.a≠0 B.a>0 C.a≠1 D.a>13.抛物线 y=﹣2x2﹣3 与双曲线y=﹣的交点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,一次函数y1=k1x+b 的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x 的取值范围是()A.x<1 B.x<﹣2 C.﹣2<x<0 或x>1 D.x<﹣2 或0<x<1 5.已知△ABC∽△A1B1C1,且∠A=50°,∠B=95°,则∠C1 等于()A.50° B.95°C.35°D.25°6.在下列命题中,正确的是() A.邻边之比相等的两个平行四边形一定相似B.有一个角是70°两个等腰三角形一定相似 C.两个直角三角形一定相似D.有一个角是60°的两个菱形一定相似7.△ABC 中,∠A,∠B 均为锐角,且有+2=0,则△ABC 是()A.直角(不等腰)三角形B.等腰直角三角形 C.等腰(不等边)三角形D.等边三角形8.在 Rt△ABC 中,∠C=90°,若sinA=,则cosA 的值为()A. B. C. D.9.抛物线y=﹣x2+bx+c 的部分图象如图所示,要使y>0,则x 的取值范围是()A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4 或x>1 D.x<﹣3 或x>1 10.一次函数y=ax+b 与二次函数y=ax2+bx+c 在同一坐标系中的图象可能是()A. B. C. D.二、填空题(10 小题)11.若sin(α+5°)=1,则α= 度.12.正方形网格中,∠AOB 如图放置,则 tan∠AOB 的值为.13.写出一个你喜欢的实数k 的值,使得反比例函数y=的图象在每一个象限内,y 随x 的增大而增大.14.已知点,(4,5)是抛物线y=ax2+bx+c 上的两点,则这条抛物线的对称轴是.15.将抛物线y=x2 向左平移4 个单位后,再向下平移2 个单位,则此时抛物线的解析式是.16.如图,在宽为20m,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为.17.对于实数a、b,定义运算“*”:a*b= ,例如:4*2,因为 4>2,所以4*2=42﹣4×2=8.若x1、x2 是一元二次方程x2﹣8x+12=0 的两个根,那么x1*x2= .18.如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F,如果,那么= .三、计算题(题型注释)19.计算:﹣tan45°.20.解方程:2x2﹣4x﹣9=0(用配方法解).21.解方程:3x2﹣4x+2=0(用公式法解).四、解答题(7 小题)22.关于x 的一元二次方程x2+3x+m﹣1=0 的两个实数根分别为x1,x2.(1)求m 的取值范围;若2(x1+x2)+x1x2+10=0,求m 的值.23.如图,某防洪指挥部发现长江边一处长500 米,高10 米,背水坡的坡角为45°的防洪大堤(横断面为梯形 ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3 米,加固后背水坡EF 的坡比i=1:.(1)求加固后坝底增加的宽度AF;求完成这项工程需要土石多少立方米?(结果保留根号)24.已知:▱ABCD 中,E 是BA 边延长线上一点,CE 交对角线DB 于点G,交AD 边于点F.求证:CG2=GF•GE.25.已知抛物线y=﹣x2+mx+n 经过点A(1,0),B(6,0).(1)求抛物线的解析式;当y<0,直接写出自变量x 的取值范围;(3)抛物线与y 轴交于点D,P 是x 轴上一点,且△PAD 是以AD 为腰的等腰三角形,试求P 点坐标.26.某电子厂商投产一种新型电子产品,每件制造成本为18 元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,厂商每月能获得350 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于 32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?湖南省常德市澧县张公庙镇中学2016 届九年级上学期月考数学试卷(12 月份)参考答案与试题解析一、选择题(共10 小题)1.一元二次方程 x2﹣3x+4=0 的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.有一个实数根D.没有实数根【考点】根的判别式.【专题】计算题.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:△=b2﹣4ac=(﹣3)2﹣4×1×4=﹣7,∵﹣7<0,∴原方程没有实数根.故选D.【点评】本题主要考查判断一元二次方程有没有实数根主要看根的判别式△的值.△>0,有两个不相等的实数根;△=0,有两个不相等的实数根;△<0,没有实数根.2.关于 x 的方程 ax2﹣3x+2=x2 是一元二次方程,则 a 的取值范围为()A.a≠0 B.a>0 C.a≠1 D.a>1【考点】一元二次方程的定义.【分析】先把已知方程转化为一般式方程,然后根据一元二次方程的定义进行解答.【解答】解:由原方程,得(a﹣1)x2﹣3x+2=0,则依题意得 a﹣1≠0,解得 a≠1.故选:C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2 的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0 的条件.这是在做题过程中容易忽视的知识点.3.抛物线y=﹣2x2﹣3 与双曲线y=﹣的交点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据二次函数与反比例函数的性质,分别画出函数大致图象,利用函数的图象判定即可.【解答】解:抛物线y=﹣2x2﹣3 与双曲线y=﹣的图象如下所以抛物线y=﹣2x2﹣3 与双曲线y=﹣的交点所在的象限是第四象限.故选:D.【点评】此题考查二次函数与反比例函数的图象与性质,利用图象直观解决问题是数形结合的最佳体现.4.如图,一次函数y1=k1x+b 的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x 的取值范围是()A.x<1 B.x<﹣2 C.﹣2<x<0 或x>1 D.x<﹣2 或0<x<1【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】根据一次函数图象位于反比例函数图象的下方,可得不等式的解.【解答】解:一次函数图象位于反比例函数图象的下方,由图象可得x<﹣2,或0<x<1,故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,一次函数图象位于反比例函数图象的下方是解题关键.5.已知△ABC∽△A1B1C1,且∠A=50°,∠B=95°,则∠C1 等于()A.50° B.95°C.35°D.25°【考点】相似三角形的性质.【分析】先由三角形内角和定理求出∠C 的度数,再根据相似三角形的对应角相等得出∠C1=∠C.【解答】解:△ABC 中,∵∠A=50°,∠B=95°,∴∠C=180°﹣∠A﹣∠B=35°,∵△ABC∽△A1B1C1,∴∠C1=∠C=35°.故选C.【点评】本题考查了三角形内角和定理及相似三角形的性质,熟练掌握性质及定理是解题的关键.6.在下列命题中,正确的是() A.邻边之比相等的两个平行四边形一定相似B.有一个角是70°两个等腰三角形一定相似 C.两个直角三角形一定相似D.有一个角是60°的两个菱形一定相似【考点】命题与定理;相似图形.【分析】根据四边形相似要有对应角相等,对应边的比相等可对A、D 进行判断;根据70°的角可能为顶角,也可能为底角可以对B 进行判断;根据三角形判定方法对C 进行判断.【解答】解:A、邻边之比相等的两个平行四边形不一定相似,所以A 选项错误; B、有一个角是70°两个等腰三角形不一定相似,所以B 选项错误; C、两个直角三角形不一定相似,所以C 选项错误;D、有一个角是60°的两个菱形一定相似,所以D 选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.△ABC 中,∠A,∠B 均为锐角,且有+2=0,则△ABC 是()A.直角(不等腰)三角形B.等腰直角三角形 C.等腰(不等边)三角形D.等边三角形【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】一个数的绝对值以及平方都是非负数,两个非负数的和是 0,因而每个都是 0,就可以求出tanB,以及 sinA 的值.进而得到∠A,∠B 的度数.判断△ABC 的形状.【解答】解:∵+2=0,根据非负数的性质,tanB= ;2sinA﹣=0.∴∠B=60°,∠A=60°.则∠C=60°,△ABC 为等边三角形.故选D.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在 2016 届中考中经常出现,题型以选择题、填空题为主.【相关链接】非负数的性质(之一):有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,a n 为非负数,且a1+a2+…+a n=0,则必有a1=a2=…=a n=0.8.在 Rt△ABC 中,∠C=90°,若sinA= ,则cosA 的值为()A.B.C.D.【考点】同角三角函数的关系.【分析】根据同一锐角的正弦与余弦的平方和是 1,即可求解.【解答】解:∵sin2A+cos2A=1,即()2+cos2A=1,∴cos2A= ,∴cosA=或﹣(舍去),∴cosA= .故选:D.【点评】此题主要考查了同角的三角函数,关键是掌握同一锐角的正弦与余弦之间的关系:对任一锐角α,都有sin2α+cos2α=1.9.抛物线y=﹣x2+bx+c 的部分图象如图所示,要使y>0,则x 的取值范围是()A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4 或x>1 D.x<﹣3 或x>1【考点】二次函数的图象.【分析】根据抛物线的对称性可知,图象与x 轴的另一个交点是﹣3,y>0 反映到图象上是指x 轴上方的部分,对应的x 值即为x 的取值范围.【解答】解:∵抛物线与x 轴的一个交点是(1,0),对称轴是x=﹣1,根据抛物线的对称性可知,抛物线与x 轴的另一交点是(﹣3,0),又图象开口向下,∴当﹣3<x<1 时,y>0.故选:B.【点评】主要考查了二次函数图象的对称性.要会利用对称轴和与x 轴的一个交点坐标求与x 轴的另一个交点坐标.10.一次函数y=ax+b 与二次函数y=ax2+bx+c 在同一坐标系中的图象可能是()A. B. C. D.【考点】二次函数的图象;一次函数的图象.【分析】先由一次函数y=ax+b 图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得 b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得 b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得 b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得 b<0,由直线可知,a>0,b>0,故本选项错误.故选:B.【点评】本题考查一次函数与二次函数的图象,掌握抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题(10 小题)11.若sin(α+5°)=1,则α= 40 度.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:∵ sin(α+5°)=1,∴sin(α+5°)= = ,∴α+5°=45°,α=40°.【点评】解答此题的关键是熟记特殊角的三角函数值.12.正方形网格中,∠AOB 如图放置,则 tan∠AOB 的值为 2 .【考点】锐角三角函数的定义.【专题】网格型.【分析】根据正切定义:锐角A 的对边a 与邻边b 的比进行计算即可.【解答】解:tan∠AOB= =2,故答案为:2.【点评】此题主要考查了正切定义,关键是正确掌握三角函数的定义.13.写出一个你喜欢的实数 k 的值1(答案不唯一),使得反比例函数y=的图象在每一个象限内,y 随x 的增大而增大.【考点】反比例函数的性质.【专题】开放型.【分析】根据反比例函数的性质得出关于k 的不等式,求出k 的取值范围,在此取值范围内找出一个符合条件的k 的值即可.【解答】解:∵反比例函数y=的图象在每一个象限内,y 随x 的增大而增大,∴k﹣2<0,解得k<2.∴k 可以为:1(答案不唯一).故答案为:1(答案不唯一).【点评】本题考查的是反比例函数的性质,根据题意得出关于k 的不等式,求出k 的取值范围是解答此题的关键.14.已知点,(4,5)是抛物线y=ax2+bx+c 上的两点,则这条抛物线的对称轴是 x=3 .【考点】待定系数法求二次函数解析式.【分析】抛物线具有对称性,当抛物线上两点纵坐标相同时,对称轴是两点横坐标的平均数.【解答】解:因为已知两点的纵坐标相同,都是5,所以对称轴方程是x=÷2=3.【点评】本题考查抛物线的对称性,题目比较灵活,也比较容易.15.将抛物线 y=x2 向左平移 4 个单位后,再向下平移 2 个单位,则此时抛物线的解析式是y=(x+4)2﹣2 或y=x2+8x+14 .【考点】二次函数图象与几何变换.【分析】因为抛物线y=x2 向左平移4 个单位后,再向下平移2 个单位,所以新抛物线的解析式为y= (x+4)2﹣2.【解答】解:∵向左平移4 个单位后,再向下平移2 个单位.∴y=(x+4)2﹣2=x2+8x+14.故此时抛物线的解析式是y=(x+4)2﹣2=x2+8x+14.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.如图,在宽为20m,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为 540m2,则道路的宽为2m .【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可设道路宽为x 米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x)米2,进而即可列出方程,求出答案.【解答】解:利用平移,原图可转化为右图,设道路宽为x 米,根据题意得:(32﹣x)=540整理得:x2﹣52x+100=0 解得:x1=50(舍去),x2=2 故答案为:2【点评】本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.17.对于实数a、b,定义运算“*”:a*b= ,例如:4*2,因为 4>2,所以4*2=42﹣4×2=8.若x1、x2 是一元二次方程x2﹣8x+12=0 的两个根,那么x1*x2= ±24 .【考点】根与系数的关系.【专题】新定义.【分析】首先解方程x2﹣8x+12=0,再根据a*b= ,求出x1﹡x2 的值即可.【解答】解:∵x1,x2 是一元二次方程x2﹣8x+12=0 的两个根,∴(x﹣2)(x﹣6)=0,解得:x=2 或6,①当x1=2,x2=6 时,x1﹡x2=2×6﹣62=﹣24;②当x1=6,x2=2 时,x1﹡x2=62﹣6×2=24.故答案为:±24.【点评】此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.18.如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F,如果,那么= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用平行四边形的性质及平行线分线段成比例求得答案即可.【解答】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△ADF,∴= = = .故答案为:.【点评】本题考查了平行四边形的性质及相似三角形的判定与性质,平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.三、计算题(题型注释)19.计算:﹣tan45°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式= ﹣1=0.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.解方程:2x2﹣4x﹣9=0(用配方法解).【考点】解一元二次方程-配方法.【分析】方程二次项系数化为 1,常数项移到右边,两边加上一次项系数一半的平方,变形后开方即可求出解.【解答】解:由原方程,得2(x2﹣2x+1)=11, x2﹣2x+1= ,(x﹣1)2= ,解得x1=1+,x1=1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.21.解方程:3x2﹣4x+2=0(用公式法解).【考点】解一元二次方程-公式法.【分析】先求出b2﹣4ac 的值,再代入公式求出即可.【解答】解:3x2﹣4 x+2=0,∵a=3,b=﹣4 ,c=2,∴△=b2﹣4ac=(﹣4 )2﹣4×3×2=24,∴x= = ,则x 1= ,x2= .【点评】本题考查了解一元二次方程﹣﹣公式法.熟记公式 x= 是解题的关键.四、解答题(7 小题)22.关于x 的一元二次方程x2+3x+m﹣1=0 的两个实数根分别为x1,x2.(1)求m 的取值范围;若2(x1+x2)+x1x2+10=0,求m 的值.【考点】根的判别式;根与系数的关系.【分析】(1)因为方程有两个实数根,所以△≥0,据此即可求出m 的取值范围;根据一元二次方程根与系数的关系,将x1+x2=﹣3,x1x2=m﹣1 代入2(x1+x2)+x1x2+10=0,解关于m的方程即可.【解答】解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤;∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.【点评】本题考查了根的判别式、一元二次方程根与系数的关系,直接将两根之和与两根之积用 m 表示出来是解题的关键.23.如图,某防洪指挥部发现长江边一处长500 米,高10 米,背水坡的坡角为45°的防洪大堤(横断面为梯形 ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3 米,加固后背水坡EF 的坡比i=1:.(1)求加固后坝底增加的宽度AF;求完成这项工程需要土石多少立方米?(结果保留根号)【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题;压轴题.【分析】(1)分别过E、D 作AB 的垂线,设垂足为G、H.在Rt△EFG 中,根据坡面的铅直高度(即坝高)及坡比,即可求出水平宽FG 的长;同理可在Rt△ADH 中求出AH 的长;由AF=FG+GH﹣AH 求出AF 的长.已知了梯形AFED 的上下底和高,易求得其面积.梯形AFED 的面积乘以坝长即为所需的土石的体积.【解答】解:(1)分别过点E、D 作EG⊥AB、DH⊥AB 交AB 于G、H.∵四边形ABCD 是梯形,且AB∥CD,∴DH 平行且等于EG.故四边形EGHD 是矩形.∴ED=GH.在Rt△ADH 中,A H=DH÷tan∠DAH=10÷tan45°=10(米).在Rt△FGE 中,i= = ,∴FG=EG=10(米).∴AF=FG+GH﹣AH=10+3﹣10=10﹣7(米);加宽部分的体积V=S 梯形AFED×坝长= ×(3+10 ﹣7)×10×500=25000﹣10000(立方米).答:(1)加固后坝底增加的宽度AF 为(10﹣7)米;完成这项工程需要土石立方米.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.24.已知:▱ABCD 中,E 是BA 边延长线上一点,CE 交对角线DB 于点G,交AD 边于点F.求证:CG2=GF•GE.【考点】平行线分线段成比例;平行四边形的性质.【专题】证明题.【分析】由平行四边形可得 AD∥BC,AB∥CD,再由平行线分线段成比例即可证明.【解答】证明:∵四边形 ABCD 是平行四边形,∴DC∥AB,AD∥BC,∵DC∥AB,∴,∵AD∥BC,∴,∴,即CG2=GF•GE.【点评】本题主要考查了平行四边形的性质以及平行线分线段成比例的性质,能够熟练掌握.25.已知抛物线y=﹣x2+mx+n 经过点A(1,0),B(6,0).(1)求抛物线的解析式;当y<0,直接写出自变量x 的取值范围;(3)抛物线与y 轴交于点D,P 是x 轴上一点,且△PAD 是以AD 为腰的等腰三角形,试求P 点坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;等腰三角形的判定.【专题】计算题.【分析】(1)把A 点和B 点坐标代入y=﹣x2+mx+n 得到关于m、n 的方程组,然后解方程组即可;先求出抛物线与x 轴的交点坐标,然后写出抛物线在x 轴上方所对应的自变量的范围即可;(3)设P(t,0),先确定D(0,﹣6),利用勾股定理计算出AD=,再分类讨论:当DP=DA 时,根据等腰三角形性质得点P 与点A 关于x 轴对称,易得P 点坐标为(﹣1,0);当AP=AD 时,即AP=,再求粗OP 的长,然后写出此时P 点坐标.【解答】解:(1)根据题意得,解得.所以抛物线解析式为y=﹣x2+7x﹣6;当y=0 时,﹣x2+7x﹣6=0,解得x1=1,x2=6,所以当x<1 或x>6 时,y>0;(3)设P(t,0)当x=0 时,y=﹣x2+7x﹣6=﹣6,则D(0,﹣6),所以AD== ,当DP=DA 时,点P 与点A 关于x 轴对称,此时P 点坐标为(﹣1,0);当AP=AD 时,即AP=,则此时P 点坐标为(+1,0)或(﹣+1,0).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.26.某电子厂商投产一种新型电子产品,每件制造成本为18 元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,厂商每月能获得350 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于 32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【考点】二次函数的应用.【分析】(1)根据每月的利润z=(x﹣18)y,再把y=﹣2x+100 代入即可求出z 与x 之间的函数解析式,把z=350 代入z=﹣2x2+136x﹣1800,解这个方程即可,把函数关系式变形为顶点式运用二次函数的性质求出最值;(3)根据销售单价不能高于32 元,厂商要获得每月不低于350 万元的利润得出销售单价的取值范围,进而解决问题.【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z 与x 之间的函数解析式为z=﹣2x2+136x﹣1800;由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43,所以,销售单价定为25 元或43 元,将z═﹣2x2+136x﹣1800 配方,得z=﹣2(x﹣34)2+512,因此,当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元;(3)结合及函数z=﹣2x2+136x﹣1800 的图象(如图所示)可知,当25≤x≤43 时z≥350,又由限价32 元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100 中y 随x 的增大而减小,∴当x=32 时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),因此,所求每月最低制造成本为648 万元.【点评】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值,第(3)小题关键是确定x 的取值范围.。
湖南省澧县张公庙中学2017—2018学年九年级第一次月考数学试题(含答案)

湖南省澧县张公庙中学2017—2018学年九年级第一次月考数学试题一.选择题(共10小题)1.反比例函数y=3x图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y22.若双曲线1kyx-=位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠13.已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断4.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A.0 B.1或2 C.1 D.25.关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或06.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.7.某经济开发区今年一月份工业产值达到80亿元,第一季度总产值为275亿元,问二、三月平均每月的增长率是多少?设平均每月的增长率为x,根据题意所列方程是()A.80(1+x)2=275 B.80+80(1+x)+80(1+x)2=275C.80(1+x)3=275 D.80(1+x)+80(1+x)2=2758.如图,已知点P是双曲线y=kx(k≠0)上一点,过点P作PA⊥x轴于点A,且S△PAO=2,则该双曲线的解析式为()A.y=﹣4xB.y=﹣2xC.y=4xD.y=2x9.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A.xy=23B.xx y-=3 C.x yy+=53D.xx y+=2510.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252- B.2-5C.251-D.5-2二.填空题(共8小题)11.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.12.如果直线y=mx与双曲线y=kx的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为.13.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3).反比例函数的图象经过点C,则反比例函数的解析式是.14.已知三角形两边的长分别是2和3,第三边的长是方程x2﹣8x+12=0的根,则这个三角形的周长为.15.若关于x的一元二次方程(k﹣1)x2﹣4x﹣5=0没有实数根,则k的取值范围是.16.把一元二次方程x2﹣4x+3=0配方成(x+a)2=b的形式,则a+b=.17.已知AB∥CD,AD与BC相交于点O.若BO23OC=,AD=10,则AO=.18.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是km.三.解答题(共9小题)19.已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x的值.20.用配方法解方程:2x2﹣3x﹣3=0.21.解方程:(1)2x2﹣3x﹣3=0.(配方法)(2)2x2﹣7x+4=0.(公式法)22.已知反比例函数1kyx-=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.23.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.24.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.25.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)围成鸡场的面积可能达到200平方米吗?26.如图,直线y=x+1与y轴交于A点,与反比例函数kyx=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且12 AOOH=.(1)求k的值;(2)设点N(1,a)是反比例函数kyx=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?湖南省澧县张公庙中学2017—2018学年九年级第一次月考数学试题简答一.选择题(共10小题)1.B.2.A.3.B.4.D.5.B.6.B.7.B.8.A.9.B.10.A.二.填空题(共8小题)11.4.12.(﹣3,﹣2).13.y=12x(x≠0).14.7.15.k<15.16.﹣1.17.4.18. 2.8.三.解答题(共9小题)19.(1)a=6,b=4,c=12;(2)x=26或x=﹣26(舍去)20.(1)x1=,x2=.21.(2),.22.解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数1kyx-=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)∵k=13,有k﹣1=12,∴反比例函数的解析式为12yx =.将点B的坐标代入12yx=,可知点B的坐标满足函数关系式,∴点B在函数12yx=的图象上,将点C的坐标代入12yx=,由5≠122,可知点C的坐标不满足函数关系式,∴点C不在函数12yx=的图象上.23.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.【解答】解:(1)∵方程x2﹣3x+k﹣2=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×(k﹣2)=17﹣4k>0,解得:k<174.(2)当k=4时,△=17﹣4k=1是完全平方数,此时原方程为x2﹣3x+2=(x﹣1)(x﹣2)=0,解得:x1=1,x2=2.∴当k=4时,此一元二次方程的根都是整数.24.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数myx=图象两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.【解答】解:(1)把A(﹣4,2)代入y=mx,得m=2×(﹣4)=﹣8,所以反比例函数解析式为y=﹣8x,把B(n,﹣4)代入y=﹣8x,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得,解得,所以一次函数的解析式为y=﹣x ﹣2;(2)y=﹣x ﹣2中,令y=0,则x=﹣2,即直线y=﹣x ﹣2与x 轴交于点C (﹣2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b ﹣m x>0的解集为:x <﹣4或0<x <2.25.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)围成鸡场的面积可能达到200平方米吗?【解答】解:(1)设宽为x 米,则:x (33﹣2x +2)=150,解得:x 1=10,x 2=152(不合题意舍去), ∴长为15米,宽为10米;(2)设面积为w 平方米,则:W=x (33﹣2x +2),变形为:W=﹣2(x ﹣354)2+12258故鸡场面积最大值为12258<200,即不可能达到200平方米.26.如图,直线y=x +1与y 轴交于A 点,与反比例函数k y x =(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且12AO OH =.(1)求k的值;(2)设点N(1,a)是反比例函数kyx=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由y=x+1可得A(0,1),即OA=1,∵12 AOOH=,∴OH=2,∵MH⊥x轴,∴点M的横坐标为2,∵点M在直线y=x+1上,∴点M的纵坐标为3,即M(2,3),∵点M在kyx=上,∴k=2×3=6;(2)∵点N(1,a)在反比例函数6yx=的图象上,∴a=6,即点N的坐标为(1,6),过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,∵N与N1关于y轴的对称,N点坐标为(1,6),∴N1的坐标为(﹣1,6),设直线MN1的解析式为y=kx+b,把M,N1的坐标得632k bk b=-+⎧⎨=+⎩,解得:15kb=-⎧⎨=⎩,∴直线MN1的解析式为y=﹣x+5,令x=0,得y=5,∴P 点坐标为(0,5).27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):(1)求出线段AB ,曲线CD 的解析式,并写出自变量的取值范围;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【解答】解:(1)设线段AB 所在的直线的解析式为y 1=k 1x +20,把B (10,40)代入得,k 1=2,∴AB 解析式为:y 1=2x +20(0≤x ≤10).设C 、D 所在双曲线的解析式为y 2=2k x , 把C (25,40)代入得,k 2=1000,∴曲线CD 的解析式为:y 2=1000x(x ≥25); (2)当x 1=5时,y 1=2×5+20=30,当x 2=30时,y 2=100030, ∴y 1<y 2∴第30分钟注意力更集中.(3)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴36=1000x,∴x2=100036≈27.8,∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.。
【解析版】澧县张公庙中学2016届高九年级上期中考试数学试题

A.1
B.2
C.3
D.4
7.如图,在直角梯形 ABCD 中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点 P 为 AB 边上一 动点,若△PAD 与△PBC 是相似三角形,则满足条件的点 P 的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
8.如图,△ABC 经过位似变换得到△DEF,点 O 是位似中心且 OA=AD,则△ABC 与△DEF 的面积 比是( )
A.1:6
B.1:5
C.1:4
D.1:2
9.附加题:如图,在矩形 ABCD 中,AB=3,BC=4,点 P 在 BC 边上运动,连接 DP,过点 A 作 AE⊥DP,垂足为 E,设 DP=x,AE=y,则能反映 y 与 x 之间函数关系的大致图象是( )
Байду номын сангаасA.
B.
C.
D.
10.某机械厂七月份生产零件 50 万个,第三季度生产零件 196 万个.设该厂八、九月份平均每月 的增长率为 x,那么 x 满足的方程是( ) A.50(1+x2)=196 B.50+50(1+x2)=196
;④x2=1;⑤
A.5 个
B.4 个
C.3 个
. D.2 个
3.已知关于 x 的方程 x2+bx+a=0 的一个根是▱ a(a≠0),则 a▱ b 值为( )
A.▱ 1
B.0
C.1
D.2
4.如图,Rt△ABC 的顶点 B 在反比例函数
的图象上,AC 边在 x 轴上,已知∠ACB=90°,
∠A=30°,BC=4,则图中阴影部分的面积是( )
2015-2016学年湖南省常德市澧县张公庙中学八年级下入学数学试卷

湖南省常德市澧县张公庙中学2015~2016学年度八年级下学期入学数学试卷一.选择题(共8小题)1.将(a﹣1)2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a﹣2)C.(a﹣2)(a﹣1)D.(a﹣2)(a+1)2.若式子有意义,则x的取值范围为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠33.若不等式组有解,则m的取值范围是()A.m<2 B.m≥2C.m<1 D.1≤m<24.用若干辆载重量为6千克的货车运一批货物,若每辆汽车只装4千克,则剩下18千克货物;若每辆汽车只装6千克,则最后一辆货车装的货物不足5千克.若设有x辆货车,则x 应满足的不等式组是()A.B.C.D.5.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是()A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN6.三角形三边长分别是6,2a﹣2,8,则a的取值范围是()A.1<a<2 B.<a<2 C.2<a<8 D.1<a<47.以下各命题中,正确的命题是()(1)等腰三角形的一边长4cm,一边长9cm,则它的周长为17cm或22cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)8.如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE=()A.40°B.50°C.60°D.70°二.填空题(共10小题)9.命题“直角三角形两个锐角互余”的条件是,结论是.10.如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是(限填序号).11.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD与△ACD 的周长之差为cm.12.不等式组的最小整数解是.13.已知关于x的方程的解是负数,则m的取值范围为.14.若a>0,把化简成最简二次根式.15.若x,则=.16.分式的最简公分母是.17.分解因式:x2﹣y2﹣3x﹣3y=.18.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为.二.解答题(共7小题)19.计算:(3a2b3c4)2÷(﹣a2b4).20.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.21.解不等式组:.22.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.23.解方程:=﹣1.24.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.湖南省常德市澧县张公庙中学2015~2016学年度八年级下学期入学数学试卷参考答案与试题解析一.选择题(共8小题)1.将(a﹣1)2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a﹣2)C.(a﹣2)(a﹣1)D.(a﹣2)(a+1)【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用平方差公式分解即可.【解答】解:原式=(a﹣1+1)(a﹣1﹣1)=a(a﹣2).故选:B.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.2.若式子有意义,则x的取值范围为()A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.若不等式组有解,则m的取值范围是()A.m<2 B.m≥2C.m<1 D.1≤m<2【考点】解一元一次不等式组.【分析】本题实际就是求这两个不等式的解集.先根据第一个不等式中x的取值,分析m 的取值.【解答】解:原不等式组可化为(1)和(2),(1)解集为m≤1;(2)有解可得m<2,则由(2)有解可得m<2.故选A.【点评】本题除用代数法外,还可画出数轴,表示出解集,与四个选项对照即可.同学们可以自己试一下.4.用若干辆载重量为6千克的货车运一批货物,若每辆汽车只装4千克,则剩下18千克货物;若每辆汽车只装6千克,则最后一辆货车装的货物不足5千克.若设有x辆货车,则x 应满足的不等式组是()A.B.C.D.【考点】由实际问题抽象出一元一次不等式组.【专题】应用题.【分析】设有x辆货车,每辆汽车只装4千克,则剩下18千克货物,货物总重为(4x+18)千克,每辆汽车只装6千克,则最后一辆货车装的货物不足5千克,根据等量关系,可得到不等式为:4x+18﹣6(x﹣1)<5和4x+18﹣6(x﹣1)>0.【解答】解:设有x辆货车,每辆汽车只装4千克,则剩下18千克货物,所以,货物总重为(4x+18)千克,每辆汽车只装6千克,则最后一辆货车装的货物不足5千克,根据等量关系,可得到不等式为:4x+18﹣6(x﹣1)<5和4x+18﹣6(x﹣1)>0.故选D.【点评】本题考查了由实际问题抽象出一元一次不等式组,解答时,找出等量关系,根据题中隐含的不等关系,列出不等式组解答.5.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是()A.∠EAM=∠FAN B.BE=CF C.△ACN≌△ABM D.CD=DN【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠E=∠F,∠B=∠C,AE=AF,可证明△AEB≌△AFC,利用全等三角形的性质进行判断.【解答】解:∵在△AEB和△AFC中,∠E=∠F,∠B=∠C,AE=AF,∴△AEB≌△AFC(AAS),∴BE=CF,∠EAB=∠FAC,∴∠EAM=∠FAN,故选项A、B正确;∵∠EAM=∠FAN,∠E=∠F,AE=AF,∴△ACN≌△ABM,故选项C正确;错误的是D.故选D.【点评】本题考查了全等三角形的判定与性质.关键是根据已知条件确定全等三角形.6.三角形三边长分别是6,2a﹣2,8,则a的取值范围是()A.1<a<2 B.<a<2 C.2<a<8 D.1<a<4【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:由于在三角形中任意两边之和大于第三边,∴2a﹣2<6+8,即a<8,任意两边之差小于第三边,∴2a﹣2>8﹣6,即a>2,∴2<a<8,故选:C.【点评】本题考查了三角形的三边关系.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7.以下各命题中,正确的命题是()(1)等腰三角形的一边长4cm,一边长9cm,则它的周长为17cm或22cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)【考点】等腰三角形的判定与性质;三角形的外角性质;全等三角形的判定;轴对称图形.【分析】(1)根据等腰三角形的性质可得三边长,再考虑是否符合三角形的三边关系;(2)根据三角形内角与外角的关系可判断;(3)根据三角形全等的判定定理可判断;(4)根据轴对称的定义可判断;(5)根据题意画出图形即可证出是否是等腰三角形.【解答】解:(1)等腰三角形的一边长4cm,一边长9cm,则三边长为:9cm.9cm,4cm,或4cm,4cm,9cm,因为:4+4<9,则它的周长只能是为22cm,故此命题错误;(2)三角形的一个外角,等于与它不相邻的两个内角的和,故此命题错误;(3)有两边和一角对应相等的两个三角形全等错误,必须是夹角;(4)等边三角形是轴对称图形,此命题正确;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确;如图:∵AD∥CB,∴∠1=∠B,∠2=∠C,∵AD是角平分线,∴∠1=∠2,∴∠B=∠C,∴AB=AC,即:△ABC是等腰三角形.故选:D.【点评】此题主要考查了等腰三角形的性质,三角形的内角与外角的关系,三角形的判定定理,题目比较基础,关键是同学们要牢固把握基础知识.8.如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE=()A.40°B.50°C.60°D.70°【考点】直角三角形斜边上的中线.【分析】在直角△ABC中,由AE=BE=EC,AD=DB可以推出∠BAD=20°,∠ADC=40°然后利用三角形的外角和内角的关系即可求出∠DFE=60°.【解答】解:∵∠C=90°,AE=BE=EC,AD=DB,∴∠BAD=20°,∠ADC=40°,∠DAC=∠ECA=50°.∴∠ECD=20°,∠FDC=40°.∴∠DFE=60°.故选C.【点评】此题主要考查了直角三角形的中线等于斜边的一半和三角形的内角和与外角和的运用.二.填空题(共10小题)9.命题“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.【考点】命题与定理.【分析】命题有条件和结论两部分组成,条件是已知的,结论是结果.【解答】解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.【点评】本题考查了命题的条件和结论的叙述.10.如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD的论断是①(限填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,进行解答.【解答】解:①∵SSA不能判定两个三角形全等,∴AB=CD不能使△APB≌△CPD;②在△APB和△CPD中,,∴△APB≌△CPD(SAS);③在△APB和△CPD中,,∴△APB≌△CPD(AAS);④在△APB和△CPD中,,∴△APB≌△CPD(ASA),则②③④均可作为判定△APB≌△CPD的论断,只有①不能作为判定△APB≌△CPD的论断.故答案为:①.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD与△ACD 的周长之差为2cm.【考点】三角形的角平分线、中线和高.【分析】根据三角形的周长的计算方法得到,△ABD的周长和△ADC的周长的差就是AB 与AC的差.【解答】解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=5﹣3=2(cm).故答案为:2.【点评】本题考查三角形的中线的定义以及周长的计算方法,难度适中.在三角形中,连接一个顶点和它对边的中点的线段,叫做这个三角形的中线.三角形的周长即三角形的三边和,C=a+b+c.12.不等式组的最小整数解是0.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x<3,解②得:x>﹣1,则不等式组的解集是:﹣1<x<3.则最小的整数解是:0.故答案是:0.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【考点】分式方程的解.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.14.若a>0,把化简成最简二次根式﹣.【考点】最简二次根式.【分析】根据最简二次根式的定义,需将根式内的分母去掉,因此要根据a的符号和被开方数的非负性判断出b的符号,然后再化简.【解答】解:∵>0,且a>0,∴b<0,∴===﹣.【点评】化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数,被开方数是多项式的要因式分解,使被开方数不含分母,将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面,化去分母中的根号后约分.本题要特别注意a、b的符号,以免造成错解.15.若x,则=.【考点】分式的化简求值.【专题】计算题.【分析】已知等式两边平方后,整理求出x2+的值,所求式子分子分母除以x2变形后,将x2+的值代入计算即可求出值.【解答】解:已知等式平方得:(x﹣)2=x2﹣2+=16,即x2+=18,则==.故答案为:【点评】此题考查了分式的化简求值,熟练掌握完全平方公式是解本题的关键.16.分式的最简公分母是12x2y3.【考点】最简公分母.【分析】最简公分母应分两部分看:系数找最小公倍数,字母应找所有因式的最高次幂.【解答】解:根据最简公分母的概念,3、4、2最小公倍数为12,x的最高次幂为2,y的最高次幂为3,故它们的最简公分母是12x2y3.故答案为:12x2y3.【点评】此题考查了确定最简公分母的方法,能够熟练求解.17.分解因式:x2﹣y2﹣3x﹣3y=(x+y)(x﹣y﹣3).【考点】因式分解-分组分解法.【分析】根据观察可知,此题有4项且前2项适合平方差公式,后2项可提公因式,分解后也有公因式(x+y),直接提取即可.【解答】解:x2﹣y2﹣3x﹣3y,=(x2﹣y2)﹣(3x+3y),=(x+y)(x﹣y)﹣3(x+y),=(x+y)(x﹣y﹣3).【点评】本题考查了分组分解法进行因式分解,关键是分组后组与组之间可以继续进行因式分解.18.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为 1.56×10﹣6.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=1.56,10的指数为﹣6.【解答】解:0.000 001 56=1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二.解答题(共7小题)19.计算:(3a2b3c4)2÷(﹣a2b4).【考点】整式的除法.【分析】运用积的乘方及同底数幂的除法法则先算乘方再算除法进行运算.【解答】解:(3a2b3c4)2÷(﹣a2b4)=9a4b6c8÷(﹣a2b4)=﹣27a2b2c8.【点评】本题主要考查了积的乘方及同底数幂的除法,熟记法则是解题的关键.20.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.【考点】提公因式法与公式法的综合运用.【专题】规律型.【分析】(1)先提取公因式ab2,再根据平方差公式进行二次分解;(2)观察归纳,即可求得:那列代数式中的第100个代数式为a50b53.【解答】解:(1)ab4﹣a3b2=ab2(b+a)(b﹣a);(未分解彻底扣1分)(2)a50b53(若a或b的指数只写对一个,可得1分).【点评】此题考查了提公因式法,公式法分解因式与规律的知识.解题的关键时注意仔细观察,找到规律.还要注意分解要彻底.21.解不等式组:.【考点】解一元一次不等式组.【专题】计算题.【分析】先分别解两个不等式得到x>﹣2和,然后根据大于小的小于大的取中间确定不等式组的解集.【解答】解:,解不等式①得x>﹣2,解不等式②得,原不等式组的解集为﹣2<x≤.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.【考点】二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.【专题】计算题.【分析】(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b的值代入计算即可.【解答】解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣)•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.23.解方程:=﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】优选方案问题.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点评】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.25.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.【专题】几何综合题.【分析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.【点评】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.。
初中九年级下学期入学数学试卷(附答案,解析)

2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省常德市澧县张公庙中学2016届九年级下学期入学数学试卷一.选择题(共8小题)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣32.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限3.已知二次函数y=x2+bx+c的图象如图所示,若y>0,则x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>44.两个相似三角形对应中线的比2:3,周长的和是20,则两个三角形的周长分别为()A.8和12 B.9和11 C.7和13 D.6和145.下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4 B.a=4,b=6,c=5,d=10C.a=2,b=4,c=3,d=6 D.a=2,b=3,c=4,d=16.在三角形ABC中,∠C为直角,sinA=,则tanB的值为()A.B.C.D.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2 D.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数二.填空题(共8小题)9.如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,则木板CD的长度为.(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).10.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为.11.如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为.12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.13.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.14.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3.若将实数(x,﹣2x)放入其中,得到﹣1,则x=.15.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD是⊙O的切线,交PA于点C,交PB于点D,则△PCD的周长是.16.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为.三.解答题(共10小题)17.用公式法解下列方程2x2+6=7x.18.计算:sin45°+cos230°﹣+2sin60°.19.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.20.已知y=y1+y2,y1与x成正比例,y2与x+2成反比例,且当x=﹣1时,y=3;当x=3时,y=7.求x=﹣3时,y的值.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若OF:OB=1:3,求AG的长.24.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.25.在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.26.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.湖南省常德市澧县张公庙中学2016届九年级下学期入学数学试卷参考答案与试题解析一.选择题(共8小题)1.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.2.若一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.一、三象限B.二、四象限C.一、二象限D.三、四象限【考点】反比例函数的性质;一次函数的性质.【分析】先由一次函数的性质判断出k,b的正负,再根据反比例函数的性质即可得出结果.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,kb>0,反比例函数y=中,kb>0,∴图象在一、三象限.故选A.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.3.已知二次函数y=x2+bx+c的图象如图所示,若y>0,则x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>4 【考点】二次函数与不等式(组).【分析】求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围.【解答】解:根据图象可得x的范围是x<﹣1或x>3.故选C.【点评】本题考查了二次函数与不等式的关系,理解求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围是关键.4.两个相似三角形对应中线的比2:3,周长的和是20,则两个三角形的周长分别为()A.8和12 B.9和11 C.7和13 D.6和14【考点】相似三角形的性质.【专题】计算题.【分析】根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比得到两个相似三角形的周长的比为2:3,设这两个三角形的周长分别为2x,3x,则2x+3x=20,然后解方程求出x后计算2x和3x即可.【解答】解:∵两个相似三角形对应中线的比2:3,∴两个相似三角形的周长的比为2:3,设这两个三角形的周长分别为2x,3x,则2x+3x=20,解得x=4,∴2x=8,3x=12,即两个三角形的周长分别8和12.故选A.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.5.下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4 B.a=4,b=6,c=5,d=10C.a=2,b=4,c=3,d=6 D.a=2,b=3,c=4,d=1【考点】比例线段.【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.1×4≠3×2,故本选项错误;B.4×10≠6×5,故本选项错误;C.4×3=2×6,故本选项正确;D.2×3≠1×4,故本选项错误;故选C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.6.在三角形ABC中,∠C为直角,sinA=,则tanB的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】根据sinA=,可设BC=5x,AB=13x,利用勾股定理求出AC=12x,再利用锐角三角函数的定义得出tanB的值.【解答】解:∵在Rt△ABC中,∠C=90°,sinA=,∴可设BC=5x,AB=13x,∴AC==12x,∴tanB===.故选C.【点评】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.7.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2 D.【考点】三角形的外接圆与外心.【专题】网格型.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.【解答】解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故选A.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.8.丽华根据演讲比赛中九位评委所给的分数作了如下表格如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.二.填空题(共8小题)9.如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,则木板CD的长度为 4.9m.(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】根据∠ACB的正弦函数和AB的长度求AC的长,再加上AD即可.【解答】解:由题意可知:AB⊥BC.∴在Rt△ABC中,sin∠ACB=,∴AC===≈4.39,∴CD=AC+AD=4.39+0.5=4.89≈4.9(m).故答案为:4.9m.【点评】本题考查锐角三角函数的应用,属于理论联系实际的题目,难度不大,关键是根据三角函数值得到所求线段的相应的线段的长度.10.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为(﹣,)或(,﹣).【考点】位似变换;坐标与图形性质.【分析】位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky).【解答】解:∵在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky)∴A'的坐标为:(﹣,)或(,﹣).故答案为:(﹣,)或(,﹣).【点评】此题主要考查了位似变换,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.【考点】扇形面积的计算;坐标与图形性质;旋转的性质.【分析】根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB的长,再根据性质的性质和扇形的面积公式即可求解.【解答】解:∵点A的坐标(﹣2,0),∴OA=2,∵△ABO是直角三角形,∠AOB=60°,∴∠OAB=30°,∴OB=OA=1,∴边OB扫过的面积为:=π.故答案为:π.【点评】本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为3.【考点】抛物线与x轴的交点.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.﹣=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3,故答案为3.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.13.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【考点】反比例函数系数k的几何意义.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),=3×2=6,∴S矩形MCDO∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.【点评】本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.14.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3.若将实数(x,﹣2x)放入其中,得到﹣1,则x=﹣2.【考点】解一元二次方程-配方法.【专题】新定义.【分析】根据新定义得到x2﹣2•(﹣2x)+3=﹣1,然后把方程整理为一般式,然后利用配方法解方程即可.【解答】解:根据题意得x2﹣2•(﹣2x)+3=﹣1,整理得x2+4x+4=0,(x+2)2=0,所以x1=x2=﹣2.故答案为﹣2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD是⊙O的切线,交PA于点C,交PB于点D,则△PCD的周长是20.【考点】切线长定理.【分析】根据切线长定理得出PA=PB=10,CA=CE,DE=DB,求出△PCD的周长是PC+CD+PD=PA+PB,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故答案为:20.【点评】本题考查了切线长定理的应用,关键是求出△PCD的周长=PA+PB.16.如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为2011.【考点】二次函数综合题.【分析】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解答】解:∵OA1C1B1是正方形,∴OB1与y轴的夹角为45°,∴OB1的解析式为y=x联立,解得或,∴点B1(1,1),OB1==,∵OA1C1B1是正方形,∴OC1=OB1=×=2,∵C1A2C2B2是正方形,∴C1B2的解析式为y=x+2,联立,解得,或,∴点B2(2,4),C1B2==2,∵C1A2C2B2是正方形,∴C1C2=C1B2=×2=4,∴C2B3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B3(3,9),C2B3==3,…,依此类推,正方形C2010A2011C2011B2011的边长C2010B2011=2011.故答案为:2011.【点评】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.三.解答题(共10小题)17.用公式法解下列方程2x2+6=7x.【考点】解一元二次方程-公式法.【专题】计算题.【分析】方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.【解答】解:方程整理得:2x2﹣7x+6=0,这里a=2,b=﹣7,c=6,∵△=49﹣48=1,∴x=,解得:x1=2,x2=.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.18.计算:sin45°+cos230°﹣+2sin60°.【考点】特殊角的三角函数值.【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.19.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.【考点】作图—复杂作图;切线的性质;弧长的计算.【专题】作图题.【分析】(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.【解答】解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.20.已知y=y1+y2,y1与x成正比例,y2与x+2成反比例,且当x=﹣1时,y=3;当x=3时,y=7.求x=﹣3时,y的值.【考点】待定系数法求反比例函数解析式.【分析】首先根据正比例和反比例的定义可得y=kx+,再把x=﹣1,y=3;x=3,y=7代入得到关于k、m的方程组,再解可得k、m的值,进而可得y与x的解析式,再把x=﹣3代入计算出y的值即可.【解答】解:∵y1与x成正比例,∴y1=kx,∵y2与x+2成反比例,∴y2=,∵y=y1+y2,∴y=kx+,∵当x=﹣1时,y=3;当x=3时,y=7,∴,解得:,∴y=2x+,当x=﹣3时,y=2×(﹣3)﹣5=﹣11.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是正确表示出y与x的关系式.21.如图是一种躺椅及其简化结构示意图,扶手AB与座板CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,量得∠EOF=90°,∠ODC=30°,ON=40cm,EG=30cm.(1)求两支架落点E、F之间的距离;(2)若MN=60cm,求躺椅的高度(点M到地面的距离,结果取整数).(参考数据:sin60°=,cos60°=,tan60°=≈1.73,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)利用平行线分线段成比例定理得出,利用平行四边形的判定与性质进而求出即可;(2)利用四边形ONHE是平行四边形,进而得出NH=OE=50cm,∠MHF=∠E=60°,利用MP=110sin60°求出即可.【解答】解:(1)连接EF.∵CD平行于地面,∴GD∥EF.∴.又∵AB∥EF,∴AB∥CD.而OE∥DM,则四边形OGDN是平行四边形.∴OG=DN,GD=ON.∵ON=40cm,∠EOF=90°,∠ODC=30°,∴GD=40cm,OG=GD=20cm,又EG=30cm,即,得EF=100cm.(2)延长MD交EF于点H,过点M作MP⊥EF于点P.∵四边形ONHE是平行四边形,∴NH=OE=50cm,∠MHF=∠E=60°.由于MN=60cm,∴MH=110cm.在Rt△MHP中,MP=MH•sin∠MHP,即MP=110sin60°=110×=55≈95(cm).答:躺椅的高度约为95cm.【点评】此题主要考查了解直角三角形以及平行四边形的判定与性质等知识,熟练应用锐角三角函数关系是解题关键.22.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.【点评】此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.23.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若OF:OB=1:3,求AG的长.【考点】切线的判定与性质.【分析】(1)连接OD,进而利用等腰三角形的性质以及切线的性质得出∠CDO+∠CDE=90°,进而得出答案;(2)首先利用勾股定理得出DE的长,再利用相似三角形的判定与性质得出AG的长.【解答】(1)证明:连接OD.∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°∴∠OCD+∠CFO=90°,∴∠ODC+∠CFO=90°,∵∠EFD=∠FDE,∠EFD=∠CDE,∴∠CDO+∠CDE=90°,∴DE为⊙O的切线;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=EO2,∴32+x2=(x+1)2,解得:x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,∵∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴==,即=,解得:AG=6.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定与性质,正确得出Rt△EOD∽Rt△EGA是解题关键.24.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出:(80+120)(1﹣m%)(8+m)=1600进而求出即可.【解答】解:(1)设原时速为xkm/h,通车后里程为ykm,则有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+m)=1600,解得:m1=20,m2=0(不合题意舍去),答:m的值为20.【点评】此题主要考查了二元一次方程组的应用以及一元二次方程的应用,根据题意得出正确等量关系是解题关键.25.在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM=AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为1;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.【考点】四边形综合题.【分析】(1)过点N作NG⊥AB于G,构造直角三角形,利用勾股定理解决问题;(2)①利用线段中垂线的性质得到AN=A′N,再由三角函数求得;②利用菱形的性质得到对角线平分每一组对角,得到∠DAC=∠CAB=30°,根据翻折的性质得到AC⊥MN,AM=A′M,AN=A′N,∠AMN=∠ANM=60°,AM=AN,AM=A′M=AN=A′N,四边形AM A′N是菱形;③根据菱形的性质得到AB=AD,∠ADB=∠ABD=60°,求得∠NA′M=∠DMA′+∠ADB,证得A′M=AM=2,∠NA′M=∠A=60°,得到∠NA′B=∠DMA′,利用三角形相似得到结果.【解答】解:(1)如图1,过点N作NG⊥AB于G,∵四边形ABCD是菱形,∴AD∥BC,OD=OB,∴==1,∴BN=DM=AD=1,∵∠DAB=60°,∴∠NBG=60°∴BG=,GN=,∴AN===;故答案为:;(2)①当点A′落在AB边上,则MN为AA′的中垂线,∵∠DAB=60°AM=2,∴AN=AM=1,故答案为:1;②在菱形ABCD中,AC平分∠DAB,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN沿MN翻折得到△A′MN,∴AC⊥MN,AM=A′M,AN=A′N,∴∠AMN=∠ANM=60°,∴AM=AN,∴AM=A′M=AN=A′N,∴四边形AM A′N是菱形;③在菱形ABCD中,AB=AD,∴∠ADB=∠ABD=60°,∴∠BA′M=∠DMA′+∠ADB,∴A′M=AM=2,∠NA′M=∠A=60°,∴∠NA′B=∠DMA′,∴△DMA′∽△BA′N,∴=,∵MD=AD=1,A′M=2,∴=.【点评】本题考查了菱形的判定和性质,翻折的性质,线段垂直平分线的性质,相似三角形的判定和性质,角平分线的性质,关键是利用翻折的性质得到线段、角相等、三角形相似.26.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.。