【校级联考】湖南省常德市澧县2020-2021学年八年级(下)期中数学试卷
2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。
2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
2020-2021学年湖南省八年级下学期期中模拟数学试卷及答案

八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)函数y=中自变量x的取值范围是()A.x>0B.x≥1C.x>﹣1 D.x≥﹣12.(3分)下列有理式中①,②,③,④中分式有()A.1个 B.2个 C.3个 D.4个3.(3分)在平面直角坐标系中,点P(3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列计算正确的是()A.2﹣2=﹣4 B.2﹣2=4 C.2﹣2=D.2﹣2=﹣5.(3分)下列各式正确的是()A.=B.=C.=(a≠0)D.=6.(3分)解方程﹣3去分母得()A.1=1﹣x﹣3(x﹣2)B.1=x﹣1﹣3(2﹣x)C.1=x﹣1﹣3(x﹣2)D.﹣1=1﹣x﹣3(x﹣2)7.(3分)下面的函数是二次函数的是()A.y=3x+1 B.y=x2+2x C.D.8.(3分)若分式:的值为0,则()A.x=1 B.x=﹣1 C.x=±1D.x≠19.(3分)若反比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(2,1)10.(3分)下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0) D.(1,1)11.(3分)王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.12.(3分)已知点A(﹣2,y 1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3二、填空题(每小题3分,共18分)13.(3分)当a= 时,分式无意义.14.(3分)某种感冒病毒的直径是0.00000034米,用科学记数法表示为米.15.(3分)一次函数y=2x﹣1,y随x的增大而.16.(3分)化简:= .17.(3分)已知反比例函数y=的图象经过点(2,﹣1),则k= .18.(3分)写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减少.(2)图象经过点(0,0).三、解答题19.(6分)解方程:.20.(6分)计算:﹣.21.(6分)一个一次函数y=kx+2的图象经过点(2,﹣2),求这个函数的解析式.22.(8分)先化简,再求值:(1﹣)÷,其中x=2.23.(8分)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,求f,v之间的关系式,并计算当车速为100km/h时视野的度数.24.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?25.(10分)如图,已知直线y 1=x+m与x轴、y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2?参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)函数y=中自变量x的取值范围是()A.x>0B.x≥1C.x>﹣1 D.x≥﹣1【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故选:D.2.(3分)下列有理式中①,②,③,④中分式有()A.1个 B.2个 C.3个 D.4个【解答】解:①,③的分母中含有字母,属于分式.②,④的分母中不含有字母,不属于分式.故选:B.3.(3分)在平面直角坐标系中,点P(3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为3>0,纵坐标为2>0,∴点P在第一象限,故选:A.4.(3分)下列计算正确的是()A.2﹣2=﹣4 B.2﹣2=4 C.2﹣2=D.2﹣2=﹣【解答】解:2﹣2==.故选C.5.(3分)下列各式正确的是()A.=B.=C.=(a≠0)D.=【解答】解:A、,故本选项错误;B、,故本选项错误;C、(a≠0),正确;D、,故本选项错误;故选:C.6.(3分)解方程﹣3去分母得()A.1=1﹣x﹣3(x﹣2)B.1=x﹣1﹣3(2﹣x)C.1=x﹣1﹣3(x﹣2)D.﹣1=1﹣x﹣3(x﹣2)【解答】解:方程两边都乘(x﹣2),得1=x﹣1﹣3(x﹣2).故选C.7.(3分)下面的函数是二次函数的是()A.y=3x+1 B.y=x2+2x C.D.【解答】解:A、y=3x+1,二次项系数为0,故本选项错误;B、y=x2+2x,符合二次函数的定义,故本选项正确;C、y=,二次项系数为0,故本选项错误;D、y=,是反比例函数,故本选项错误.故选B.8.(3分)若分式:的值为0,则()A.x=1 B.x=﹣1 C.x=±1D.x≠1【解答】解:由x2﹣1=0解得:x=±1,又∵x﹣1≠0即x≠1,∴x=﹣1,故选B.9.(3分)若反比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(2,1)【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣1,2),∴(﹣1)×2=﹣2,C选项中(2,﹣1),2×(﹣1)=﹣2,故选C.10.(3分)下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0) D.(1,1)【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.11.(3分)王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选D.12.(3分)已知点A(﹣2,y 1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.二、填空题(每小题3分,共18分)13.(3分)当a= 1 时,分式无意义.【解答】解:当分母a﹣1=0,即a=1时,分式无意义.故答案是:1.14.(3分)某种感冒病毒的直径是0.00000034米,用科学记数法表示为 3.4×10﹣7米.【解答】解:0.00000034=3.4×10﹣7;故答案为3.4×10﹣7.15.(3分)一次函数y=2x﹣1,y随x的增大而增大.【解答】解:∵2>0,∴一次函数y=2x﹣1单调递增.y随x的增大而增大,故答案为:增大.16.(3分)化简:= x+y .【解答】解:==x+y.17.(3分)已知反比例函数y=的图象经过点(2,﹣1),则k= ﹣2 .【解答】解:∵反比例函数y=的图象经过点(2,﹣1),∴﹣1=,解得k=﹣2.故答案为:﹣2.18.(3分)写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣2x .(1)y随着x的增大而减少.(2)图象经过点(0,0).【解答】解:由题意可知k<O,b=0,所以满足条件的一次函数为y=﹣2x等.三、解答题19.(6分)解方程:.【解答】解:方程两边都乘以(x﹣3)得,1=2(x﹣3)﹣x,2x﹣6﹣x=1,解得x=7,检验:当x=7时,x﹣3=7﹣3=4≠0,x=7是方程的根,故原分式方程的解是x=7.20.(6分)计算:﹣.【解答】解:原式=﹣==.21.(6分)一个一次函数y=kx+2的图象经过点(2,﹣2),求这个函数的解析式.【解答】解:∵函数图象经过点(2,﹣2),∴﹣2=2k+2,解得:k=﹣2,∴函数的解析式为:y=﹣2x+2.22.(8分)先化简,再求值:(1﹣)÷,其中x=2.【解答】解:原式=﹣•x(x﹣1)=﹣x,当x=2时,原式=﹣2.23.(8分)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,求f,v之间的关系式,并计算当车速为100km/h时视野的度数.【解答】解:设f,v之间的关系式为f=(k≠0),∵v=50km/h时,f=80度,∴80=,解得k=4000,所以f=,当v=100km/h时,f==40(度).答:当车速为100km/h时,视野为40度.24.(10分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?【解答】解:设规定工期为x天,由题意可得:+=1,解得:x=6,经检验,x=6是原方程的根,显然,方案②不符合要求,方案①需支付工程款:1.2×6=7.2(万元),方案③需支付工程款:1.2×3+0.5×6=6.6(万元),∵7.2>6.6,∴在不耽误工期的前提下,选择第③种施工方案最节省工程款.25.(10分)如图,已知直线y 1=x+m与x轴、y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2?【解答】解:(1)∵y 1=x+m与过点C(﹣1,2),∴m=3,k=﹣2,∴y 1=x+3,;(2)由题意,解得:,或,∴D点坐标为(﹣2,1);(3)由图象可知:当﹣2<x<﹣1时,y1>y2.。
2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。
2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴√−a3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,∴||=0,√y−3=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√50√8.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:πr 2ℎ′√34(23r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2ℎ′34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD 是长方形,将长方形ABCD 折叠,如图①所示,点B 落在AD 边上的点E 处,折痕为FG ,将图②折叠,点C 与点E 重合,折痕为PH .(1)在图②中,证明:EH =EP ;(2)若EF =6,EH =8,FH =10,求长方形ABCD 的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2,∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M . (1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形, ∵AP =√5, ∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中,x 2+(3x )2=10,10x 2=10,x =1,∴S ABCD =AB •BC =1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。
2020-2021学年度八年级数学下册期中考试试卷(含答案)

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。
2020-2021学年八年级下学期期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )A .6,8,10B .7,24,25C .√5,√3,√2D .1.5,2,33.(3分)已知函数y ={x 2+1(x <2)10x(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,b ,c 从小到大排列为( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a5.(3分)如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于点E ,若△CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .186.(3分)用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( )A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=407.(3分)如图,在▱ABCD 中,对角线AC 、BD 交于点O ,E 是BC 边上的中点,若OE =2,AD =5,则▱ABCD 的周长为( )A.9B.16C.18D.208.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6009.(3分)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF10.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A.B.C .D .11.(3分)若关于x 的方程kx 2﹣x +3=0有实数根,则k 的取值范围是( )A .k ≤12B .k ≤112C .k ≤12且k ≠0D .k ≤112且k ≠0 12.(3分)如图,在矩形ABCD 中,AD =√2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF , 其中正确的有( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)13.(3分)若√1−x x有意义,则自变量x 的取值范围是 . 14.(3分)若m 是关于x 的方程x 2﹣2x ﹣3=0的解,则代数式4m ﹣2m 2+2的值是 .15.(3分)如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE= °.16.(3分)已知正比例函数y =kx 的图象经过点A (﹣4,3),则函数图象经过 象限.17.(3分)如图,在矩形ABCD 中,AB =16,AD =12,E 为AB 边上一点,将△BEC 沿CE 翻折,点B 落在点F 处,当△AEF 为直角三角形时,BE = .18.(3分)如图,已知点A坐标为(√3,1),B为x轴正半轴上一动点,则∠AOB度数为,在点B运动的过程中AB+12OB的最小值为.三.解答题(共8小题,满分66分)19.(6分)选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).20.(6分)已知正比例函数的图象过点P(3,﹣3).(1)求这个正比例函数的表达式;(2)已知点A(a2,﹣4)在这个正比例函数的图象上,求a的值.21.(8分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?22.(8分)已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.23.(9分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?24.(9分)如图,AM∥BN,C是BN上一点,AB=BC,BD平分∠ABN,分别交AC,AM 于点O,D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO;(2)求证:四边形ABCD是菱形;(3)若DE=AB=2,求菱形ABCD的面积.25.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).26.(10分)[模型建立](一线三等角)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;[模型应用](2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,直线l2经过点A与直线l1垂直,求直线l2的函数表达式.(3)如图3,平面直角坐标系内有一点B(6,﹣8),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+2上的动点且在第四象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故此选项不合题意;B 、不是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不合题意.故选:C .2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )A .6,8,10B .7,24,25C .√5,√3,√2D .1.5,2,3【解答】解:A 、∵62+82=102,∴能构成直角三角形,故本选项不符合题意;B 、∵72+242=252,∴能构成直角三角形,故本选项不符合题意;C 、∵(√2)2+(√3)2=(√5)2,∴能构成直角三角形,故本选项不符合题意;D 、∵1.52+22≠32,∴不能构成直角三角形,故本选项符合题意;故选:D .3.(3分)已知函数y ={x 2+1(x <2)10x(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 【解答】解:∵函数y ={x 2+1(x <2)10x(x ≥2), ∴当x <2时,x 2+1=6,得x 1=−√5,x 2=√5(不合题意,舍去),当x ≥2时,10x =6,得x =53(不合题意,舍去), 故当y =6时,x 的值是−√5,故选:A .4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,b,c从小到大排列为()A.a<b<c B.a<c<b C.b<a<c D.c<b<a【解答】解:根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则a<c<b,故选:B.5.(3分)如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.(3分)用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是()A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40【解答】解:x2﹣16x+24=0x2﹣16x+64=﹣24+64(x﹣8)2=40故选:D.7.(3分)如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AD=5,则▱ABCD的周长为()A.9B.16C.18D.20【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵E是BC边上的中点,∴OE是△ABC的中位线,∴AB=2OE=4,∵AD=5,∴▱ABCD的周长=2×(4+5)=18,故选:C.8.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600【解答】解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.9.(3分)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=12AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.10.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A.B.C.D.【解答】解:∵小刘家距学校3千米,∴离校的距离随着时间的增大而增大,∵路过鲜花店为过生日的妈妈选购了一束鲜花,∴中间有一段离家的距离不再增大,离校50分钟后离校的距离最大,即3千米.综合以上C符合,故选:C.11.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤112C.k≤12且k≠0D.k≤112且k≠0【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤112,k≠0,综上k≤1 12,故选:B.12.(3分)如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=√2AB,∵AD=√2AB,∴AE=AD,在△ABE和△AHD中,{∠BAE =∠DAE ∠ABE =∠AHD =90°AE =AD,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵AB =AH ,∵∠AHB =12(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =67.5°=∠AED ,∴OE =OH ,∵∠DHO =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DHO =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD ,在△BEH 和△HDF 中,{∠EBH =∠OHD =22.5°BE =DH ∠AEB =∠HDF =45°,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;∵HE =AE ﹣AH =BC ﹣CD ,∴BC ﹣CF =BC ﹣(CD ﹣DF )=BC ﹣(CD ﹣HE )=(BC ﹣CD )+HE =HE +HE =2HE .故④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C .二.填空题(共6小题,满分18分,每小题3分)13.(3分)若√1−x x有意义,则自变量x 的取值范围是 x ≤1且x ≠0 . 【解答】解:由题意得,1﹣x ≥0,x ≠0,解得,x ≤1且x ≠0,故答案为:x ≤1且x ≠0.14.(3分)若m 是关于x 的方程x 2﹣2x ﹣3=0的解,则代数式4m ﹣2m 2+2的值是 ﹣4 .【解答】解:∵m 是关于x 的方程x 2﹣2x ﹣3=0的解,∴m 2﹣2m ﹣3=0,∴m 2﹣2m =3,∴4m ﹣2m 2+2=﹣2(m 2﹣2m )+2=﹣2×3+2=﹣4.故答案为:﹣4.15.(3分)如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE =115 °.【解答】解:∵四边形ABCD 是菱形,∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE=12∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.16.(3分)已知正比例函数y=kx的图象经过点A(﹣4,3),则函数图象经过第二、四象限.【解答】解:∵正比例函数y=kx的图象经过点A(﹣4,3),∴3=﹣4k,∴k=−34<0,∴正比例函数y=kx的图象经过第二、四象限.故答案为:第二、四.17.(3分)如图,在矩形ABCD中,AB=16,AD=12,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=6或12.【解答】解:如图,若∠AEF=90°,∵∠B=∠BCD=90°=∠AEF,∴四边形BCFE是矩形,∵将△BEC沿着CE翻折,∴CB=CF,∴四边形BCFE是正方形,∴BE=BC=AD=12;如图,若∠AFE=90°,∵将△BEC沿着CE翻折,∴CB=CF=12,∠B=∠EFC=90°,BE=EF,∵∠AFE+∠EFC=180°,∴点A,点F,点C三点共线,∴AC=√AB2+BC2=√144+256=20,∴AF=AC﹣CF=8,∵AE2=AF2+EF2,∴(16﹣BE)2=64+BE2,∴BE=6,(3)若∠EAF=90°,∵CD=16>CF=BC=12,∴点F不可能落在直线AD上,∴不存在∠EAF=90°,综上所述:BE=6或12.故答案为:6或12.18.(3分)如图,已知点A坐标为(√3,1),B为x轴正半轴上一动点,则∠AOB度数为30°,在点B运动的过程中AB+12OB的最小值为√3.【解答】解:过A作AC⊥x轴于点C,延长AC到点D,使AC=CD,过D作DE⊥OA 于点E,与x轴交于点F,∵点A坐标为(√3,1),∴AC=CD=1,OC=√3,∴tan∠AOB=ACOC=1√3=√33,∴∠AOB=30°,∴∠DAE=60°,EF=12OF,∴DE=AD•sin60°=√3,当点B与点F重合时,AB+12OB=AF+12OF=DF+EF=DE=√3,根据垂线段最短定理知,此时AB+12OB=√3为最小值.故答案为30°;√3.三.解答题(共8小题,满分66分)19.(6分)选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).【解答】解(1)∵a=2,b=5,c=2,∵b2﹣4ac=52﹣4×2×2=9>0,∴x=−5±√92×2=−5±34,∴x1=−12,x2=﹣2.(2)∵(2x+3)2=4(2x+3),∴(2x+3)2﹣4(2x+3)=0,∴(2x+3)(2x+3﹣4)=0,则2x+3=0或2x+3﹣4=0,解得x1=−32,x2=12.20.(6分)已知正比例函数的图象过点P(3,﹣3).(1)求这个正比例函数的表达式;(2)已知点A(a2,﹣4)在这个正比例函数的图象上,求a的值.【解答】解:(1)把P(3,﹣3)代入正比例函数y=kx,得3k=﹣3,k=﹣1,所以正比例函数的解析式为y=﹣x;(2)把点A(a2,﹣4)代入y=﹣x得,﹣4=﹣a2,解得a=±2.21.(8分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?【解答】解:(1)如图,M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,CD=MN=1.6米,AB=2米,由作法得,CE=DE=0.8米,又∵OC=OA=1米,在Rt△OCE中,OE=√OC2−CE2≈0.6(米),∴CM=2.3+0.6=2.9>2.5.∴这辆卡车能通过.(2)如图:根据题意可知:CG=BE=2.8米,BG=OF=1.2米,EF=AD=2.3米,∴BF=0.5米∴根据勾股定理有:OA2=OB2=BF2+OF2=0.52+1.22=1.32(米),∴OA=1.3米,∴桥洞的宽至少增加到1.3×2=2.6(米).22.(8分)已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.【解答】解:(1)∵方程有实数根,∴△=36﹣4(2m+1)=36﹣8m﹣4=32﹣8m≥0,解得:m≤4.故m的取值范围是m≤4;(2)∵x1,x2是方程x2+6x+(2m+1)=0的两个实数根,∴x1+x2=﹣6,x1•x2=2m+1,∵2x1x2﹣x1﹣x2≥8,∴2(2m+1)+6≥8,解得m≥0,由(1)可得m≤4,∴m的取值范围是0≤m≤4.23.(9分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?【解答】解:(1)设三、四这两个月销售量的月平均增长率为x,依题意,得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:三、四这两个月销售量的月平均增长率为25%.(2)设口罩每袋降价y元,则五月份的销售量为(400+40y)袋,依题意,得:(14﹣y﹣8)(400+40y)=1920,化简,得:y2+4y﹣12=0,解得:y1=2,y2=﹣6(不合题意,舍去).答:当口罩每袋降价2元时,五月份可获利1920元.24.(9分)如图,AM∥BN,C是BN上一点,AB=BC,BD平分∠ABN,分别交AC,AM 于点O,D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO;(2)求证:四边形ABCD是菱形;(3)若DE=AB=2,求菱形ABCD的面积.【解答】(1)证明:∵AB=BC,BD平分∠ABN,∴AO=CO.∵AM∥BN,∴∠DAC=∠ACB.在△ADO和△CBD中,{∠DAO=∠BCD,AO=CO,∠AOD=∠COB,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBD.∴AD=CB.又∵AM∥BN,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形.∴AC⊥BD,OB=OD.又∵DE⊥BD,∴AC∥DE.又∵AM∥BN,∴四边形ACED平行四边形.∴AC=DE=2.∴AO=1.在Rt△AOB中,由勾股定理得:BO=√AB2−AO2=√22−12=√3,∴BD=2BO=2√3.∴S菱形ABCD=12AC•BD=12×2×2√3=2√3.25.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B (0,8).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F ,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D 的坐标;(Ⅱ)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(Ⅲ)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).【解答】解:(I )过点D 作DG ⊥x 轴于G ,如图①所示:∵点A (6,0),点B (0,8).∴OA =6,OB =8,∵以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,∴AD =AO =6,α=∠OAD =30°,DE =OB =8,在Rt △ADG 中,DG =12AD =3,AG =√3DG =3√3,∴OG =OA ﹣AG =6﹣3√3,∴点D 的坐标为(6﹣3√3,3);(Ⅱ)过点D 作DG ⊥x 轴于G ,DH ⊥AE 于H ,如图②所示:则GA =DH ,HA =DG ,∵DE =OB =8,∠ADE =∠AOB =90°,∴AE =√AD 2+DE 2=√62+82=10,∵12AE ×DH =12AD ×DE , ∴DH =AD×DE AE=6×810=245, ∴OG =OA ﹣GA =OA ﹣DH =6−245=65,DG =2−AG 2=√62−(245)2=185,∴点D 的坐标为(65,185);(Ⅲ)连接AE ,作EG ⊥x 轴于G ,如图③所示:由旋转的性质得:∠DAE =∠AOC ,AD =AO ,∴∠AOC =∠ADO ,∴∠DAE =∠ADO ,∴AE ∥OC ,∴∠GAE =∠AOD ,∴∠DAE =∠GAE ,在△AEG 和△AED 中,{∠AGE =∠ADE =90°∠GAE =∠DAE AE =AE,∴△AEG ≌△AED (AAS ),∴AG =AD =6,EG =ED =8,∴OG =OA +AG =12,∴点E 的坐标为(12,8).26.(10分)[模型建立](一线三等角)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;[模型应用](2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,直线l2经过点A与直线l1垂直,求直线l2的函数表达式.(3)如图3,平面直角坐标系内有一点B(6,﹣8),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+2上的动点且在第四象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.【解答】(1)证明:如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD +∠BEC =90°,又∵∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△BEC 和△CDA 中,∵{∠CEB =∠ADC∠ECB =∠DAC BC =AC,∴△BEC ≌△CDA (AAS );(2)解:如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E ,∵直线y =43x +4与坐标轴交于点A 、B ,∴A (﹣3,0),B (0,4),∴OA =3,OB =4,由(1)同理得△BOA ≌△AED (AAS ),∴DE =OA =3,AE =OB =4,∴OE =7,∴D (﹣7,3),设l 2的解析式为y =kx +b ,∴{−7k +b =3−3k +b =0,解得:{k =−34b =−94, ∴直线l 2的函数表达式为:y =−34x −94;(3)解:分三种情况:①如图3,∠CPD =90°时,过P 作MH ∥x 轴,过D 作DH ∥y 轴,MH 和DH 交于H ,∵△CPD 是等腰直角三角形,∠CPD =90°,∴CP =PD ,同理得△CMP ≌△PHD (AAS ),∴DH =PM =6,PH =CM ,设PH =a ,则D (6+a ,a ﹣8﹣6),∵点D 是直线y =﹣2x +2上的动点且在第四象限内.∴a ﹣8﹣6=﹣2(6+a )+2,解得:a =43,∴D (223,−383); ②如图4,∠PCD =90°,此时P 与A 重合,过D 作DE ⊥y 轴于E ,∵△CPD 是等腰直角三角形,同理得△AOC ≌△CED ,∴OA =CE =6,OC =DE =8,∴D (8,﹣14);③如图5,∠CDP =90°,过点D 作MQ ∥x 轴,延长AB 交MQ 于Q ,则∠Q =∠DMC =90°,∵△CDP 是等腰直角三角形,同理得△PQD ≌△DMC ,∴PQ =DM ,DQ =CM ,设CM =b ,则DM =6﹣b ,AQ =8+b ,∴D (6﹣b ,﹣8﹣b ),∵点D 是直线y =﹣2x +2上的动点且在第四象限内,∴﹣8﹣b =﹣2(6﹣b )+2,解得:b =23,∴D (163,−263); 综上,点D 的坐标为(223,−383)或(8,﹣14)或(163,−263).。
2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.若m >n ,则下列不等式正确的是( )A .m ﹣4<n ﹣4B .m 4>n 4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n . 故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠C B .AD ⊥BC C .AD 平分∠BAC D .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点∴∠B =∠C ,(故A 正确)AD ⊥BC ,(故B 正确)∠BAD =∠CAD (故C 正确)无法得到AB =2BD ,(故D 不正确).故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( ) A .B .C .D . 【解答】解:{2x −4≤0①x +2>0②, 由①得x ≤2,由②得x >﹣2,故此不等式组的解集为:故选:C .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH 不是l 的垂直平分线,故此选项错误;故选:A .5.已知a <b ,则下列不等式不成立的是( )A .a ﹣1<b ﹣1B .a 2<b 2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ).故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.
6.C
【解析】
矩形的性质,三角形中位线定理,菱形的判定.
【分析】如图,连接AC.BD,
在△ABD中,∵AH=HD,AE=EB,∴EH= BD.
同理FG= BD,HG= AC,EF= AC.
又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.
∴∠1=∠2,(故A选项正确,不合题意);
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,(故B选项正确,不合题意);
AB=CD,(故C选项正确,不合题意);
无法得出AC⊥ห้องสมุดไป่ตู้D,(故D选项错误,符合题意).
故选D.
4.C
【解析】
【分析】
根据横纵坐标的符号可得相关象限.
【详解】
∵点的横纵坐标均为负数,
点睛:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,要先分析所给边的大小关系,确定最大边后,用两条较小边的平方与最大边的平方之间作比较,进而作出判断.
3.D
【解析】
试题分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.
解:∵在平行四边形ABCD中,
∴AB∥CD,
A. B.3C.1D.
二、填空题
9.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.
10.如图,在△ABC中,D,E分别是AB,AC的中点,若BC=10,则DE=____.
11.如图,矩形ABCD中,A(﹣4,1),B(0,1),C(0,3),则D点坐标是_____.
12.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是_____.
A.10B.8C.7D.5
6.顺次连接矩形四边中点所得的四边形一定是()
A.正方形B.矩形C.菱形D.等腰梯形
7.如图,在 中, 于点D,且 是 的中点,若 则 的长等于()
A.5B.6C.7D.8
8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
∴点(-1,-2)所在的象限是第三象限,
故选C.
【点睛】
本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.
5.A
【解析】
【分析】
根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.
【详解】
∵一个正n边形的每个内角为144°,
∴144n=180×(n-2),解得:n=10,
故选A.
故选B.
【点睛】
本题考查了中心对称图形的识别,在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
2.D
【解析】
据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
A. ,能够成三角形,故此选项错误;B. ,能构成直角三角形,故此选项错误;C. ,能构成直角三角形,故此选项错误;D. ,不能构成直角三角形,故此选项正确.故选D.
19.已知:如图示,在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线.求证:CD=2AD.
20.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
21.如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.
13.已知菱形ABCD的边长为5cm,对角线AC=6cm,则其面积为_____cm2.
14.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是(填一种情况即可).
15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于
(1)求证:△ABN≌△CDM;
(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.
参考答案
1.B
【解析】
【分析】
根据中心对称图形的定义逐一进行判断即可得.
【详解】
A、是中心对称图形,不符合题意;
B、不是中心对称图形,符合题意;
C、是中心对称图形,不符合题意;
D、是中心对称图形,不符合题意,
22.如图,在方格网中已知格点△ABC和点O.
(1)画△A′B'C′,使△A′B′C'与△ABC关于点O成中心对称;
(2)请在方格网中标出所有以点A,O,C′,D为顶点的四边形是平行四边形的D点,并画出平行四边形.
23.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
∴四边形EFGH为菱形.故选C.
7.D
【分析】
由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
16.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若 , ,则阴影部分的面积为__________ .
三、解答题
17.已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,M是AC的中点.求证:MD=MB.
18.如图,在平行四边形ABCD中,AB=4cm,BC=6cm,如果AD与BC间的距离为3cm,那么AB与CD间的距离是多少?
【校级联考】湖南省常德市澧县2020-2021学年八年级(下)期中数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列图形中,不是中心对称图形的是()
A. B. C. D.
2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()
A.1、 、 B.6、8、10C.5、12、13D. 、2、
3.如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD
4.点(﹣2,﹣1)在平面直角坐标系中所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
5.若一个正n边形的每个内角为144°,则n等于()