2015届高中毕业班第二次质量检测数学试题
2015届高三质检二数学(理)试卷及答案剖析

石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分)第I 卷 (选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 A .0.1% B .1% C .99% D .99.9% 附:4.已知实数,x y 满足条件11y x xy x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .05.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .( 6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为 A .120 B .36 C .24 D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如右图所示,则该几何体的表面积为 B .4+ C .2+ D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数. 又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+.(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C类天.右图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶) (Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.20.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程. 21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点; (Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分) 如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥; (Ⅱ)当F 恰为PC 的中点时,求PCPB的值. 23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=. (Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-.(Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.80907873635267934738386730121290683243210B 1C 1C2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+,又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin =+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分 所以3sin 21==∆A bc S ABC . …………………………………………………………12分 18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分 又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4,又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系,则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(2,0)C C =-,113)C A =-,设(,,)n x y z =为平面11ACC的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,2723n OB n OB n OB <>===,……………………………11分所以二面角B —A 1C —C 1的余弦值为.…………………………………12分 法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO ,………………………………………………………………11分 因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数,则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。
【2015长春二模】吉林省长春市普通高中2015届高三质量监测(二)数学(理)试题 Word版含答案

长春市普通高中2015届高三质量监测(二)数 学(理 科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}0x x P =≥,1Q 02x x x ⎧+⎫=≥⎨⎬-⎩⎭,则()RQ P=ð( )A .(),2-∞B .(],1-∞-C .()1,0-D .[]0,2 2、复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、已知随机变量ξ服从正态分布()21,σN ,若()20.15ξP >=,则()01ξP ≤≤=( )A .0.85 B .0.70 C .0.35 D .0.15 4、已知:p 函数()f x x a =+在(),1-∞-上是单调函数,:q 函数()()log 1a g x x =+(0a >且1a ≠)在()1,-+∞上是增函数,则p ⌝成立是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5、若x ,y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则35x y +的取值范围是( )A .[]13,15-B .[]13,17-C .[]11,15-D .[]11,17- 6、一个几何体的三视图如图所示,则该几何体的体积为( ) A .163 B .203 C .152 D .1327、已知平面向量a ,b 满足3a =,2b =,3a b ⋅=-,则2a b +=( ) A .1BC .4+D .8、下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、⋅⋅⋅⋅⋅⋅、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .929、已知函数()1cos cos 22f x x x x =+,若将其图象向右平移ϕ(0ϕ>)个单位后所得的图象关于原点对称,则ϕ的最小值为( )A .6π B .56π C .12π D .512π10、设m ,R n ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n +的取值范围是( )A .(),2222,⎡-∞-++∞⎣ B .(),22,⎡-∞-+∞⎣C .22⎡-+⎣D .(][),22,-∞-+∞11、若()F ,0c 是双曲线22221x y a b-=(0a b >>)的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于A ,B 两点,O 为坐标原点,∆OAB 的面积为2127a ,则该双曲线的离心率e =( )A .53B .43C .54D .8512、设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则n a =( )A .12n n - B .1121n n -++ C .2121n n -- D .112n n ++ 二、填空题(本大题共4小题,每小题5分,共20分.)13、62x ⎛- ⎝的展开式中常数项为 .14、已知0a >且曲线y =x a =与0y =所围成的封闭区域的面积为2a ,则a = .15、正四面体CD AB 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为 .16、已知函数()f x 为偶函数且()()4f x f x =-,又()235,01222,12x x x x x f x x -⎧--+≤≤⎪=⎨⎪+<≤⎩,函数()12xg x a ⎛⎫=+ ⎪⎝⎭,若()()()F x f x g x =-恰好有4个零点,则a 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)在C ∆AB 中,tan 2A =,tan 3B =. ()1求角C 的值;()2设AB =C A .18、(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.()1已知[)30,40、[)40,50、[)50,60三个年龄段的上网购物者人数成等差数列,求a ,b 的值;()2该电子商务平台将年龄在[)30,50之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X 的分布列与数学期望.19、(本小题满分12分)如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形CD AB 满足D AB ⊥A ,C//D B A 且C 4B =,点M 为CP 中点,点E 为C B 边上的动点,且CλBE=E . ()1求证:平面D A M ⊥平面C PB ;()2是否存在实数λ,使得二面角D P -E -B 的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.20、(本小题满分12分)在C ∆AB 中,顶点()1,0B -,()C 1,0,G 、I 分别是C ∆AB 的重心和内心,且G//C I B . ()1求顶点A 的轨迹M 的方程;()2过点C 的直线交曲线M 于P 、Q 两点,H 是直线4x =上一点,设直线C H 、PH 、Q H 的斜率分别为1k ,2k ,3k ,试比较12k 与23k k +的大小,并加以证明.21、(本小题满分12分)设函数()()()1ln 1f x ax x bx =-+-,其中a 和b 是实数,曲线()y f x =恒与x 轴相切于坐标原点.()1求常数b 的值;()2当01x ≤≤时,关于x 的不等式()0f x ≥恒成立,求实数a 的取值范围;()3求证:10000.41000.5100011001100001000e ⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE ,BE ,∠APE 的平分线与AE ,BE 分别交于点C ,D ,其中30∠AEB =.()1求证:D DD CE PB P ⋅=B PA P ; ()2求C ∠P E 的大小.23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩(t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为ρ=. ()1求曲线1C 的普通方程与曲线2C 的直角坐标方程;()2试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由. 24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x a a =++-+,R x ∈.()1当3a =时,求不等式()7f x >的解集;()2对任意R x ∈恒有()3f x ≥,求实数a 的取值范围.长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.A3.C4.C5.D6.D7.B8.B9.C 10.A 11.C 12.A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D.2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)0.35P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D.7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A.11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b aθ=,222tan 2aba b θ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C. 12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =,即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n 是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分) 13.60 14.49 15.83π 16.192,8⎛⎫ ⎪⎝⎭简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023aa x ==⎰,所以49a =.15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB 为直径,可求得AB =,进而截面面积的最小值为283ππ=.16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴=(6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =. (9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力. 【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,12643103(250)10C C P X C ===, 343101(300)30C P X C ===, (10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC , AN ⊂平面ADM ,∴平面ADM ⊥平面PBC . (6分)(2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B 从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠.(5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=-- 21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++ 当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++. ① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n =,得:对于任意正整数n 都有111(1)ln(1)02n n n ++->成立. 因此对于任意正整数n ,不等式215211(1)(1)n n e n n +++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n +++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PD BD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠,在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-+⎪⎩(为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由12t t +=,1285t t =,得21||d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或 (5分)(2)()2122121f x x a x a x a x a a a =-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥所以a 的取值范围是[)2,+∞ (10分)。
2014-2015学年度下学期第二次质量检测卷 高二数学(理)

2014-2015学年度下学期第二次质量检测卷高二数学(理)注意事项:1.本试题共分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷共150分,时间120分钟。
2.第I 卷必须使用2B 铅笔填涂答题卡相应题目的答案标号,修改时,要用橡皮擦干净。
3.第II 卷必须使用0.5毫米的黑色墨水签字笔书写在答题纸的指定位置,在草稿纸和本卷上答题无效。
第I 卷(选择题 共50分)一、选择题(本大题共10小题,每题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.z 是z 的共轭复数,若2)(,2=-=+i z z z z (i 为虚数单位),则复数z 的虚部是( )A .i -B .iC .1D .1- 2.已知xf x f x x f x ∆-∆+=→∆)2()2(lim,1)(0则的值是( ) A . 41 B . 41- C . 2 D . ln 23.下面使用类比推理正确的是( ). A .“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =”B .“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C .“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D .“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 4.若二项式7)2(x a x +的展开式中31x的系数是84,则实数a = ( )A .2B .54C .1D .425.若离散型随机变量X 的分布列如图,则常数c 的值为( )X 0 1Pc c -29 c 83-A .3132或B .32C .31D .16.用反证法证明命题“设b a ,为实数,则方程03=-+b ax x ,至少有一个实根”时要做的假设是( )A .方程03=-+b ax x 没有实根B .方程03=-+b ax x 至多有一个实根C .方程03=-+b ax x 至多有两个实根D .方程03=-+b ax x 恰好有两个实根7.用数学归纳法证明“))(12(5312)()2)(1(*N n n n n n n n ∈-⨯⋅⋅⋅⨯⨯⨯⨯=+⋅⋅⋅++”时,从1+==k n k n 到,等式左边需要增乘的代数式是( ) A .12+k B .112++k k C .1)22)(12(+++k k k D .132++k k8.若⎰+=12)(2)(dx x f x x f ,则⎰10)(dx x f =( )A .1-B .31-C .31D . 19.某校计划组织高二年级四个班级开展研学旅行活动,初选了甲、乙、丙、丁四条不同的研学线路,每个班级只能在这四条线路中选择其中的一条,且同一条线路最多只能有两个班级选择,则不同的方案有( )A .240种B .204种C .188种D .96种 10.定义在R 上的函数)(x f 满足:'()()1,(0)5f x f x f +>=,则不等式x x e x f e +>4)(的解集为 ( )A .)0,(-∞B .),0()0,(+∞-∞C .),3()0,(+∞-∞D .),0(+∞第II 卷 非选择题 (共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11.把5件不同的产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有____________种(用数字作答).12.设6655443322106)12()12()12()12()12()12()23(-+-+-+-+-+-+=-x a x a x a x a x a x a a x 则=++531a a a ________________. 13.计算dx x ⎰-1024=______________.14.关于)5,4,3,2,1(=i x i 的方程)(10*54321N x x x x x x i ∈=++++的所有解的组数是__________.(用数字作答)15.已知函数()f x 的导函数()f x '的图象如图, 下列说法正确的是 (只填序号)①函数()f x 在1x =处取得极小值1- ; ②函数()f x 在0x =和1x =处取得极值;③函数()f x 在(,1)-∞上是单调递减函数,在(1,)+∞上是单调递增函数; ④函数()f x 在(,0)-∞和(2,)+∞上是单调递增函数,在(0,2)上是单调递减函数;⑤函数()f x 在0x =处取得极小值,在2x =处取得极大值.三、解答题(本大题共6个小题,共75分.解答应写出文字说明、证明过程和演算步骤)16.(本小题满分12分)已知复数(13i)(1i)(13i)z i-+--+=错误!未找到引用源。
广东省广州市2015年普通高中毕业班综合测试(二)数学试题(理科)(含详细答案)

数学(理科)试题A第 1 页共 17 页试卷类型:A广东省广州市2015年普通高中毕业班综合测试(二)数学试题(理科)2015.4本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的表面积公式24S R ,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“若2x,则2320xx ”的逆否命题是A .若2x ,则2320x x B .若2320x x ,则2x C .若2320xx,则2x D .若2x,则232xx2.已知0a b ,则下列不等关系式中正确的是A .sin sin a bB .22log log ab C .1122abD .1133ab3.已知函数4,0,1,0,x xf xxx x则2ff A .14B .12C .2D .44.函数sin y A x 0,0,0A 的图象的一部分如图1所示,则此函数的解析式为y xO 153-3图1。
广东省肇庆市2015届高中毕业班第二次统测数学(文)试题及答案

试卷类型:A肇庆市中小学教学质量评估 2015届高中毕业班第二次统一检测题数 学(文科)本试卷共4页,21小题,满分150分. 考试用时120分钟. 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔,将自己所在县(市、区)、姓名、试室号、座位号填写在答题卷上对应位置,再用2B 铅笔将准考证号涂黑.2. 选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上或草稿纸上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据12,,,n x x x 的标准差s =,其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,则复数34ii-= A .43i -- B .43i -+ C .i 4+3 D .i 4-32.已知集合{(,)|,A x y x y =为实数,且2}y x =,{(,)|,B x y x y =为实数,且1}x y +=,则A ∩B 的元素个数为A .无数个B .3C .2D .1 3.已知向量(1,2),(1,0),(4,3)===-a b c .若λ为实数,()λ+⊥a b c ,则λ=A .14 B .12C .1D .2 4.若p 是真命题,q 是假命题,则A .p q ∧是真命题B .p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题 5.已知等差数列{n a },62a =,则此数列的前11项的和11S =A .44B .33C .22D .11 6.下列函数为偶函数的是( )A .sin y x = B.)lny x = C .x y e = D.y =7.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是8.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+,14,42,22y x y x y x 则目标函数3z x y =-的取值范围是A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-9.已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,*N n ∈,则()2015f x =A .sin cos x x +B .sin cos x x --C .sin cos x x -D .sin cos x x -+10.集合M 由满足:对任意12,[1,1]x x ∈-时,都有1212|()()|4||f x f x x x -≤-的函数()f x 组成.对于两个函数2()22,()xf x x xg x e =-+=,以下关系成立的是 A .(),()f x M g x M ∈∈ B .(),()f x M g x M ∈∉ C .(),()f x M g x M ∉∈ D .(),()f x M g x M ∉∉ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在ABC ∆中,若15,,sin 43b B A π=∠==,则a = ▲ . 12.若()3213f x x ax x =-+在(),-∞+∞不是..单调函数,则a 的范围是 ▲ . 13.已知函数()()sin cos sin f x x x x =+,x R ∈,则)(x f 的最小值是 ▲.( )14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为cos 5ρθ=,则点π43⎛⎫⎪⎝⎭,到直线l 的距离为 ▲ .15.(几何证明选讲选做题)如图,PT 是圆O 的切线,PAB 是圆O 的割线,若2=PT ,1=PA ,o60=∠P ,则圆O 的半径=r ▲ .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知向量()()3,sin 1,cos a b θθ==与互相平行,其中(0,)2πθ∈.(1)求sin θ和cos θ的值;(2)求()()sin 2f x x θ=+的最小正周期和单调递增区间.17.(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:已知6个站的平均得分为75分.(1)求广州南站的满意度得分x ,及这6个站满意度得分的标准差;(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.18.(本小题满分14分)如图,将一副三角板拼接,使他们有公共边BC ,且使这两个三角形所在的平面互相垂直,︒=∠=∠90CBD BAC ,AB AC =,︒=∠30BCD ,BC =6.(1)证明:平面ADC ⊥平面ADB ; (2)求B 到平面ADC 的距离.19.(本小题满分14分)已知在数列{}n a 中,13a =,()111n n n a na ++-=,n N *∈.(1)证明数列{}n a 是等差数列,并求n a 的通项公式; (2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为nT ,证明:61<n T .20.(本小题满分14分)已知函数3241)(1+-=-x x x f λ(21≤≤-x ). (1)若32λ=时,求函数)(x f 的值域; (2)若函数)(x f 的最小值是1,求实数λ的值.21.(本小题满分14分)已知函数xkxx x f +-+=1)1ln()(,k R ∈. (1)讨论)(x f 的单调区间;(2)当1k =时,求)(x f 在[0,)+∞上的最小值, 并证明()1111ln 12341n n ++++<++.CBDA肇庆市2015届高中毕业班第二次统测 数学(文科)参考答案及评分标准一、选择题二、填空题11.325 12. ()(),11,-∞-+∞ 13. 14. 3 15三、解答题16.(本小题满分12分)解:(1)因为a 与b 互相平行,则sin ,tan θθθ= (3分)又0,2πθ⎛⎫∈ ⎪⎝⎭,所以3πθ=,所以1sin 22θθ==. (6分) (2)由()()sin 2sin 23f x x x πθ⎛⎫=+=+ ⎪⎝⎭,得最小正周期T π= (8分) 由222,232k x k k Z πππππ-≤+≤+∈,得5,1212k x k k Z ππππ-≤≤+∈ (11分) 所以)(x f 的单调递增区间是5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(12分)17.(本小题满分12分) 解:(1)由题意,得1(7076727072)756x +++++=,解得90x =. (2分)7s ==(5分) (2)前5个站中随机选出的2个站,基本事件有 (怀集站,广宁站),(怀集站,肇庆东站),(怀集站,三水南站),(怀集站,佛山西站),(广宁站,肇庆东站),(广宁站,三水南站),(广宁站,CBDA佛三西站),(肇庆东站,三水南站),(肇庆东站,佛山西站),(三水南站,佛山西站)共10种, (8分)这5个站中,满意度得分不在区间(68,75)中的只有广宁站.设A 表示随机事件“从前5个站中,随机地选2个站,恰有1个站得分在区间(68,75)中”,则A 中的基本事件有4种, (10分) 则42()105P A == (12分)18.(本小题满分14分)(1)证明:因为,,,ABC BCD BD BC ABC BCD BC BD BCD ⊥⊥=⊂面面面面面,所以BD ABC ⊥面. (3分) 又AC ABC ⊂面,所以BD AC ⊥. (4分) 又AB AC ⊥,且BDAB B =,所以AC ADB ⊥面. (5分) 又AC ADC ⊂面,所以ADC ADB ⊥面面.(6分)(2)在Rt BCD ∆中,06,30BC BCD =∠=,得0tan30BD BC =⨯=(7分) 在等腰Rt ABC ∆中,6BC =,得AB AC == (8分) 由(1)知BD ABC ⊥面,所以BD AB ⊥, (9分) 在ABD Rt ∆中,23=AB ,32=DB ,得3022=+=DB AB AD ,(10分) 又AC ADB ⊥面,设B 到面ADC 的距离为h ,由C ABD B ACD V V --=, (12分) 得1111()()3232AB BD AC AC AD h ⨯⨯⨯⨯=⨯⨯⨯⨯, (13分)解得5h =B 到平面ADC 的距离556. (14分)19.(本小题满分14分) 解:(1)方法一:由()111n n n a na ++-=,得()()12211n n n a n a +++-+=, (2分) 两式相减,得()()()12221n n n n a n a a +++=++,即122n n n a a a ++=+, (4分) 所以数列{}n a 是等差数列. (5分)由⎩⎨⎧=-=123211a a a ,得52=a ,所以212=-=a a d , (6分)故12)1(1+=⨯-+=n d n a a n 21n a n =+. (8分) 方法二:将1)1(1=-++n n na a n 两边同除以)1(+n n ,得11111+-=+-+n n n a n a n n ,(3分) 即n a n a n n 1111-=+-+. (4分) 所以1111-=-a n a n (5分) 所以12+=n a n (6分) 因为12n n a a +-=,所以数列{}n a 是等差数列. (8分) (2)因为()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, (11分) 所以13221111++++=n n n a a a a a a T )]321121()7151()5131[(21+-+++-+-=n n6164161<+-=n (*N n ∈) (14分)20.(本小题满分14分) 解:(1)3)21(2)21(3241)(21+⋅-=+-=-xx x x x f λλ(21≤≤-x ) (1分) 设xt )21(=,得32)(2+-=t t t g λ(241≤≤t ). (2分) 当23=λ时,43)23(33)(22+-=+-=t t t t g (241≤≤t ). (3分)所以1637)41()(max ==g t g ,43)23()(min ==g t g . (5分) 所以1637)(max =x f ,43)(min =x f ,故函数)(x f 的值域为[43,1637]. (6分) (2)由(1)2223)(32)(λλλ-+-=+-=t t t t g (241≤≤t ) (7分) ①当41≤λ时,16492)41()(min +-==λg t g , (8分)令116492=+-λ,得41833>=λ,不符合舍去; (9分) ②当241≤<λ时,3)()(2min +-==λλg t g , (10分) 令132=+-λ,得2=λ,或412<-=λ,不符合舍去; (11分) ③当2>λ时,74)2()(min +-==λg t g , (12分) 令174=+-λ,得223<=λ,不符合舍去. (13分) 综上所述,实数λ的值为2. (14分)21.(本小题满分14分)解:(1)()f x 的定义域为()1,-+∞. (1分)221(1)1()1(1)(1)x x x kf x k x x x +-+-'=-=+++ (3分) 当0k ≤时,()'0f x >在()1,-+∞上恒成立,所以()f x 的单调递增区间是()1,-+∞,无单调递减区间. (5分)当0k >时,由()'0f x >得1x k >-,由()'0f x <得1x k <-,所以()f x 的单调递增区间是()1,k -+∞,单调递减区间是()1,1k --, (7分)(2)由(1)知,当1k =时,()f x 在[0,)+∞上单调递增,所以()f x 在[0,)+∞上的最小值为()00f =. (9分)所以)1ln(1x x x+<+(0>x ) (10分) 所以)11ln(111n n n +<+,即n n n ln )1ln(11-+<+(*N n ∈). (12分) 所以)1ln()ln )1(ln()2ln 3(ln )1ln 2(ln 113121+=-+++-+-<++++n n n n (14分)。
2015二模理数答案

长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1. D2. A3. C4. C5. D6. D7. B8. B9. C 10.A 11. C 12. A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D. 2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D. 7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A. 11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b a θ=,222tan 2aba bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13. 6014.4915.83π16. 19(2,)8简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023a a x ==⎰,所以49a =. 15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB为直径,可求得3AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴= (6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=. (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,126433(250)10C C P X C ===,343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(6分) (2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠. (5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分) 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++.① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减, 即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++ 211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容.本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由125t t +=,1285t t =,得21||5d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1) 当3a =时,174,213()5,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩,所以()7f x >的解集为{|0x x <或2}x >.(5分)(2) ()|21||2||212||1|f x x a x a x a x a a a =-+-+≥-+-+=-+, 由()3f x ≥恒成立,有|1|3a a -+≥,解得2a ≥ 所以a 的取值范围是[)2,+∞.(10分)。
山东省胶州一中2015届高三上12月第二次质量检测数学(理)试题及答案

胶州一中2015届高三上学期12月第二次质量检测数学(理)试题一、选择题1.若集合}11,|{31≤≤-==x x y y A ,}1{x y x B -==,则A B =A .(]1,∞-B .]1,1[-C .φD .{1}2. 已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β; 则真命题的个数为( )A .0B . 1C .2D .33. 已知等差数列{}n a 的公差为()0d d ≠,且36101332a a a a +++=,若8m a =,则m 为( )A .12 B. 8 C .6 D. 44.如右图,一个简单空间几何体的三视图其主视图与左视图 都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是( )A B.C D. 835.若直线(1)10a x y +++=与圆2220x y x +-=相切,则a 的值为( )A.1或﹣1B.2或﹣2C.1D.﹣16.已知向量 a b 、夹角为60,且||3a =,||2b =,若(3)a mb a +⊥,则实数m 的值是( ) A.9 B.﹣9 C.10 D.﹣10 7.将奇函数)22,0)(sin()(πϕπωϕω<<->+=x A x f 的图象向左平移6π个单位得到的图象关于原点对称,则ω的值可以为( )A .2B .3C .4D .68.若函数3()log ()(01)a f x x ax a =-<≠在区间1(,0)2-内单调递增,则a 的取值范围是( )俯视图A.1[,1)4B. 3[,1)4C. 9[,)4+∞D.9(1,)49. 直线440kx y k --=与抛物线2y x =交于,A B 两点,若4AB =,则弦AB 的中点到直线102x +=的距离为( ) A.94 B.74C.2D.4 10. 设()ln f x x =,若函数()()g x f x ax =-在区间(]0,3上有三个零点,则实数a 的取值范围是( )A.10,e ⎛⎫ ⎪⎝⎭B. ln 31,3e ⎡⎫⎪⎢⎣⎭C.ln 30,3⎛⎤ ⎥⎝⎦D.ln 3,3e ⎛⎫⎪⎝⎭二、填空题11. 已知焦点在x 轴上的双曲线的渐近线为2y x =±,则次双曲线的离心率为_______12. 设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为13.在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为_____14.已知正项等比数列{}n a 满足8762a a a =+,若存在两项,m n a a12a =,则19m n +的最小值为___________15.定义在R 上的奇函数()f x 满足(1)(1)f x f x -=-+,当(2,3)x ∈时,2()log (1)f x x =-,则以下结论中正确的是______①()f x 图像关于点(,0)()k k Z ∈对称;②()y f x =是以2为周期的周期函数 ③当(1,0)x ∈-时2()log (1)f x x =-- ④()y f x =在(,1)()k k k Z +∈内单调递增 三、解答题16. 如图5,在平面四边形ABCD 中,1=AD ,2=CD ,7=AC .(1) 求CAD ∠cos 的值;(2) 若147cos -=∠BAD ,621sin =∠CBA ,求BC 的长.ODC BAD 1C 1B 1A 117.如图,在四棱柱1111ABCD A BC D -中,侧面11ADD A ⊥底面ABCD,11D A D D ==,底面ABCD 为直角梯形,其中BC ∥AD ,AB AD ⊥,222AD AB BC ===,O 为AD 中点.(1)求证:1AO ∥平面1ABC ; (2)求锐二面角11A C D C --的余弦值.18.小王大学毕业后,决定利用所学专业知识进行自主创业,经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本()W x 万元。
安徽省合肥市2015届高三第二次教学质量检测数学【文】试题及答案

安徽省合肥市2015届高三第二次教学质量检测数学(文)试题第I 卷(选择题,共50分)一、选择题1.复数(i 3+i z=-i 为虚数单位)的虚部为A .1B .-1C .3D .-3 2、已知集合2{|12},{|10}A x x B x x ,则A B A 、{|11}x x B 、{|12}x xC 、{1}D 、3.执行右边的程序框图,输出的结果为A .9B .8C .6D .4 4.一个正方体挖去一个圆锥得到一个几何体,其正视图与俯视图如图所示,则该几何体的侧(左)视图是5.已知点P 在圆的距离最大值为6、函数的部分图象如图所示,则f (x )的解析式可以为7、已知p >0,q >0,且2p +q =8,则pq 的最大值为8.中,角A、B、C所对的边分别为9.如图,已知四边形ABCD为正方形,且PD=AD,则下列命题中错误的是A.过BD且与PC平行的平面交PA于M点,则M为PA的中点B.过AC且与PB垂直的平面交PB于N点,则N为PB的中点C.过AD且与PC垂直的平面宛PC于H点,则H为PC的中点D.过P、B、C的平面与平面PAD的交线为直线l,则10.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第II卷二、填空题11.函数的定义域为。
12.已知椭圆则该椭圆的离心率为。
13.已知函数是定义在R上单调递减的奇函数,则满足不等的实数t的取值范围是。
14、已知不等式组表示的平面区域被直线2x+y-k=0平分成面积相等的两部分,则实数k的值为_____上述命题正确的是。
三、解答题16.(本小题满分12分)已知(I)求的值;(II)若是第四象限角,求的值。
17.(本小题满分12分)某快递公司正在统计所有快递员某一天的收件数,有些数据还没有填好,如下表所示:(1)求a,b,c的值,并估计当天收件数的中位数;(2)若按分层抽样从四、五、六组中抽出6人进行经验交流,再从这6人中选取2人在公司早会上发言,求发言的2人不都是出自同一组的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省福州市2015届高中毕业班第二次质量检测数学(理)试题(完卷时间:120分钟;满分:150分)第I卷(选择题共50分)一、选择题(本大题共1 0小题,每小题5分,共50分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.)1.已知全集等于A.[-2 ,0)B.[-2,0] C.[0,2)D.(0,2)2.在平面直角坐标系中,已知角的顶点与点O重合,始边与x轴的非负半轴重合,终边一点M的坐标为的值是A.-0.5 B。
0 C.0.5 D.13.在等差数列,则a5的值是4.若的大小关系为A.a<b<c B.b<a<cC.b<c<a D.c<b<a5.执行如图所示的程序框图,输出S的值为A.-l B.1C.0 D.-20146.一征棱长为3的正方体内任取一点P,则点P到该正方体的六个面的距离的最小值不大于1的概率为7.“直线l垂直于平面”的一个必要不充分条件是A.直线l与平面内的任意一条直线垂直B.过直线l的任意一个平面与平面垂直C.存在平行于直线l的直线与平面垂直D.经过直线l的某一个平面与平面垂直8.的取值范围9.若函数对于函数10.某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内.下面说法都是对的,在遮些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护。
士;至少有一名男医生,”请你推断说话的人的性别与职业是A.男医生B.男护士C.女医生D.女护士第Ⅱ卷(非选择题共l00分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置上。
)11.已知12.展开式的常数项为280,则正数a= .13.已知抛物线的焦点为F,P是的准线上一点,Q是直线PF与的一个交点.若则直线PF的方程为。
14.已知一组正数则数据的平均数为。
15.已知函数,有下列四个结论:④函数的图象上至少存在三个点,使得该函数在这些点处的切线重合,其中正确结沦的序号是(请把所有正确结论的序号都填上).三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分13分)已知函数的图象与直线y=2的相邻两个交点之间的距离为(I)求函数的单凋递增区间;(Ⅱ)设△ABC的内角A,B,C所对的边分别是,求角B的大小.17.(本小题满分13分)调查表明,中年人的成就感与收入、学历、职业的满意度的指标有极强的相关性,现将这三项的满意度指标分别记为并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标的值评定中年人的成就感等级:若,则成就感为一级;若2则成就感为二级;若,则成就感为三级,为了了解目前某群体中年人的成就感情况,研究人员随机采访了该群体的10名中年人,得到如下结果:(I)茌这10名被采访者中任取两人,求这两人的职业满意度指标z相同的概率;(Ⅱ)从成就感等级是一级的被采访者中任取一人,.其综合指标为a,从成就感等级不是一级的被采访者中任取一人,其综合指标为b,记随机变量的分布列及其数学期望.18.(本小题满分13分)已知一个空间几何体的直观图和三视图(尺寸如图所示).(I)设点M为棱肋中点,求证:(Ⅱ)线段加上是否存在一点N,使得直线与平面PCD所成角的正弦值等于手?若存在,试确定点N的位置;若不存在,请说明理由,19.(本小题满分13分)20.(本小题满分14分)已知函数为自然对数的底数.(I)当a=e时,求函数处的切线方程;(Ⅱ)设的大小,并加以证明.21.本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.若多做,则按所做的前两题计分(2)(本小题满分7分)选修4-4:坐标系与参数方程己知曲线C1的参数方程为.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为(I)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(3)(本小题满分7分)选修4-5:不等式选讲已知定义在的最小值为3.(I)求a的值;(Ⅱ)求不等式的解集.2015年福州市高中毕业班质量检测 理科数学能力测试参考答案及评分细则第Ⅰ卷 (选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.)第Ⅱ卷 (非选择题 共100分)二、填空题(本大题共5小题,每小题4分,共20分.)11.34i - 12 13.10x y +-=或10x y --= 14.3 15.①③④ 三、解答题(本大题共6小题,共80分.)(Ⅱ)由(Ⅰ)知,π()2sin(2).6f x x =-在ABC ∆中,因为()2,f A =所以π2sin(2)2,6A -= ············································································································ 7分所以πsin(2)1,6A -=因为0πA <<,所以π3A =. ······························································································ 9分因为a =,根据据正弦定理,有sin A B =, ··················································· 10分所以πsin 3B ,所以1sin 2B =, ············································································· 11分因为a b >,所以A B >,所以π03B <<, ······································································ 12分所以π6B =.························································································································· 13分(Ⅱ)计算其中成就感是一级的()有:1、2、3、5、6、8,共6名,成就感不是一级的(4w <)有4A 、7A 、9A 、10A ,共4名.随机变量X 的所有可能取值为:1,2,3,4,5. ··································································· 6分113211641(1)4C C P X C C ⋅===⋅, ···································································································· 7分 1111312211647(2)24C C C C P X C C ⋅+⋅===⋅, ················································································· 8分 11111131212111647(3)24C C C C C C P X C C ⋅+⋅+⋅===⋅ ,································································ 9分 (4)P X ==111111211164C C C C C C ⋅+⋅⋅ 18=, ·············································································· 10分 111111641(5)24C C P X C C ⋅===⋅, ······························································································· 11分 所以X 的分布列为··············································································································································· 12分 所以1771129()123454242482412E X =⨯+⨯+⨯+⨯+⨯=. ········································ 13分18.本小题主要考查空间体的直观图与三视图、直线与平面的平行、线面所成角、探索性问题等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想.满分13分.(Ⅰ)证明:(方法一)由三视图知,,,BA BP BC 两两垂直,故以B 为原点,,,BA BP BC 分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.…………………1分则1(0,2,0),(2,0,1),(1,1,),(2,1,0),(0,0,1)2P D M E C ,所以1=(1,0,)2EM -,易知平面ABCD 的一个法向量等于(0,1,0)n =,………3分 所以1=(1,0,)(0,1,0)02EM n ⋅-⋅=,所以EM n ⊥, ····················································································································· 4分 又EM ⊄平面ABCD , 所以EM ∥平面ABCD . ··································································································· 5分 (方法二)由三视图知,,,BA BP BC 两两垂直.连结,AC BD ,其交点记为O ,连结MO ,EM . ···················································· 1分 因为四边形ABCD 为矩形,所以O 为BD 中点.因为M 为PD 中点,所以OM ∥PB ,且12OM PB =.………………………2分又因为AE ∥PB ,且12AE PB =,所以AE ∥OM , 且AE =OM . 所以四边形AEMO 是平行四边形,所以EM ∥AO ………………………………………4分 因为EM ⊄平面ABCD ,AO ⊂平面ABCD 所以EM ∥平面ABCD . ··································································································· 5分 (Ⅱ)解:当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25. ······ 6分 理由如下:因为(2,2,1),(2,0,0)PD CD =-=,设平面PCD 的法向量为1111(,,)n x y z =,由110,0n PD n CD ⎧⋅=⎪⎨⋅=⎪⎩得1111220,20.x y z x -+=⎧⎨=⎩ ··············································································· 7分 取11y =,得平面PCD 的一个法向量1(0,1,2)n =. ······················································· 8分 假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成角α的正弦值等于25. 设(01)PN PD λλ=≤≤,则(2,2,1)(2,2,)PN λλλλ=-=-,(2,22,)BN BP PN λλλ=+=-. ························· 9分 所以111||sin |cos ,|||||BN n BN n BN n α⋅=<>=⋅ ······································································· 10分25===. ··································12分所以29810λλ--=,解得1λ=或19λ=-(舍去).因此,线段PD上存在一点N,当N点与D点重合时,直线BN与平面PCD所成角的正弦值等于25.·························································································································13分(Ⅱ)方法一:依题意得,PQ与坐标轴不垂直.设()()1122,,,P x y Q x y.因为点Q与点Q'关于x轴对称,所以()22,Q x y'-.由(Ⅰ)讨论可知,()()2,0,1,0A F-.因为PF AQ'∥,所以直线FQ与直线AQ'的斜率相等,故222212y yx x-=+-,··················6分解得212x=.··························································································································7分又因为点()22,Q x y在椭圆Γ上,所以2y=,或2y=·································8分由椭圆对称性,不妨取2y=PQ的斜率221ykx==+所以直线PQ方程为)1y x=+.···················································································9分由)221,3412,y xx y⎧=+⎪⎨⎪+=⎩得点P坐标为7,4⎛-⎝⎭.······························································10分所以()()()()()2222222211111811111164PF x y x k x k x=++=+++=++=, ·····················11分()()()()()2222222222222812221216AQ x y x k x k x'=-+=-+-=+-=.························12分所以12PF AQ'=. ············································································································13分方法二:依题意,得PQ与坐标轴不垂直.设l方程为()1y k x=+(0k≠),()()1122,,,Px y Qx y.因为点Q与点Q'关于x轴对称,所以()22,Q x y'-.又因为椭圆关于x 轴对称,所以点Q '也在椭圆Γ上.由()221,3412,y k x x y ⎧=+⎨+=⎩消去y 得 ()22223484120k x k x k +++-=. ···································· 5分 所以2212122284120,,3434k k x x x x k k -∆>+=-⋅=++. ································································ 6分 因为PF AQ '∥,所以直线AQ '的方程为()2y k x =-.由()222,3412,y k x x y ⎧=-⎨+=⎩消去y 得()2222341616120k x k x k +-+-=. ····································· 7分 因为直线AQ '交椭圆于()()222,0,,A Q x y '-两点,所以2221612234k x k -⋅=+,故2228634k x k-=+. ············································································ 8分 所以22221211212222868864120,,34343434k k k k x x x x x x k k k k ---∆>+=+=-⋅=⋅=++++, 解得2157,44k x ==-. ··········································································································· 9分所以222861342k x k -==+. ········································································································ 10分 所以()()()()()2222222211111811111164PF x y x k x k x =++=+++=++=,()()()()()2222222222222812221216AQ x y x k x k x '=-+=-+-=+-=. ························ 12分 所以12PF AQ '=. ············································································································ 13分方法四:依题意,得PQ 与坐标轴不垂直. 设l 方程为()1y k x =+(0k ≠),()()1122,,,Px y Qx y .因为点Q 与点Q '关于x 轴对称,所以()22,Q x y '-. ···························································· 5分 因为,,P F Q 三点共线,所以()111,FP x y =+与()221,FQ x y =+共线,所以()()1221110x y x y +-+=. ··························································································· 6分 因为PF AQ '∥,所以可设FP AQ λ'=(0λ>),即()()11221,2,x y x y λ+=--,所以()121212,x x y y λλ+=-=-.························································································ 7分 所以()()2222210x y x y λλ-++=,即()22210y x λ-=.················································· 8分依题意,120y y ⋅≠,所以212x =. ····················································································· 9分 因为点21,2Q y ⎛⎫⎪⎝⎭在椭圆22143x y +=上,所以2211163y +=, 解得2y =2y = ······················································································· 10分由椭圆对称性,不妨取2y =()()2231,02,1,2OP OF FP x y λλ⎛⎫=+=-+--=-- ⎪⎝⎭,因为点31,2P λ⎛⎫-- ⎪⎝⎭在椭圆22143x y +=上,所以22312143λ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=, 解得 12λ=或1λ=-(舍去). ······················································································· 12分所以12FP AQ '=,即12PF AQ '=. ················································································ 13分方法六:依题意,得PQ 与坐标轴不垂直. 设l 方程为()1y k x =+(0k ≠),()()1122,,,Px y Qx y .因为点Q 与点Q '关于x 轴对称,所以()22,Q x y '-.由()221,3412,y k x x y ⎧=+⎨+=⎩消去x 得()22234690k y ky k +--=. ·················································· 6分 所以12260,34ky y k ∆>+=+. ······························································································· 7分因为PF AQ '∥,所以直线AQ '的方程为()2y k x =-.由()222,3412,y k x x y ⎧=-⎨+=⎩消去x 得,()2234120k y ky ++=. ····················································· 8分 因为直线AQ '交椭圆于()()222,0,,A Q x y '-两点,所以221234k y k --=+,即221234ky k =+. ················································································· 9分 设FP AQ λ'=(0λ>),则()()11221,2,x y x y λ+=--, 所以1221234ky y k λλ-=-=+. ·································································································· 10分所以()122212163434k k y y k k λ-+==++,解得12λ=, ··························································· 12分。