2020年广西南宁二中高考数学模拟试卷(理科)(3月份)(含答案解析)
精品解析:广西南宁三中2020届高三数学理科考试二试题(解析版)

南宁三中2020届高三(考试二)数学(理科)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1. 已知集合{2}A xx =<‖∣,{1,0,1,2,3}B =-,则A B =( )A. {0,1}B. {0,1,2}C. {1,0,1}-D. {1,0,1,2}-【答案】C 【解析】 【分析】先求出集合A ,然后再求两集合的交集即可【详解】解:由2x <,得22x -<<,所以{}22x x A =-<<, 因为{1,0,1,2,3}B =-, 所以A B ={1,0,1}-,故选:C【点睛】此题考查集合的交集运算,考查绝对值不等式的解法,属于基础题 2. i 是虚数单位,则复数221ii i++等于( ) A. i B. ﹣iC. 1D. ﹣1【答案】A 【解析】 【分析】根据复数四则运算法则直接求解即可得到结果.【详解】()()()2212111111i i i i i i i i i -+=-=+-=++- 故选:A【点睛】本题考查复数的四则运算,属于基础题. 3. 已知R a ∈,则“1a >”是“11a<”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】“a >1”⇒“11a <”,“11a<”⇒“a >1或a <0”,由此能求出结果.【详解】a ∈R ,则“a >1”⇒“11a<”, “11a<”⇒“a >1或a <0”,∴“a >1”是“11a<”的充分非必要条件. 故选A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 4. 下列函数中,与函数y=) A. y=B. ln xy x= C. xy xe =D. sin xy x=【答案】D 【解析】【分析】 可以求出y =的定义域为{|0}x x ≠,然后求每个选项函数的定义域即可. 【详解】解:函数y =的定义域为{|0}x x ≠, y=的定义域为{|0}x x >; lnxy x=的定义域为{|0}x x >; x y xe =的定义域为R ;sinxy x=的定义域为{|0}x x ≠, ∴与函数y =定义域相同的函数为sinxy x=. 故选:D .【点睛】考查函数定义域的定义及求法,指数函数和对数函数的定义域. 5. 已知 1.22a =,0.81()2b -=,52log 2c =,则a, b, c 的大小关系为( )A. c b a <<B. c a b <<C. b a c <<D. b c a <<【答案】A 【解析】【详解】试题分析:因为0.80.81()22b -==,所以由指数函数的性质可得0.8 1.2122b a <=<=,552log 2log 41c ==<,因此c b a <<,故选A.考点:1、指数函数的性质;2、对数函数的性质及多个数比较大小问题.【方法点睛】本题主要考查指数函数的性质、对数函数的性质以及多个数比较大小问题,属于中档题. 多个数比较大小问题能综合考查多个函数的性质以及不等式的性质,所以也是常常是命题的热点,对于这类问题,解答步骤如下:(1)分组,先根据函数的性质将所给数据以0,1为界分组;(2)比较,每一组内数据根据不同函数的单调性比较大小;(3)整理,将各个数按顺序排列.6. 二项式53x x ⎛- ⎪⎭的展开式中常数项为( )A. 5B. 10C. -20D. 40【答案】D 【解析】 【分析】先求出二项式展开式的通项公式,然后令x 的次数为0,求出r ,从而可求出展开式中常数项【详解】解:二项式展开式的通项公式为105536155()(2)rrr r r r r T C x C xx --+⎛=-=- ⎪⎝⎭, 令10506r-=,则2r ,所以展开式中的常数项为225(2)40C -=, 故选:D.【点睛】此题考查二项式定理的应用,考查计算能力,属于基础题 7. 等差数列{}n a 的前n 项和为n S ,且38713,35a a S +==,则8a =( ) A. 8 B. 9C. 10D. 11【答案】B 【解析】【详解】∵等差数列{}n a 的前n 项和为n S ,且83713,35a a S +==,1112713767352a d a d a d +++⎧⎪∴⎨⨯+⎪⎩=,= 解得18212719a d a ==∴=+⨯=,,.故选B .【点睛】本题考查等差数列的第二项的求法,是基础题,解题时要注意等差数列的通项公式的合理运用. 8. 函数y =xcos x +sin x 的图象大致为 ( ).A. B. C. D.【答案】D 【解析】由于函数y =x cos x +sin x 为奇函数,故它的图象关于原点对称,所以排除选项B , 由当2x π=时,y =1>0,当x =π时,y =π×cos π+sin π=−π<0. 由此可排除选项A 和选项C. 故正确的选项为D. 故选D.9. 在平面区域02,{02x y ≤≤≤≤内随机取一点,在所取的点恰好满足2x y +≤的概率为( )A.116 B.18C.14D.12【答案】C 【解析】试题分析:由题意可知所取的点应在图中阴影部分.从而其概率为.故本题正确答案为C .考点:古典概型.10. 下面有5个命题中,真命题的编号是( )①函数44sin cos y x x =-的最小正周期是π②终边在y 轴上的角的集合是,2k k Z παα⎧⎫=∈⎨⎬⎩⎭∣ ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有3个公共点 ④把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π得到3sin 2y x =的图象 ⑤函数sin 2y x π⎛⎫=- ⎪⎝⎭在[0,]π上是减函数 A. ①④ B. ①③④C. ③④D. ②③⑤【答案】A 【解析】 【分析】①利用二倍角公式化简,再根据余弦函数的周期公式计算可得; ②通过k 的取值,判断终边在y 轴上的角的集合;③构造函数()sin f x x x =-,利用导数可得()f x 单调性,进而得出()f x 的零点,即两函数交点的个数; ④根据三角函数的平移变换规则判断;⑤根据诱导公式,将函数化为余弦型,进而根据余弦函数的单调性,可以判断⑤的真假;进而得到答案. 【详解】解:①4422sin cos sin cos cos 2y x x x x x =-=-=-, 它的最小正周期为π,正确;②k 是偶数时,α的终边落在x 轴上,所以②错误; ③设()sin ,()1cos 0,f x x x f x x x R =-'=-≥∈恒成立, 所以()f x 在R 上单调递增,而(0)0,()f f x =存在唯一零点, 即函数sin y x =的图象和函数y x =的图象只有一个公共点, 故③错误;④把函数3sin(2)3y x π=+的图象向右平移6π,得到3sin 23sin 263y x x ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭的图象,故④正确;函数sin()cos 2y x x π=-=-在[]0,π上是增函数,故⑤错误故选:A .【点睛】本题考查的知识点是命题的真假判断及其应用,余弦型函数的周期性,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,是解答本题的关键,属于中档题.11. 设1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使 1||OP OF =(O 为坐标原点),且12PF =,则双曲线的离心率为( )11【答案】D 【解析】 【分析】由题意可知12OF OF OP ==,可得1290F PF ∠=︒,设2PF t =,则1PF =,进而利用双曲线定义可用t 表示出a ,根据勾股定理求得t 和c关系,从而可求出双曲线的离心率【详解】解:因为12OF OF OP ==,所以1290F PF ∠=︒, 设2PF t =,则1PF =, 因为122PF PFa +=,所以可得a =, 因为2221212PF PF F F +=,所以22234t t c +=,则t c =,所以12c e a===, 故选:D【点睛】此题考查了双曲线的简单性质,考查了学生对双曲线定义的理解和运用,属于基础题12. 已知函数()()3sin f x x x x R =+∈,函数()g x 满足()()()20g x g x x R +-=∈,若函数()()()1h x f x g x =--恰有2021个零点,则所有这些零点之和为( )A. 2018B. 2019C. 2020D. 2021【答案】D 【解析】 【分析】由奇偶性定义可知()f x 为奇函数且()00f =,由此可得()1f x -关于()1,0对称;由()()20g x g x +-=可知()g x 关于()1,0对称且()10g =,由此可知()h x 关于()1,0对称且()10h =,由对称性可知除1x =外,()h x 其余零点关于()1,0对称,由此可求得结果.【详解】()()3sin f x x x f x -=--=- ()f x ∴为奇函数,图象关于()0,0对称且()00f =()1f x ∴-图象关于()1,0对称()()20g x g x +-= ()g x ∴图象关于()1,0对称令1x =得:()()110g g += ()10g ∴=()h x ∴图象关于()1,0对称且()()()1010h f g =-= ()h x ∴有一个零点为1x =,其余零点关于()1,0对称 ()h x ∴所有零点之和为202012021+=故选:D【点睛】本题考查函数奇偶性和对称性的应用,关键是能够通过函数解析式和抽象函数关系式确定函数的对称中心,从而可确定零点所具有的对称关系.二、填空题(本题共4小题,每小题5分,共20分.)13. 在等比数列{}n a 中,0n a >,且11027a a ⋅=,3239log log a a += _____. 【答案】3 【解析】 【分析】由等比数列性质可知29110a a a a =,根据对数运算法则可求得结果. 【详解】()()323932931103log log log log log 273a a a a a a +=⋅=⋅== 故答案为:3【点睛】本题考查等比数列下标和性质的应用,涉及到对数运算法则的应用,属于基础题. 14. 若向量a ,b 的夹角为3π,且2a =,1b =,则向量2a b +与向量a 的夹角为________.【答案】6π 【解析】 【分析】根据题意,设向量2a b +与向量a 的夹角为θ,因为向量a ,b 的夹角为3π,且2a =,1b =,求得a b ⋅和|2|+a b ,根据(2)cos |||2|a b aa ab θ+⋅=+,即可求得夹角为θ.【详解】设向量2a b +与向量a 的夹角为θ,向量a ,b 的夹角为3π,且2a =,1b =, 则21cos13a b π⋅=⨯⨯=222|2|4412a b a a b b +=+⋅+=∴|2|23a b +=又2(2)26a b a a a b +⋅=+⋅=(2)cos 2|||2|23a b a a a b θ+⋅===+⨯0θπ≤≤∴6πθ=故答案为:6π. 【点睛】本题主要考查了求向量的夹角,解题关键是掌握向量的数量积公式,考查了分析能力和计算能力,属于基础题.15. 已知函数41,(,1)()2log ,(1,)xx f x x x ⎧⎛⎫∈-∞⎪ ⎪=⎨⎝⎭⎪∈+∞⎩,则()1f x >的解集为________. 【答案】()(),04,-∞+∞【解析】 【分析】根据分段函数解析式,分类讨论分别计算,再取并集即可;【详解】解:当1x <时,1()2xf x ⎛⎫= ⎪⎝⎭,因为()1f x >,所以1121xx ⎧⎛⎫>⎪ ⎪⎨⎝⎭⎪<⎩解得0x <,当1x >时,4()log f x x =时,因为()1f x >,所以4log 11x x >⎧⎨>⎩,解得4x >综上可得不等式的解集为()(),04,-∞+∞故答案为:()(),04,-∞+∞【点睛】本题考查分段函数的性质的应用,分段函数不等式的解法,考查分类讨论思想,属于中档题. 16. 已知四面体P ABC -四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB AC ⊥,且1AC =,2AB PB ==,则球O 的表面积为______.【答案】9π 【解析】 【分析】由PB ⊥平面ABC ,AB ⊥AC 可得四个直角三角形,可知PC 的中点O 为外接球球心,不难求解. 【详解】解:由PB ⊥平面ABC ,AB ⊥AC , 可得图中四个直角三角形,且PC 为△PBC ,△P AC 的公共斜边, 故球心O 为PC的中点,由AC =1,AB =PB =2, PC =3, ∴球O 的半径为32, 其表面积为:9π. 故答案为9π.【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径 .三、解答题:(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答) (一)必考题:共60分.17. 为了比较两种治疗失眠症的药(分别成为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h )实验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好? (2)完成茎叶图,从茎叶图来看,哪种药疗效更好?【答案】(1)服用A药睡眠时间平均增加2.3;服用B药睡眠时间平均增加1.6;从计算结果来看,服用A 药的效果更好;(2)A药B药6 0.8 9 5 6 52 5 8 2 5 1.7 9 234 6 8 1 27 8 2 3 5 6 7 9 3 4 2. 4 6 1 5 72 5 0 1 3. 2从茎叶图来看,A的数据大部分集中在第二、三段,B的数据大部分集中在第一、二段,故A药的药效好. 【解析】(1)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,=×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得>,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2,3上,而B 药疗效的试验结果有的叶集中在茎0,1上,由此可看出A 药的疗效更好. 考点:茎叶图、平均数.18. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积S abc =,22sin sin sin sin 2sin A B A B c C ++=.(Ⅰ)求角C ;(Ⅱ)求ABC ∆周长的取值范围. 【答案】(Ⅰ)23π; (Ⅱ)32324⎛+ ⎝⎦【解析】 【分析】(Ⅰ)由三角形面积公式可得2sin c C =,利用正弦定理边化角可配凑出余弦定理的形式,求得cos C ,根据C 的范围可求得结果;(Ⅱ)根据(Ⅰ)中结论可求得c ,由正弦定理得到1sin 2a A =,1sin 2b B =,将三角形周长利用三角恒等变换知识可化为13sin 234A π⎛⎫++⎪⎝⎭,根据A 的范围,结合正弦函数的图象与性质可求得13sin 23A π⎛⎫+ ⎪⎝⎭的范围,即为所求周长的范围. 【详解】(Ⅰ)由1sin 2S abc ab C ==得:2sin c C = 222sin sin sin sin sin A B A B C ∴++=,由正弦定理得:222a b ab c ++=2221cos 22a b c C ab +-∴==-()0,C π∈ 23C π∴=(Ⅱ)由(Ⅰ)知:232sin sin 3c C π===3c ∴= 又1sin sin sin 2c a b C A B === 1sin 2a A ∴=,1sin 2b B = ABC ∆∴的周长()13sin sin 2L a b c A B =++=++ 即()()()1313sin sin sin sin cos cos sin 2424L A A C A A C A C =+++=+++ 113313sin cos sin 2224234A A A π⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭23C π=,A B C π++= 0,3A π⎛⎫∴∈ ⎪⎝⎭2,333A πππ⎛⎫∴+∈ ⎪⎝⎭3sin ,13A π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦13323sin ,23A π⎛⎤+⎛⎫∴++∈ ⎥ ⎪ ⎝⎭⎝⎦ 即ABC ∆周长的取值范围为323,24⎛⎤+ ⎥⎝⎦【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理和三角形面积公式的应用、三角形周长取值范围的求解等知识;求解周长的取值范围时,通常利用正弦定理将边化为角,根据三角恒等变换的知识将问题转化为三角函数值域的求解问题;易错点是忽略角所处的范围,造成求解错误. 19. 已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD 为边长等于2的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中: (I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二【答案】(1)见解析(2)53333【解析】 【分析】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可. 【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO . 由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点, 所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,2PB =,222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC , 因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC .(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC , 所以BMO ∠是直线BM 与平面PAC 所成的角,且1 tanBOBMOOM OM ∠==,所以当OM最短时,即M是PA的中点时,BMO∠最大.由PO⊥平面ABC,OB AC⊥,所以PO OB⊥,PO OC⊥,于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,则()0,0,0O,()1,0,0C,()0,1,0B,()1,0,0A-,()0,0,1P,11,0,22M⎛⎫-⎪⎝⎭,()1,1,0BC=-,()1,0,1PC=-,31,0,22MC⎛⎫=-⎪⎝⎭.设平面MBC的法向量为()111,,m x y z=,则由m BCm MC⎧⋅=⎨⋅=⎩得:111130x yx z-=⎧⎨-=⎩.令11x=,得11y=,13z=,即()1,1,3m=.设平面PBC的法向量为()222,,n x y z=,由n BCn PC⎧⋅=⎨⋅=⎩得:2222x yx z-=⎧⎨-=⎩,令1x=,得1y=,1z=,即()1,1,1n=.533cos,33m nn mm n⋅===⋅.由图可知,二面角P BC M--的余弦值为533.【点睛】本道题考查了二面角计算以及平面与平面垂直的判定,难度较大.20. 已知抛物线2:2(0)C x py p=>上一点()M,9m到其焦点下的距离为10.(1)求抛物线C 的方程;(2)设过焦点F 的的直线l 与抛物线C 交于,A B 两点,且抛物线在,A B 两点处的切线分别交x 轴于,P Q 两点,求AP BQ ⋅的取值范围. 【答案】(Ⅰ)24x y =(Ⅱ)[)2,+∞ 【解析】 【分析】(Ⅰ)由抛物线的定义,可得到9102p+=,即可求出p ,从而得到抛物线的方程;(Ⅱ)直线l 的斜率一定存在,可设斜率为k ,直线l 为1y kx =+,设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫⎪⎝⎭,由21{4y kx x y =+=可得2440x kx --=,124x x k +=,124x x =-,然后对214y x =求导,可得到PA 的斜率及方程表达式,进而可表示出AP ,同理可得到BQ 的表达式,然后对AP BQ ⋅化简可求出范围. 【详解】解:(Ⅰ)已知(),9M m 到焦点F 的距离为10,则点M 到准线的距离为10. ∵抛物线的准线为2py =-,∴9102p+=, 解得2p =,∴抛物线的方程为24x y =.(Ⅱ)由已知可判断直线l 的斜率存在,设斜率为k ,因为()0,1F ,则l :1y kx =+.设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,由21{4y kx x y =+=消去y 得,2440x kx --=,∴124x x k +=,124x x =-.由于抛物线C 也是函数214y x =的图象,且1'2y x =,则PA :()2111142x y x x x -=-.令0y =,解得112x x =,∴11,02P x ⎛⎫⎪⎝⎭,从而AP =同理可得,BQ =∴AP BQ ⋅===∵20k ≥,∴AP BQ ⋅的取值范围为[)2,+∞.【点睛】本题考查了抛物线的方程的求法,考查了抛物线中弦长的有关计算,考查了计算能力,属于难题.21. 设函数()3()xf x e ax a R =-+∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间[1,2]上的最小值是4,求a 的值. 【答案】(1)见解析(2)1e - 【解析】 【分析】(I )求得函数的的导航'()x f x e a =-,分类讨论即可求解函数的单调区间,得到答案.(II )由(I )知,当0a ≤时,函数()f x 在R 上单调递增,此时最小值不满足题意;当0a >时,由(I )得ln x a =是函数()f x 在R 上的极小值点,分类讨论,即可求解. 【详解】(I )()'xf x e a =-.当0a ≤时,()'0f x >,()f x 在R 上单调递增;当0a >时,()'0f x >解得ln x a >,由()'0f x <解得ln x a <. 综上所述:当0a ≤时,函数()f x 在R 上单调递增; 当0a >时,函数()f x 在()ln ,a +∞上单调递增, 函数()f x 在(),ln a -∞上单调递减.(II )由(I )知,当当0a ≤时,函数()f x 在R 上单调递增, ∴函数()f x 在[]1,2上的最小值为()134f e a =-+=, 即10a e =->,矛盾.当0a >时,由(I )得ln x a =是函数()f x 在R 上的极小值点. 当ln 1a ≤即o a e <≤时,函数()f x 在[]1,2上单调递增,则函数()f x 的最小值为()134f e a =-+=,即1a e =-,符合条件. ②当ln 2a ≥即2a e ≥时,函数()f x 在[]1,2上单调递减,则函数()f x 的最小值为()22234f e a =-+=即2212e a e -=<,矛盾.③当1ln 2a <<即2e a e <<时,函数()f x 在[]1,ln a 上单调递减,函数()f x 在[]ln ,2a 上单调递增,则函数()f x 的最小值为()ln ln ln 34af a ea a =-+=即ln 10a a a --=.令()ln 1h a a a a =--(2e a e <<),则()'ln 0h a a =-<, ∴()h a 在()2,e e上单调递减, 而()1h e =-, ∴()h a 在()2,e e上没有零点,即当2e a e <<时,方程ln 10a a a --=无解. 综上,实数a 的值为1e -.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C . (1)求2C 的参数方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【答案】(1)4cos 44sin x y αα=⎧⎨=+⎩(α为参数);(2)【解析】 【分析】(1)设(,)P x y ,根据2OP OM =得M 点的坐标,代入1C 即得2C 的参数方程; (2)先求1C ,2C 的极坐标方程,再分别代入3πθ=求A B 、极径,则可求得||AB【详解】解:(1)设(,)P x y ,则由条件2OP OM =知,22x y M ⎛⎫⎪⎝⎭.因为点M 在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩.所以2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(2)222cos (2)422sin x x y y αα=⎧∴+-=⎨=+⎩ 222404sin 04sin x y y ρρθρθ∴+-=∴-=∴=曲线1C 的极坐标方程为4sin ρθ=,224cos (4)1644sin x x y y αα=⎧∴+-=⎨=+⎩ 222808sin 08sin x y y ρρθρθ∴+-=∴-=∴=曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A的极径为14sin 3πρ== 射线3πθ=与2C 的交点B的极径为28sin3πρ==.所以21||AB ρρ=-=【点睛】本题考查转移法求轨迹方程、参数方程化普通方程、普通方程化极坐标方程,考查基本分析求解能力,属中档题.23. 设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.【答案】(Ⅰ)证明见解析;(II )证明见解析. 【解析】【详解】(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:222a b c ab bc ca ++≥++,由题设得,即2222221a b c ab bc ca +++++=,所以3()1ab bc ca ++≤,即13ab bc ca ++≤. (Ⅱ)因为22a b a b+≥,22b c b c +≥,22c a c a +≥, 所以222()2()a b c a b c a b c b c a+++++≥++, 即222a b c a b c b c a++≥++, 所以2221a b c b c a++≥. 本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”.【考点定位】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键.。
2020年广西壮族自治区南宁市第二高级中学高一数学理月考试卷含解析

2020年广西壮族自治区南宁市第二高级中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 用二分法求方程求函数的零点时,初始区间可选为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:B2. 已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f (log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a参考答案:C【考点】函数单调性的性质.【分析】根据f(x)为偶函数便可求出m=0,从而f(x)=2|x|﹣1,这样便知道f(x)在[0,+∞)上单调递增,根据f(x)为偶函数,便可将自变量的值变到区间[0,+∞)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比较自变量的值,根据f(x)在[0,+∞)上的单调性即可比较出a,b,c的大小.【解答】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);∵0<log23<log25;∴c<a<b.故选:C.3. 给出下列各函数值:①;②;③;④.其中符号为负的有()A.① B.② C.③ D.④参考答案:C4. 函数(其中)的图像不可能是()A.B.C. D.参考答案:C(1)当时,,其图象为选项A所示;(2)当时,.若,则图象如选项D所示;若,则图象如选项B所示.综上,选项C不正确.选C.5. 已知函数,,,则的最小值等于A. B. C. D.参考答案:A6. 已知,则tanx等于()A. B. C. D.参考答案:D略7. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.参考答案:D考点:古典概型及其概率计算公式.专题:新定义.分析:本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a﹣b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,其中满足|a﹣b|≤1的有如下情形:①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,总共16种,∴他们“心有灵犀”的概率为.故选D.点评:本题是古典概型问题,属于高考新增内容,解本题的关键是准确的分类,得到他们“心有灵犀”的各种情形.8. 设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为()A.[1,5] B.[3,11] C.[3,7] D.[2,4]参考答案:D【考点】函数的定义域及其求法.【分析】由题意知1≤2x﹣3≤5,求出x的范围并用区间表示,是所求函数的定义域.【解答】解:∵函数f(x)的定义域为[1,5],∴1≤2x﹣3≤5,解得2≤x≤4,∴所求函数f(2x﹣3)的定义域是[2,4].故选D.9. 已知,且则的值为().A. 4B. 0C. 2mD.参考答案:A10. (5分)下列能与sin20°的值相等的是()A.cos20°B.sin(﹣20°)C.sin70°D.sin160°参考答案:D考点:诱导公式的作用.专题:计算题.分析:根据诱导公式可知cos20°=sin70°不等于sin20°,sin(﹣20°)=﹣sin20°不符合题意,sin70°≠sin20°,利用诱导公式可知sin160°=sin(180°﹣20°)=sin20°D项符合题意.解答:cos20°=sin70°,故A 错误.sin(﹣20°)=﹣sin20°,故B 错误.sin70°≠sin20°,故C 错误.sin160°=sin(180°﹣20°)=sin20°故D正确.故选D.点评:本题主要考查了诱导公式的运用.解题的过程中注意根据角的范围判断三角函数值的正负.二、填空题:本大题共7小题,每小题4分,共28分11. 定义:区间[m,n]、(m,n]、[m,n)、(m,n)(n>m)的区间长度为;若某个不等式的解集由若干个无交集的区间的并表示,则各区间的长度之和称为解集的总长度。
2020年广西南宁市高考数学一模试卷(理科)(有解析)

2020年广西南宁市高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={−1,0,1,2},B={x|x2+x−2<0}.则A∩B=()A. {−1,0}B. {0,1}C. {1,2}D. {−1,2}2.若复数z满足(1−i)z=−1+2i,则|z−|=()A. √22B. 32C. √102D. 123.在某次测量中得到A样本数据如下:43,50,45,55,60,若B样本数据恰好是A样本每个数都增加3得到,则A、B两样本的下列数字特征对应相同的是()A. 众数B. 中位数C. 方差D. 平均数4.(2x−y)(x+2y)5展开式中x3y3的系数为()A. −40B. 120C. 160D. 2005.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2=()A. −11B. −8C. 5D. 116.已知函数f(x)=a2x2+bln x图象在点(1,f(1))处的切线方程是2x−y−1=0,则ab等于()A. 2B. 1C. 0D. −27.函数f(x)=(e x−1)ln|x|e x+1的部分图像大致为()A. B.C. D.8.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,若异面直线AD与BC所成角为90∘,则EF=()A. 1B. 2C. √2D. √39.如图所示的程序框图,输出的结果是S=2017,则输入A的值为()A. 2018B. 2016C. 1009D. 100810.已知双曲线x2a2−y2b2=1(a>0,b>0),过原点的直线与双曲线交于A,B两点,以AB为直径的圆恰好过双曲线的右焦点C,若△ABC的面积为2a2,则双曲线的渐近线方程为()A. y=±√22x B. y=±√2x C. y=±√33x D. y=±√3x11.已知函数f(x)=|x|−1x2,则不等式的解集为()A. (1,0)U(1,+∞)B. (−∞,−1)U(0,1)C. (−∞,1)U(1,+∞)D. (−1,0)U(0,1)12.已知函数f(x)=√3sin2x−cos2x,有下列四个结论:①f(x)的最小正周期为π;②f(x)在区间[−π3,π6]上是增函数;③f(x)的图象关于点(π12,0)对称;④x=π3是f(x)的一条对称轴.其中正确结论的个数为()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共20.0分)13.向量a⃗=(3,1)与向量b⃗ =(−1,2)的夹角余弦值是______.14.等差数列{a n}的前n项和为S n,若a7−a2=a9−10,则S7=________.15.F1,F2为椭圆Γ:x2a2+y2b2=1(a>b>0)的左、右焦点,点M在椭圆Γ上.若△MF1F2为直角三角形,且|MF1|=2|MF2|,则椭圆Γ的离心率为______.16.如图,在四棱锥P−ABCD中,底面四边形ABCD是矩形,BC=2,△PAD是等边三角形,平面PAD⊥平面ABCD,点E,F分别在线段PA,CD上,若EF//平面PBC,且DF=2FC,则点E 到平面ABCD的距离为______.三、解答题(本大题共7小题,共82.0分)17.从一种零件中抽取了80件,尺寸数据表示如下(单位:cm):这里用x×n表示有n件尺寸为x的零件,如362.51×1表示有1件尺寸为362.51cm的零件.(1)作出样本的频率分布表和频率分布直方图;(2)在频率分布直方图中画出频率分布折线图.18.如图,在三棱柱ABC−A1B1C1中,侧面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使得DE//平面ABC1.若存在,求二面角E−AC1−B的余弦值.19.在△ABC中,a,b,c分别为A,B,C的对边,且sinA=2sinB,(1)若C=3π4,△ABC的面积为9√24,求a的值;(2)求sin(C−A)sinB −8sin2C2的值.20.已知函数f(x)=lnx−ax+1−ax−1(a∈R).(Ⅰ)当a≤12时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2−2bx+4.当a=14时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.21.已知抛物线E:y=x2的焦点为F,过点F的直线l的斜率为k,与抛物线E交于A,B两点,抛物线在点A,B处的切线分别为l1,l2,两条切线的交点为D.(1)证明:∠ADB=90°;(2)若△ABD的外接圆Γ与抛物线E有四个不同的交点,求直线l的斜率的取值范围.22.在直角坐标系xOy中,A(0,−1),B(−√3,0),以AB为直径的圆记为圆C,圆C过原点O的切线记为l,若以原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)若过点P(0,1),且与直线l垂直的直线l′与圆C交于M,N两点,求|MN|.23.设a,b为正实数,且1a +1b=4.(Ⅰ)求a3+b3的最小值;(Ⅱ)若(a−b)2≥16(ab)3,求ab的值.【答案与解析】1.答案:A解析:解:B={x|−2<x<1};∴A∩B={−1,0}.故选:A.可解出集合B,然后进行交集的运算即可.考查列举法、描述法的定义,以及交集的运算.2.答案:C解析:本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.解:由(1−i)z=−1+2i,得z=−1+2i1−i =(−1+2i)(1+i)(1−i)(1+i)=−32+12i,∴|z−|=|z|=√(−32)2+(12)2=√102.故选:C.3.答案:C解析:解:根据题意知,A样本数据一定时,B样本数据恰好是A样本每个数都增加3得到的,则A样本的众数比B样本的众数小3;A样本的中位数比B样本的中位数小3;A样本的方差等于B样本的方差;A样本的平均数比B样本的平均数小3.故选:C.根据众数、中位数、平均数和方差的定义知,A样本数据一定时,B样本数据是A样本每个数都增加3得到的,则两样本的方差不变.本题考查了众数、中位数、平均数和方差的定义与应用问题,是基础题.解析:解:(x+2y)5展开式的通项为T r+1=C5r(x)5−r(2y)r∴(x+2y)5=x5+10x4y+40x3y2+80x2y3+80xy4+32y5,∴(2x−y)(x+2y)5展开式中x3y3的系数为160−40=120,故选:B.把(x+2y)5按照二项式定理展开,可得(2x−y)(x+2y)5展开式中x3y3的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.答案:A解析:解:设公比为q,由8a2+a5=0,得8a2+a2q3=0,解得q=−2,所以S5S2=1−q51−q2=−11.故选:A.先由等比数列的通项公式求得公比q,再利用等比数列的前n项和公式求之即可.本题主要考查等比数列的通项公式与前n项和公式.6.答案:C解析:本题考查利用导数求曲线在某点处的切线方程的应用,属于基础题.对f(x)求导,由导数的几何意义即可求解.解:由题意可得f′(x)=ax+bx,所以f′(1)=a+b=2,且f(1)=a2=1,所以a=2,b=0,所以ab=0.7.答案:B解析:本题考查函数的图象的判断,函数的奇偶性,属基础题.利用函数的奇偶性排除选项,然后利用特殊点的函数值,推出结果即可.解:因为f(−x)=(e −x−1)ln|−x|e−x+1=(1−e x)ln|x|e x+1=−f(x)是奇函数,所以排除A,C,当x→+∞时,f(x)>0,所以排除D.故选B .8.答案:C解析:↵本题考查异面直线所成角,取BD中点G,连接EG,FG,EF,可得∠EGF=90°,进而得出答案.解:取BD中点G,连接EG,FG,EF,则EG//AD,EG=1,同理FG//BC,FG=1,所以∠EGF=90°,∴EF=√2.9.答案:D解析:解:模拟程序的运行,可得程序框图的功能是计算并输出S=2A+1的值,由题意,可得:2017=2A+1,解得:A=1008.故选:D.根据题意,模拟程序框图的运行过程,即可得出正的确答案.本题主要考查了程序框图的应用,属于基础题.10.答案:B解析:本题考查双曲线的渐近线方程的求法,考查双曲线的方程和应用,考查运算能力,属于中档题.设双曲线的左焦点为F,连接AF,BF,可得四边形FACB为矩形,由三角形的面积公式,可得a,c的关系,进而得到a,b的关系,可得渐近线方程.解:设双曲线的左焦点为F,连接AF,BF,由题意可得AC⊥BC,可得四边形FACB为矩形,即有|AF|=|BC|,mn=2a2,设|AC|=m,|BC|=n,可得n−m=2a,n2+m2=4c2,12即有4c2−8a2=4a2,即有c=√3a,b=√c2−a2=√2a,可得双曲线的渐近线方程为y=±√2x.故选:B.11.答案:B解析:本题考查函数的奇偶性、单调性,以及不等式的解法,题目难度一般.首先判断出f(x)为偶函数,且在区间(0,+∞)内为增函数是解题的关键.解:显然f(x)为偶函数,且在区间(0,+∞)内为增函数,f(1)=f(−1)=0,故f(x)+f(−x)x <0等价于2f(x)x<0.当x>0时,2f(x)<0,解得0<x<1;当x<0时,2f(x)>0,解得x<−1.综上,所求不等式的解集为(−∞,−1)∪(0,1).故选B.12.答案:C解析:本题以命题的真假判断与应用为载体,考查了三角函数的图象和性质,难度中档.函数f(x)=√3sin2x−cos2x=2sin(2x−π6),分析函数的周期性,单调性,对称性,可得答案.解:函数f(x)=√3sin2x−cos2x=2sin(2x−π6),①f(x)的最小正周期为π,故①正确;②由2x−π6∈[−π2+2kπ,π2+2kπ](k∈Z)得:x∈[−π6+kπ,π3+kπ](k∈Z),故f(x)在区间[−π3,π6]上不是单调函数,故②错误;③由2x−π6=2kπ得:x=π12+kπ,(k∈Z),当k=0时,f(x)的图象关于点(π12,0)对称,故③正确;④由2x−π6=π2+2kπ得:x=π3+kπ,(k∈Z),当k=0时,f(x)的图象关于x=π3对称,故④正确;故选C.13.答案:−√210解析:解:cos <a ⃗ ,b ⃗ >=√10√5=−√210. 故答案为:−√210.根据向量夹角公式计算可得.本题考查了数量积表示两个向量的夹角,属基础题.14.答案:70解析:本题主要考查等差数列的通项公式,等差数列的性质及求和公式,考查了推理能力与计算能力,属于基础题.利用等差数列的通项公式可求得a 4=10,进而利用等差数列的性质及求和公式即可求解. 解:设等差数列的公差为d ,首项为a 1, 由a 7−a 2=a 9−10,所以a 1+6d −a 1−d =a 1+8d −10, 即a 1+3d =10, 所以a 4=10, 所以S 7=7(a 1+a 7)2=7×2a 42=7a 4=70.故答案为70.15.答案:√33或√53解析:本题考查椭圆的定义,考查椭圆的几何性质,考查分类讨论的数学思想,考查学生的计算能力,属于基础题.设|MF 2|=x ,则|MF 1|=2x ,由椭圆的定义可得3x =2a ,根据△MF 1F 2为直角三角形,分类讨论,即可求出椭圆Γ的离心率. 解:设|MF 2|=x ,则|MF 1|=2x , ∴3x =2a ,∴a =3x 2,∵△MF 1F 2为直角三角形,若MF 2⊥F 1F 2,则x 2+4c 2=(2x)2, ∴c =√32x ,e =c a=√33; 若MF 1⊥MF 2,则x 2+(2x)2=4c 2, ∴c =√52x ,e =ca =√53. 故答案为:√33或√53.16.答案:2√33解析:本题考查点到平面的距离的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.连接AF 并延长AF 交线段BC 的延长线于G ,连接PG ,因为EF//平面PBC , 平面PAF ∩平面PBC =PG ,EF ⊂平面PAF ,所以EF//PG , 又DF =2FC ,由平面几何知识可得GCBC =GFFA =PEEA =12,过E 作EH ⊥AD 于H ,由平面PAD ⊥平面ABCD 可得,EH ⊥平面ABCD , 直角三角形AEH 中,,即点E 到平面ABCD 的距离为2√33. 故答案为:2√33. 17.答案:略.解析:(1)在样本数据中,最大值是364.41,最小值是362.51,所以极差为364.41−362.51=1.90. 若取组距为0.30,则由于1.900.3=613,要分7组,组数合适,于是决定取组距为0.3,分7组,把第一组起点稍微提前,得分组如下:[362.40,362.70),[362.70,363.00)…[364.20,364.50].列出频率分布表:由上表可以画出频率分布直方图:.18.答案:证明:(1)在三棱柱ABC−A1B1C1中,侧面ABB1A1是矩形,∴AA1⊥AB,又AA1⊥BC,AB∩BC=B,∴AA1⊥平面ABC,∴A1A⊥AC,又A1A=AC,∴A1C⊥AC1.又BC1⊥A1C,BC1∩AC1=C1,∴A1C⊥平面ABC1,又A1C⊂平面A1ACC1,∴平面ABC1⊥平面A1ACC1;解:(2)当E为B1B的中点时,连接AE、EC1、DE,如图,取A1A的中点F,连接EF、FD,∵EF//AB,DF//AC1,又EF∩DF=F,AB∩AC1=A,∴平面EFD//平面ABC 1,则有DE//平面ABC 1, 设点E 到平面ABC 1的距离为d ,∵AB ⊥AC ,且AA 1⊥AB ,∴AB ⊥平面A 1ACC 1,∴AB ⊥AC 1, ∴S △BAC 1=12×4√2×2=4√2,∵A 1A ⊥AC ,AB ⊥AC ,∴AC ⊥平面A 1ABB 1, ∵AC//A 1C 1,∴A 1C 1⊥平面 1ABB 1,∴V C 1−ABE =13×S △ABE ×A 1C 1=13×12×2×2×4=83,由V E−ABC 1 =V C 1−ABE =83,解得d =3×83S △ABC 1=3834√2=√2.以A 为原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,建立空间直角坐标系, A(0,0,0),B(2,0,0),C 1(0,4,4),E(2,0,2), AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,4,4),AB ⃗⃗⃗⃗⃗ =(2,0,0),AE ⃗⃗⃗⃗⃗ =(2,0,2), 设平面AC 1E 的法向量n⃗ =(x,y ,z), 则{n ⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗ =4y +4z =0n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =2x +2z =0,取x =1,得n⃗ =(1,1,−1), 设平面AC 1B 的法向量m⃗⃗⃗ =(x,y ,z), 则{m ⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗ =4y +4z =0m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x =0,取y =1,得m ⃗⃗⃗ =(0,1,−1), 设二面角的平面角为θ, 则cosθ=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3⋅√2=√63. ∴二面角E −AC 1−B 的余弦值为√63.解析:(1)推导出AA 1⊥AB ,A 1A ⊥AC ,从而A 1C ⊥平面ABC 1,由此能证明平面ABC 1⊥平面A 1ACC 1; (2)当E 为B 1B 的中点时,连接AE ,EC 1,DE ,取A 1A 的中点F ,连接EF ,FD ,设点E 到平面ABC 1的距离为d ,由V E−ABC 1 =V C 1−ABE ,求出d =√2.以A 为原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,建立空间直角坐标系,利用向量法能求出二面角E −AC 1−B 的余弦值.本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.答案:解:(1)△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,且sinA =2sinB ,则:利用正弦定理得:a=2b.∵s△=9√24,C=3π4,所以:12absinC=9√24,解得:a=3√2,b=3√22.(2)sin(C−A)sinB −8sin2C2,=(sinCcosA−cosCsinA)sinB−4(1−cosC),=2sinBsinA−4=−3.解析:(1)直接利用正弦定理和三角形的面积公式求出结果.(2)利用三角函数关系式的恒等变换求出结果.本题考查的知识要点:正弦定理的应用,三角形面积公式的应用,三角函数关系式的恒等变换.20.答案:解:(Ⅰ)f(x)=lnx−ax+1−ax−1(x>0),f′(x)=1x −a+a−1x2=−ax2+x+a−1x2(x>0),令ℎ(x)=ax2−x+1−a(x>0),(1)当a=0时,ℎ(x)=−x+1(x>0),当x∈(0,1),ℎ(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),ℎ(x)<0,f′(x)>0,函数f(x)单调递增.(2)当a≠0时,由f′(x)=0,即ax2−x+1−a=0,解得x1=1,x2=1a−1.当a=12时x1=x2,ℎ(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减;当0<a<12时,1a−1>1>0,x∈(0,1)时ℎ(x)>0,f′(x)<0,函数f(x)单调递减;x∈(1,1a−1)时,ℎ(x)<0,f′(x)>0,函数f(x)单调递增;x∈(1a−1,+∞)时,ℎ(x)>0,f′(x)<0,函数f(x)单调递减.当a<0时1a−1<0,当x∈(0,1),ℎ(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),ℎ(x)<0,f′(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增;当a =12时x 1=x 2,ℎ(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减; 当0<a <12时,函数f(x)在(0,1)单调递减,(1,1a −1)单调递增,(1a −1,+∞)单调递减.(Ⅱ)当a =14时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x 1∈(0,2),有f(x 1)≥f(1)=−12,又已知存在x 2∈[1,2],使f(x 1)≥g(x 2),所以−12≥g(x 2),x 2∈[1,2],(※), 又g(x)=(x −b)2+4−b 2,x ∈[1,2],当b <1时,g(x)min =g(1)=5−2b >0与(※)矛盾; 当b ∈[1,2]时,g(x)min =g(b)=4−b 2≥0也与(※)矛盾; 当b >2时,g(x)min =g(2)=8−4b ≤−12,b ≥178.综上,实数b 的取值范围是[178,+∞).解析:本题考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力.(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性;(Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识求出g(x)在闭区间[1,2]上的最小值,然后解不等式求参数.21.答案:(1)证明:依题意有F (0, 14),直线l :y =kx +14,设A(x 1, y 1), B(x 2, y 2),直线l 与抛物线E 相交, 联立方程{y =x 2, y =kx +14,消去y ,化简得x 2−kx −14=0,所以x 1+x 2=k, x 1x 2=−14,又因为y′=2x ,所以直线l 1的斜率k 1=2x 1, 同理,直线l 2的斜率k 2=2x 2, 所以,所以,直线l 1⊥l 2,即∠ADB =90∘.(2)解:由(1)可知,圆Γ是以AB 为直径的圆, 设P(x, y)是圆Γ上的一点,则PA ⃗⃗⃗⃗⃗ ⋅ PB ⃗⃗⃗⃗⃗ =0, 所以,圆Γ的方程为又因为x 1+x 2=k, x 1x 2=−14 , y 1+y 2=kx 1+14+kx 2+14=k 2+12,y 1y 2=x 12x 22=116,所以,圆Γ的方程可化简为联立圆Γ与抛物线E 得{x 2+y 2−kx −(k 2+12)y −316=0, y =x 2,消去y 得x 4−(k 2−12)x 2−kx −316=0, 即(x 2+14)2−(kx +12)2=0,即若方程x 2−kx −14=0与方程x 2+kx +34=0有相同的实数根x 0,则矛盾,所以,方程x 2−kx −14=0与方程x 2+kx +34=0没有相同的实数根,所以,圆Γ与抛物线E 有四个不同的交点等价于{k 2+1>0k 2−3>0,解得k >√3或k <−√3. 综上所述,k >√3或k <−√3.解析:本题考查抛物线简单几何性质,直线与抛物线的位置关系,导数的几何意义,定值问题,曲线的交点个数问题,参数的范围问题,考查计算能力,属于难题.(1)由直线l 与抛物线E 相交,联立方程消去y ,由导数的几何意义,结合韦达定理可得l 1⊥l 2,故可得答案(2)先求得圆Γ的方程联立圆Γ与抛物线E 消去y 得通过外接圆Γ与抛物线E 有四个不同的交点可得答案.22.答案:解:(1)由题意,知圆C 的直径|AB|=2,圆心C 的坐标为(−√32,−12),∴圆C 的直角坐标为(x +√32)2+(y +12)2=1,即x 2+y 2+√3x +y =0, 将x =ρcosθ,y =ρsinθ代入上式,得到圆C 的极坐标方程为ρ+√3cosθ+sinθ=0. (2)因为直线l′与圆C 过原点O 的切线l 垂直, 所以直线l′的倾斜角为π6,斜率为√33,又直线l′过点P(0,1),故直线l′的普通方程为y =√33x +1,即√3x −3y +3=0,圆心C(−√32,−12)到直线l′的距离d =2√3=√32, 所以|MN|=2√1−34=1.解析:(1)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)首先利用垂直关系确定直线的斜率,进一步确定直线的方程,再利用点到直线的距离公式求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,直线方程的求法及应用,点到直线的距离公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.答案:解:(Ⅰ)∵a 、b 为正实数,且1a +1b =4.∴a 、b 为正实数,且1a +1b =4≥2√1ab (a =b 时等号成立).即ab ≥14(a =b =12时等号成立)∵a 3+b 3≥2√(ab)3≥14(a =b =12时等号成立). ∴a 3+b 3的最小值为14,(Ⅱ)∵(a−b)2≥16(ab)3,∴(1a −1b)2≥16ab,则(1a +1b)2−4ab≥16ab⇒4ab+1ab≤4,又∵4ab+1ab ≥4,∴4ab+1ab=4∴当且仅当ab=12时“=”成立.∴ab=12.解析:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.(Ⅰ)由条件利用基本不等式求得ab≥14,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据∵(a−b)2≥16(ab)3,∴(1a −1b)2≥16ab,化简得4ab+1ab=4从而可得ab=12.。
广西壮族自治区南宁市二中2024学年高三3月教学质量监测联考数学试题试卷

广西壮族自治区南宁市二中2024学年高三3月教学质量监测联考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭2.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A .5.45B .4.55C .4.2D .5.83.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( ) A .24()27B .34()27C .44()27D .54()274.函数()2xx e f x x=的图像大致为( )A .B .C .D .5.已知双曲线2222:1(0)x y M b a a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是( )A .(1,2]B .(2,3]C .(2,5]D .(3,5]6.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( )A .1,e 2⎛⎫⎪⎝⎭B .1,2e ⎡⎫⎪⎢⎣⎭C .1,2e e ⎛⎤⎥ ⎝⎦D .1,2e e ⎛⎫⎪⎝⎭7.已知函数()xe f x ax x=-,(0,)x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(,]e -∞B .(,)e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦8.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎤⎣⎦C .2,4⎡⎤⎣⎦D .[]1,49.函数()cos2xf x x =的图象可能为( )A .B .C .D .10.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<11.已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π12.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147B .294C .882D .1764二、填空题:本题共4小题,每小题5分,共20分。
2020年广西桂林市高考数学模拟试卷(理科)(3月份)(含答案解析)

2020年广西桂林市高考数学模拟试卷(理科)(3月份)一、单项选择题(本大题共12小题,共60.0分)1.已知复数z=i(−2−i),则该复数在复平面内对应的点在第()象限A. 一B. 二C. 三D. 四2.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ>0)=0.8,则P(2<ξ<4)=()A. 0.6B. 0.4C. 0.3D. 0.23.已知集合A={x|x<2},B={x|3−2x>0},则()A. A∩B={x|x<32} B. A∩B=⌀C. A∪B={x|x<32} D. A∪B=R4.已知α∈(0,π),cos(α+π6)=35,则sinα的值为()A. 4√3±310B. 4√3−310C. 4√3+310D. 4√3−355.设α∩β=m,直线a⊂α,直线b⊂β,且b⊥m,则“α⊥β”是“a⊥b”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知函数f(x)=sin(x+π6),其中x∈[−π3,α],若f(x)的值域是[−12,1],则cosα的取值范围是()A. [12,1) B. [−1,12] C. [0,12] D. [−12,0]7.在区间[−2,2]上随机取一个数b,若使直线y=x+b与圆x2+y2=a有交点的概率为12,则a= ()A. 14B. 12C. 1D. 28.如图所示的程序框图是数学史上有名的“冰雹猜想”,它蕴含着一个规律,即任意正整数n,按照该程序运行,最终都会变为4−2−1循环,若输入i=0,试求输入n分别为5和6,则输出的i分别为()A. 4和7B. 5和8C. 5和7D. 4和89.如果log12x<log12y<0,那么()A. y<x<1B. x<y<1C. y>x>1D. x>y>110.已知抛物线C:y=4x2,则其准线方程为()A. x=−1B. y=−1C. x=−116D. y=−11611.已知数列{a n}满足a1=12,a n+1=1−1an(n∈N∗),则使a1+a2+⋯+a k<100成立的最大正整数k的值为()A. 199B. 200C. 201D. 20212.函数f(x)=−x3+3x2+9x+a,x∈[−2,2]的最小值为−2,则f(x)的最大值为()A. 25B. 23C. 21D. 20二、填空题(本大题共4小题,共20.0分)13.已知a⃗+b⃗ =(3,4),|a⃗−b⃗ |=3,则a⃗⋅b⃗ =____________.14.某高中共有2400人,其中高一、高二、高三年级的学生人数依次成等差数列.现用分层抽样的方法从中抽取48人,则高二年级被抽取的学生人数为.15.已知双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F,左、右顶点分别为A1,A2,坐标原点为O,若以线段A1A2为直径的圆与该双曲线的渐近线在第一象限的交点为P,且∠PFO=45°,则双曲线的离心率为______.16.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有种.三、解答题(本大题共7小题,共84.0分)17.在某化学反应的中间阶段,压力保持不变,温度从1℃变化到5℃,反应结果如表所示(x表示温度,y代表结果):(1)求化学反应的结果y 对温度x 的线性回归方程y ∧=b ∧x +a ∧;(2)判断变量x 与y 之间是正相关还是负相关,并预测当温度到达10℃时反应结果为多少? 附:线性回归方程中b ̂=∑x i ni=1y i −nx y ∑x i 2n i−1−nx2,a ̂=y −b ̂x .18. 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且√3sinA +cosA =0,a =√7,b =√3.(1)求sin C ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.19. 如图,在直三棱柱ABC −A 1B 1C 1中,已知AB ⊥AC ,AB =3,AC =4,AA 1=4.(1)证明:B 1C ⊥AC 1;(2)若BP =1,求二面角P −A 1C −A 的余弦值.20. 设椭圆C:x 2a 2+y 2b2=1(a >b >0),过点Q(√2,1),右焦点F(√2,0),(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l:y =k (x −1)(k >0)分别交x 轴,y 轴于C ,D 两点,且与椭圆C 交于M ,N 两点,若CN ⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗⃗ ,求k 值,并求出弦长|MN |.21. 已知函数f(x)=(x −2)e x .(1)求函数f(x)的最小值;(2)若∀x ∈(12,1),都有x −lnx +a >f(x),求证a >−4.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =cosθ,y =1+sinθ(θ为参数),曲线C 2的参数方程为{x =2cosφ,y =sinφ(φ为参数). (1)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为ρ(cosθ−2sinθ)=4.若C 1上的点P 对应的参数为θ=π2,点Q 在C 2上,点M 为PQ 的中点,求点M 到直线l 距离的最小值.23. 已知函数f(x)=x|2a −x|+2x ,a ∈R .(1)若a =0,判断函数y =f(x)的奇偶性,并加以证明; (2)若函数f(x)在R 上是增函数,求实数a 的取值范围;(3)若存在实数a ∈(1,2]使得关于x 的方程f(x)−tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.【答案与解析】1.答案:D解析:本题考查复数的代数表示法及其几何意义,是基础题.利用复数代数形式的乘法运算化简,求出z的坐标得答案.解:∵z=i(−2−i)=1−2i,∴该复数在复平面内对应的点的坐标为(1,−2),在第四象限.故选:D.2.答案:C解析:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.据随机变量X服从正态分布N(2,σ2),且P(ξ>0)=0.8,可得P(ξ≤0)= P(ξ≥4)=0.2,从而得到P(2<ξ<4).解:∵随机变量ξ服从正态分布N(2,σ2),μ=2,得对称轴是x=2.P(ξ>0)=0.8,∴P(ξ≤0)=P(ξ≥4)=0.2,∴P(0<ξ<4)=0.6∴P(2<ξ<4)=0.3.故选C.3.答案:A解析:本题考查集合的交集,并集运算,属于基础题.求出B,再利用交集,并集运算求解.解:因为B={x|3−2x>0}={x|x<32},A={x|x<2},所以A∩B={x|x<32},A∪B={x|x<2}.故选A.4.答案:B解析:本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.利用同角三角函数的基本关系求得sin(α+π6),再利用两角差的正弦公式求得sin α=sin [(π6+α)−π6]的值.解:由α∈(0,π),cos(α+π6)=35,得sin(α+π6)=45,所以sin α=sin [(π6+α)−π6]=sin (π6+α)cos π6−cos (π6+α)sin π6=45×√32−35×12=4√3−310,故选B.5.答案:A解析:解:若α⊥β,则当b⊥m时,由b⊥α,∵a⊂α,∴a⊥b成立,即充分性成立,若a⊥b,则α⊥β不一定成立,根据必要性不成立,故“α⊥β”是“a⊥b”的充分不必要条件,故选:A.根据充分条件和必要条件的定义以及面面垂直的性质进行判断即可.本题主要考查充分条件和必要条件的判断,根据面面垂直的性质定理是解决本题的关键.6.答案:B解析:本题考查正弦余弦函数图象与性质,考查特殊角的三角函数值的应用,属于基础题.根据f(x)的值域,利用正弦函数的图象和性质,即可得出α+π6的取值范围,由此求出α的取值范围,由余弦函数图象即可取得cosα的取值范围.解:∵x∈[−π3,α],函数f(x)=sin(x+π6)的值域是[−12,1],∴x+π6∈[−π6,α+π6];由正弦函数的图象和性质知:π2≤α+π6≤7π6,解得:π3≤α≤π,由余弦函数的图象可知:−1≤cosα≤12,故选B.7.答案:B解析:本题主要考查了几何概型的概率,以及直线与圆的位置关系,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的b,最后根据几何概型的概率公式可求出所求.解:圆x2+y2=a的圆心为(0,0),圆心到直线y=x+b的距离为√2,要使直线与圆x2+y2=a相交,则√2≤√a,解得−√2a≤b≤√2a,∴在区间[−2,2]上随机取一个数b,使直线l:y=x+b与圆x2+y2=a有公共点的概率为2√2a4=12,解得a=1.2故选B.8.答案:B解析:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.由已知可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:若输入i=0,n=5满足条件n为奇数,n=16,i=1不满足条件n=1,不满足条件n为奇数,n=8,i=2不满足条件n=1,不满足条件n为奇数,n=4,i=3不满足条件n=1,不满足条件n为奇数,n=2,i=4不满足条件n=1,不满足条件n为奇数,n=1,i=5满足条件n=1,退出循环,输出i的值为5.若输入i=0,n=6不满足条件n为奇数,n=3,i=1不满足条件n=1,满足条件n为奇数,n=10,i=2不满足条件n=1,不满足条件n为奇数,n=5,i=3不满足条件n=1,满足条件n为奇数,n=16,i=4不满足条件n=1,不满足条件n为奇数,n=8,i=5不满足条件n=1,不满足条件n为奇数,n=4,i=6不满足条件n=1,不满足条件n为奇数,n=2,i=7不满足条件n=1,不满足条件n为奇数,n=1,i=8满足条件n=1,退出循环,输出i的值为8.故选:B.9.答案:D解析:本题考查对数函数的性质,属于基础题.根据题意,结合对数函数的性质求解即可. 解:log 12x <log 12y <0=log 121, 因为log 12x 为减函数,则x >y >1. 故选D .10.答案:D解析:本题主要考查抛物线的定义和性质,考查学生的计算能力,比较基础, 由抛物线的准线方程的定义可求得. 解:由抛物线方程y =4x 2可化为x 2=14 y , 可知抛物线的准线方程是y =−116. 故选D .11.答案:B解析:解:∵数列{a n }满足a 1=12,a n+1=1−1a n(n ∈N ∗),∴a 2=1−1a 1=−1,a 3=1−1a 2=2,a 4=1−1a 3=12, ∴a n+3=a n .又a 1+a 2+a 3=12−1+2=32,32×66=99,99+12<100,99+12−1<100,99+12−1+2=100.5>100, ∴则使a 1+a 2+⋯+a k <100成立的最大正整数k =66×3+2=200. 故选:B .数列{a n }满足a 1=12,a n+1=1−1a n(n ∈N ∗),经过计算可得:a n+3=a n .根据a 1+a 2+a 3=12−1+2=32,进而得出.本题考查了数列递推关系、数列求和与周期性、数列的单调性,考查了推理能力与计算能力,属于中档题.12.答案:A解析:本题主要考查利用导数研究函数的最值,属于一般题.解析:解:求导函数可得f′(x)=−3x2+6x+9=−3(x+1)(x−3),令f′(x)=−3x2+6x+9=0,得x=−1或3∵x∈[−2,−1)时,f′(x)<0,函数单调减,x∈(−1,2]时,f′(x)>0,函数单调增,∴函数在x=−1时,取得最小值,在x=−2或x=2时,函数取得最大值,∵f(−1)=−5+a=−2,∴a=3,∴f(−2)=2+a=5,f(2)=22+a=25,函数的最大值为25,故选A.13.答案:4解析:本题考查向量数量积,利用向量数量积的运算法则以及向量的模的公式求解,属于基础题.求出|a⃗+b⃗ |2=a⃗2+2a⃗·b⃗ +b⃗ 2,|a⃗−b⃗ |2=a2⃗⃗⃗⃗ −2a⃗·b⃗ +b⃗ 2的值相减即可.解:a⃗+b⃗ =(3,4),|a⃗−b⃗ |=3,所以|a⃗+b⃗ |2=a⃗2+2a⃗·b⃗ +b⃗ 2=32+42=25,|a⃗−b⃗ |2=a⃗2−2a⃗·b⃗ +b⃗ 2=9,相减得4a⃗·b⃗ =16,a⃗·b⃗ =4,故答案为4.14.答案:16解析:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.根据分层抽样的定义建立比例关系即可得到结论.解:高一、高二、高三年级的人数依次成等差数列,设人数分别为a−d,a,a+d,则a−d+a+a+d=3a=2400,解得a=800,若用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为8002400×48=16,故答案为16.15.答案:√2解析:本题考查双曲线的方程和性质,考查渐近线方程和离心率公式的运用,考查方程思想和运算能力,属于中档题.求出双曲线的右焦点F和一条渐近线方程,由题意可设直线PF的方程,联立渐近线方程求得P的坐标,由|OP|=a,结合离心率公式,计算可得所求值.解:双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F(c,0),双曲线的渐近线方程为y=bax,由∠PFO =45°,可得直线PF 的方程为y =−(x −c), 联立渐近线方程,可得P(ac a+b ,bca+b ), 由|OP|=a ,可得(ac a+b )2+(bca+b )2=a 2, 由a 2+b 2=c 2,可得2a 3=b 3+a 2b , 即有(a −b)(2a 2+ab +b 2)=0, 可得a =b ,则e =c a =√1+b 2a 2=√2.故答案为√2.16.答案:12解析:本题考查排列、组合及简单计数问题,不妨设2名教师为A ,B ,利用分步计数原理即可求得不同的安排方案种数.解:设2名教师为A ,B ,第一步,先分组,与A 同组的2名学生公有C 42种,另两名学生与B 同组有C 22种方法,第二步,再安排到甲、乙两地参加社会实践活动,有A 22种方法,由分步计数原理可得,共有C 42⋅C 22⋅A 22=12种,故答案为12.17.答案:解:(1)由题意知n =5,得x =15∑x i 5i=1=3,y =15∑y i 5i=1=7.2, 又∑x i 25i=1−5x 2=55−5×9=10,∑x i 5i=1y i −5x y =129−5×3×7.2=21,∴b ̂=i ni=1i −nx y ∑x 2n −nx2=2110=2.1, â=y −b ̂x =7.2−2.1×3=0.9, 故所求的回归方程为ŷ=2.1x +0.9; (2)由于变量y 的值随温度x 的值增加而增加(b̂=2.1>0),故x 与y 之间是正相关.当x =10时,ŷ=2.1×10+0.9=21.9, 即预测当温度达到10°时反应结果为21.9.解析:本题考查了线性回归方程的应用问题,是中档题. (1)由题意计算平均数与回归系数,写出回归方程.(2)由回归系数(b̂=2.1>0)判断x 与y 之间是正相关,利用回归方程计算出x =10时y ∧的值. 18.答案:解:(1)∵√3sinA +cosA =0,a =√7,b =√3. ∴2sin(A +π6)=0,∵A ∈(0,π), 所以A +π6∈(π6,7π6),∴A +π6=π,可得A =5π6,∴由余弦定理a 2=b 2+c 2−2bccosA ,可得7=3+c 2−2×√3×c ×(−√32),可得c 2+3c −4=0,∴解得c =1(负值已舍去), ∴由正弦定理asinA =csinC , 可得sinC =c⋅sinA a =1×12√7=√714,(2)∵sinC =√714,A =5π6,所以cosC =√1−sin 2C =3√2114,tanC =sinCcosC =√39,∴AD AC =√3=√39∴AD =13,∴S △ABD =12AB ⋅AD ⋅sin∠BAD =12×1×13×√32=√312.解析:本题主要考查了余弦定理,正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和数形结合思想,属于中档题.(1)由已知可得2sin(A +π6)=0,结合A 的范围可求A 的值,由余弦定理可得c 2+3c −4=0,解得c 的值,由正弦定理可得sin C 的值,即可得解.(2)利用同角三角函数基本关系式可求tan C 的值,进而可求AD 的值,利用三角形的面积公式即可即可计算得解.19.答案:(1)证明:因为四边形AA 1C 1C 是矩形,AA 1=AC ,所以AC 1⊥A 1C又因为AB ⊥AC ,AB ⊥AA 1,所以AB ⊥平面AA 1C 1C 因为A 1B 1//AB ,所以A 1B 1⊥平面AA 1C 1C ,A 1B 1⊥AC 1, 又A 1B 1∩A 1C =A 1,所以AC 1⊥平面A 1B 1C ,从而AC 1⊥B 1C .(2)解:分别以AB ,AC ,AA 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系A −xyz因为BP =1,所以P(3,0,1),又C(0,4,0),A 1(0,0,4), 故A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,4,−4),A 1P ⃗⃗⃗⃗⃗⃗⃗ =(3,0,−3),设n ⃗ =(x,y,z)为平面PA 1C 的法向量,则{n ⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅A 1P ⃗⃗⃗⃗⃗⃗⃗ =0即{4y −4z =03x −3z =0,取z =1,解得y =1,x =1, ∴n ⃗ =(1,1,1)为平面PA 1C 的一个法向量 显然,AB ⃗⃗⃗⃗⃗ =(3,0,0)为平面A 1CA 的一个法向量 则cos <n ⃗ ,AB ⃗⃗⃗⃗⃗ >=n⃗⃗ ⋅AB ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ ||AB|=3√1+1+1=√33. 据图可知,二面角P −A 1C −A 为锐角,故二面角P −A 1C −A 的余弦值为√33.解析:(1)证明AC 1⊥A 1C ,A 1B 1⊥AC 1,推出AC 1⊥平面A 1B 1C ,然后证明AC 1⊥B 1C .(2)分别以AB ,AC ,AA 1所在直线为x ,y ,z 轴,求出平面PA 1C 的法向量,平面PA 1C 的一个法向量,利用空间向量的数量积求解二面角P −A 1C −A 的余弦值即可.本题考查直线与平面垂直的判断定理以及性质定理的应用,二面角的平面角的求法,考查计算能力.20.答案:解:(Ⅰ)椭圆过点Q(√2,1),可得2a 2+1b 2=1,由题意可得c =√2,即a 2−b 2=2, 解得a =2,b =√2, 即有椭圆C 的方程为x 24+y 22=1;(Ⅱ)直线l :y =k(x −1)与x 轴交点C(1,0),y 轴交点D(0,−k), 联立{x 2+2y 2=4y =k(x −1),消y 得,(1+2k 2)x 2−4k 2x +2k 2−4=0,①设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=4k 21+2k 2,CN →=(x 2−1,y 2),MD →=(−x 1,−k −y 1), 由CN →=MD →,得:x 1+x 2=4k 21+2k 2=1, 解得k =±√22.由k >0得k =√22代入①,得2x 2−2x −3=0, x 1+x 2=1,x 1x 2=−32,可得|MN|=√1+k 2√(x 1+x 2)2−4x 1x 2=√32×√7=√422.解析:本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和向量相等的条件,同时考查弦长公式的运用,以及运算能力,属于中档题. (Ⅰ)将Q 的坐标代入椭圆方程,以及a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程; (Ⅱ)求出直线l 与x ,y 轴的交点,代入椭圆方程,运用韦达定理,以及向量共线的坐标表示,可得k 的值,运用弦长公式可得弦长|MN|.21.答案:(1)解:∵f(x)=(x −2)e x ,∴f′(x)=(x −1)e x ,∴当x ∈(−∞,1)时,f′(x)<0,函数f(x)单调递减, ∴当x ∈(1,+∞)时,f′(x)>0,函数f(x)单调递增, ∴f(x)min =f(1)=−e ,(2)证明:∵∀x ∈(12,1),都有x −lnx +a >f(x), ∴a >(x −2)e x −x +lnx ,设g(x)=(x −2)e x −x +lnx ,x ∈(12,1), ∴g′(x)=(x −1)e x −1+1x =(x −1)e x −x−1x=(x −1)(e x −1x )=(x −1)⋅xe x −1x,令ℎ(x)=xe x −1,x ∈(12,1), ∴ℎ′(x)=(x +1)e x >0, ∴ℎ(x)在(12,1)上单调递增,∵ℎ(1)=e −1>0,ℎ(12)=√e2−1<0,∴存在唯一x 0∈(12,1)使得ℎ(x 0)=x 0e x 0−1=0, ∴当x ∈(12,x 0)时,g′(x)>0,函数g(x)单调递增, 当x ∈(x 0,1)时,g′(x)<0,函数g(x)单调递减,∴g(x)max =g(x 0)=(x 0−2)e x 0−x 0+lnx 0=(x 0−2)1x 0−x 0+lnx 0=1−2x 0--x 0+lnx 0,令φ(x)=1−2x --x +lnx ,x ∈(12,1), ∴φ′(x)=2x −1+1x =−x 2+x+2x =−(x−2)(x+1)x >0,∴φ(x)在(12,1)上单调递增,∴φ(x)<φ(1)=1−2−1+ln1=−2,∴g(x)<−2, ∴a >−2, ∴a >−4.解析:(1)先求导,根据导数和函数的单调性和最值的关系即可求出,(2)分离参数,可得a >(x −2)e x −x +lnx ,构造函数g(x)=(x −2)e x −x +lnx ,x ∈(12,1),利用导数可以得到存在唯一x 0∈(12,1)使得ℎ(x 0)=x 0e x 0−1=0,且g(x)max =g(x 0)=1−2x 0--x 0+lnx 0,再构造函数,利用导数求出函数最大值即可.本题考查了导数和函数的最值的关系以及不等式的证明,关键是构造函数,考查了运算能力和转化能力,属于难题.22.答案:解:(1)∵曲线C 1的参数方程为{x =cosθy =1+sinθ(θ为参数),∴曲线C 1消去参数θ,得到C 1的普通方程为x 2+(y −1)2=1, 它表示以(0,1)为圆心,1为半径的圆, ∵曲线C 2的参数方程为{x =2cosϕy =sinϕ(φ为参数),∴曲线C 2消去参数φ,能求出C 2的普通方程为x 24+y 2=1,它表示中心在原点,焦点在x 轴上的椭圆.(2)由已知得P(0,2),设Q(2cosθ,sinθ),则M(cosθ,1+12sinθ), 直线l :x −2y −4=0,点M 到直线l 的距离为d =√5=|√2sin(θ+π4)−6|√5,所以6√5−√105≤d ≤√10+6√56, 故M 到直线l 的距离的最小值为6√5−√105.解析:(1)曲线C 1的参数方程消去参数θ,能求出C 1的普通方程及其表示的曲线;曲线C 2的参数方程消去参数φ,能求出C 2的普通方程及其表求的曲线.(2)P(0,2),设Q(2cosθ,sinθ),则M(cosθ,1+12sinθ),直线l :x −2y −4=0,点M 到直线l 的距离为d =√5=|√2sin(θ+π4)−6|√5,由此能求出M 到直线l 的距离的最小值.本题考查曲线的普通方程的求法及其表示图形的判断,考查点到直线距离的最小值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.23.答案:解:(1)函数y =f(x)为奇函数.当a =0时,f(x)=x|x|+2x , ∴f(−x)=−x|x|−2x =−f(x), ∴函数y =f(x)为奇函数;(2)f(x)={x 2+(2−2a)x,x ≥2a−x 2+(2+2a)x,x <2a ,当x ≥2a 时,f(x)的对称轴为:x =a −1; 当x <2a 时,y =f(x)的对称轴为:x =a +1; ∴当a −1≤2a ≤a +1时,f(x)在R 上是增函数, 即−1≤a ≤1时,函数f(x)在R 上是增函数;(3)方程f(x)−tf(2a)=0的解即为方程f(x)=tf(2a)的解.由a ∈(1,2]知2a >a +1>a −1,∴y =f(x)在(−∞,a +1)上单调增,在(a +1,2a)上单调减, 在(2a,+∞)上单调增,∴当f(2a)<tf(2a)<f(a +1)时,关于x 的方程f(x)=tf(2a)有三个不相等的实数根; 即4a <t ⋅4a <(a +1)2, ∵a >1,∴1<t <14(a +1a +2), 设ℎ(a)=14(a +1a +2),∵存在a ∈(1,2]使得关于x 的方程f(x)=tf(2a)有三个不相等的实数根, ∴1<t <ℎ(a)max ,又可证ℎ(a)=14(a +1a +2)在(1,2]上单调增 ∴ℎ(a)max =98,∴1<t <98.解析:(1)若a =0,根据函数奇偶性的定义即可判断函数y =f(x)的奇偶性; (2)根据函数单调性的定义和性质,利用二次函数的性质即可求实数a 的取值范围; (3)根据方程有三个不同的实数根,建立条件关系即可得到结论.本题主要考查函数奇偶性的判断,以及函数单调性的应用,综合考查分段函数的应用,综合性较强,运算量较大.。
2020年广西南宁市高考数学二模试卷(理科)(含答案解析)

2020年广西南宁市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合,0,1,2,,则A. 1,B. 1,2,C. 0,1,D. 0,1,2,2.设复数z满足,则A. B. C. D.3.的展开式中含的系数为A. B. 80 C. 10 D.4.某学校为了解高三年级学生在线学习情况,统计了2020年2月18日日共10天他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是A. 前5天在线学习人数的方差大于后5天在线学习人数的方差B. 前5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差C. 这10天学生在线学习人数的增长比例在逐日增大D. 这10天学生在线学习人数在逐日增加5.已知各项不为0的等差数列的前n项和为,若,则A. 4B. 162C. 9D. 126.若函数,且的值域为,则函数的图象是A. B.C. D.7.椭圆C:的左、右焦点为,,过的直线l交C于A,B两点,且的周长为8,则a为A. B. 2 C. D. 48.某同学在课外阅读中国古代数学名著孙子算经时,为解决“物不知数”问题,设计了如图所示的程序框图.执行此程序框图,则输出的a的值为A. 13B. 18C. 23D. 289.如图,在正方体中,M,N分别为AC,的中点,则下列说法错误的是A. 平面B.C. 直线MN与平面ABCD所成角为D. 异面直线MN与所成角为10.已知双曲线E:的右焦点为F,以为原点为直径的圆与双曲线E 的两条渐近线分别交于点M,N异于点若,则双曲线E的离心率为A. 4B. 2C.D.11.已知函数的图象经过点,一条对称轴方程为则函数的周期可以是A. B. C. D.12.已知函数,则当时,函数的零点个数为A. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共20.0分)13.已知向量,向量,则与的夹角大小为______.14.某部门从已参与报名的甲、乙、丙、丁四人中选派1人去参加志愿者服务,结果出来前,甲、乙、丙、丁四人对选派人选做了如下预测:甲说:丙或丁被选上;乙说:甲和丁均未被选上;丙说:丁被选上;丁说:丙被选上.若这四人中有且只有2人说的话正确,则被选派参加志愿者服务的是______.15.已知数列中,,且对于任意正整数m,n都有,则数列的通项公式是______.16.如图,正方形ABCD中,E,F分别是BC,CD的中点,沿AE,EF,AF把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为若四面体外接球的表面积为,则正方形ABCD的边长为______.三、解答题(本大题共7小题,共82.0分)17.如图,在平面四边形ABCD中,,的平分线与BC交于点E,且.求及AC;若,求四边形ABCD周长的最大值.18.红铃虫是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数个和温度的8组观测数据,制成图1所示的散点图.现用两种模型,分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.2564616842268870308表中;;;;根据残差图,比较模型、的拟合效果,应选择哪个模型?并说明理由;根据中所选择的模型,求出y关于x的回归方程系数精确到,并求温度为时,产卵数y的预报值.参考数据:,,,附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.19.如图,在四棱锥中,四边形ABCD是等腰梯形,,,,三角形SAB是等边三角形,平面平面ABCD,E,F分别为AB,AD 的中点.求证:平面平面SEF;若,求直线SF与平面SCD所成角的正弦值.20.已知函数,其中e是自然对数的底数.若,证明:;若时,都有,求实数a的取值范围.21.已知抛物线C:,过点且互相垂直的两条动直线,与抛物线C分别交于P,Q和M,N.求四边形MPNQ面积的取值范围;记线段PQ和MN的中点分别为E,F,求证:直线EF恒过定点.22.在直角坐标系xOy中,已知曲线:为参数,曲线:为参数,且,点P为曲线与的公共点.求动点P的轨迹方程;在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.23.已知a,b,c都为正实数,且证明:;.-------- 答案与解析 --------1.答案:A解析:解:由集合1,,所以1,.故选:A.求出集合A,由此能求出.本小题主要考查一元一次不等式的自然数解和集合的交集运算等基础知识,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:B解析:解:,.故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:A解析:解:展开式的通项公式为,令,得展开式中的系数为.故选:A.根据二项式展开式的通项公式,令x的指数为3,求出展开式中的系数.本题考查了二项式展开式通项公式的应用问题,是基础题.4.答案:D解析:解:对于A,由柱状图可得前5天学习人数的变化幅度明显比后5天的小,故方差也小,故A 错误对于B:前5天的增长比例极差约为,后5天增长比例极差约为,故B错误;对于C:由折线图很明显,的增长比例在下降,故C错误;对于D:由柱状图,可得学习人数在逐日增加,故D正确,故选:D.根据图象逐一进行分析即可本小题考查统计图表等基础知识,考查统计思想以及学生数据处理等能力和应用意识.5.答案:C解析:解:由题.故选:C.利用等差数列通项公式和前n项和公式即可得出.本小题主要考查等差数列通项公式和前n项和公式等基础知识,考查运算求解等数学能力,属于基础题.6.答案:A解析:解:,若函数,且的值域为,,当时,数,为减函数,当时,数,为增函数,且函数是偶函数,关于y轴对称,故选:A根据指数函数的图象和性质求出,利用对数函数的图象和性质进行判断即可.本题主要考查函数图象的识别和判断,根据指数函数的图象和性质求出a的取值范围是解决本题的关键.7.答案:B解析:【分析】本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用,考查运算能力,属于基础题.由椭圆的定义可得,,即可得出答案.【解答】解:椭圆C:,椭圆的焦点在x轴上,则由椭圆的定义可得,的周长,解得,故选B.8.答案:C解析:解:模拟程序的运行,可得,得,不满足,,得,不满足,,得,不满足,,得,此时,满足,退出循环,输出a的值为23.故选:C.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本小题主要考查程序框图的应用等基础知识,考查阅读理解能力、运算求解能力、数据处理能力以及应用意识,属于基础题.9.答案:D解析:【分析】连结BD,,可得,得到平面,判定A正确;证明平面,得,结合,得,判断B正确;求出直线MN与平面ABCD所成角判断C正确;求出异面直线MN与所成角判断D错误.本题主要考查直线与平面平行、垂直的判定与性质、直线与平面所成角、异面直线所成角等基础知识;考查空间想象能力、论证推理能力,是中档题.【解答】解:如图,连结BD,,由M,N分别为AC,的中点,知,而平面,平面,平面,故A正确;在正方体中,平面,则,,,故B正确;直线MN与平面ABCD所成角等于与平面ABCD所成角等于,故C正确;而为异面直线MN与所成角,应为,故D错误.故选:D.10.答案:D解析:解:因为OF为直径,点M在圆上,所以又,由圆的对称性,有,所以.由渐近线斜率,所以离心率为.故选:D.画出图形,结合圆的对称性,求出然后求解双曲线的离心率即可.本小题主要考查双曲线及其性质等基础知识;考查运算求解、推理论证能力;考查数形结合等数学思想.11.答案:B解析:解:由,则,,当时,.故选:B.直接根据对称中心和对称轴之间的距离即可求解结论.本小题主要考查三角函数的图象和性质、正弦型函数图象和性质等基本知识;考查推理论证等数学能力,化归与转化等数学思想.12.答案:B解析:解:在平面直角坐标系中作出函数的图象如图所示.令,得,则或.当时,显然存在2个零点,;当时,存在1个零点故函数的零点个数为3.故选:B.先作出函数的图象,然后结合图象即可求解函数的零点个数.本小题主要考查分段函数的图象,函数的零点等基础知识;考查逻辑推理能力,分类讨论思想,数形结合思想,方程思想,13.答案:解析:解:,且,与的夹角为.故答案为:.根据向量的坐标即可得出,和的值,从而可得出,从而可得出夹角的大小.本小题主要考查平面向量的数量积,两个向量的夹角等基础知识,考查运算求解能力,属于基础题.14.答案:丁解析:解:若甲被选上,甲、乙、丙、丁错误,不满足条件;若乙被选上,甲、丙、丁错误,乙正确,不满足条件;若丙被选上,甲、乙、丁正确,丙错误,不满足条件;若丁被选上,甲、丙正确,乙、丁错误,满足条件,所以被选派参加志愿者服务的是丁,故答案为:丁.逐个假设甲,乙,丙,丁被选上,检验是否符合题意即可.本题主要考查了逻辑推理等基础知识,考查学生逻辑推理能力等能力,是基础题.15.答案:解析:解:数列中,,且对于任意正整数m,n都有,令,得,则是首项和公比均为2的等比数列,则.故答案为:.利用数列的递推关系式,通过,推出数列是等比数列,然后求解通项公式即可.本小题主要考查数列以及前n项和等基本知识,考查化归与转化等数学思想以及推理论证、运算求解等数学能力.16.答案:2解析:解:依题意,折叠后的四面体如图1,设正方形边长为a,内切球半径为r,则,;记四面体内切球球心为O,如图2,则,即,即,所以;又,即,所以.故答案为:2.画出折叠后的四面体图形,利用等积法求出四面体内切球半径,再求内接球的表面积.本题主要考查了直线与平面垂直的判定、球体表面积公式、几何体切割等基础知识,也考查了空间想象能力与运算求解能力.17.答案:解:在中,由正弦定理得:.又,则,于是,所以,.所以.在中,根据余弦定理得,所以.令,,在中,根据余弦定理得,即有,即,所以,当且仅当时,“”成立.所以,四边形ABCD周长的最大值为.解析:在中,由正弦定理可求的值,又,可求,利用三角形的内角和定理可求的值,进而可求的值,可得,在中,根据余弦定理即可解得AC的值.令,,在中,根据余弦定理,基本不等式可求,即可求解四边形ABCD周长的最大值.本小题主要考查正弦定理、余弦定理等基本知识,考查化归与转化等数学思想以及推理论证、运算求解等数学能力,属于中档题.18.答案:解:应该选择模型.由于模型残差点比较均匀地落在水平的带状区域中,且带状区域的宽度比模型带状宽度窄,所以模型的拟合精度更高,回归方程的预报精度相应就会越高,故选模型比较合适.令,z与温度x可以用线性回归方程来拟合,则,,,则z关于x的线性回归方程为.于是有,产卵数y关于温度x的回归方程为.当时,个.在气温在时,一个红铃虫的产卵数的预报值为250个.解析:由模型残差点比较均匀地落在水平的带状区域中,且带状区域的宽度比模型带状宽度窄,说明模型的拟合精度更高,回归方程的预报精度相应就会越高;令,z与温度x可以用线性回归方程来拟合,则,由已知数据求得与的值,可得产卵数y关于温度x的回归方程,取求得y值得结论.本题主要考查回归方程、统计案例等基本知识,考查统计基本思想以及抽象概括、数据处理等能力和应用意识,是中档题.19.答案:证明:平面平面ABCD,平面平面,平面SAB,,平面ABCD.又平面ABCD,.连接BD,,F分别为AB,AD的中点,.,.又,,,得.又,.又,平面SEF.又平面SCD,平面平面SEF;解:过E作,则ES,EF,EN两两垂直,故可如图建立空间直角坐标系.在中,求得,,.则0,,,,,.故,,.设平面SCD的法向量为,由,可取.则.故SF与平面SCD所成角的正弦值为.解析:由已知结合平面与平面垂直的性质可得平面ABCD,进一步得到连接BD,得再证明,结合,得再由直线与平面垂直的判定可得平面进一步得到平面平面SEF;过E作,则ES,EF,EN两两垂直,以E为坐标原点建立空间直角坐标系.求出平面SCD的法向量与的坐标,由两向量所成角的余弦值可得直线SF与平面SCD所成角的正弦值.本题主要考查平面与平面垂直的判定、平面与平面垂直的性质、直线与平面所成角、空间向量处理立体几何问题等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识,考查化归与转化等数学思想,是中档题.20.答案:解:若,则,所以,当时,;当时,,单调递减;当时,,单调递增;所以在时取得极小值,也是最小值.所以.令,则原问题转化为在上恒成立.由,令,则在上恒成立,所以在上单调递增,又,当时,,所以在上单调递增,所以,即,满足题意.当时,因为在上单调递增,所以,所以存在,使得当时,,在上单调递减,此时,这与在上恒成立矛盾.综上所述,,故实数a的取值范围是.解析:若,则,所以,再利用导函数的正负性与函数的单调性之间的联系即可得的单调性,从而确定,而,进而得证;构造函数,则原问题转化为在上恒成立,然后求导,令,再求导,从而可确定在上单调递增,由于,于是分和两种情形,讨论函数的单调性,以便求证与0的关系.本题主要考查利用导数研究函数的单调性和最值,不等式的恒成立问题等,考查学生分类讨论和转化与化归的思想,以及运算求解能力,属于中档题.21.答案:解:由题意可知两直线,的斜率一定存在,且不等于0.设:,,,则:.因为联立直线与抛物线的方程,有,其中,由韦达定理,有.由上可得,同理,则四边形MPNQ面积.令则.所以,当且仅当,即时,S取得最小值12,且当时,.故四边形MPNQ面积的范围是.由有,,所以PQ中点E的坐标为,同理点F的坐标为.于是,直线EF的斜率为,则直线EF的方程为:,所以直线EF恒过定点.解析:两直线,的斜率一定存在,且不等于设:,,,则:联立直线与抛物线方程,利用韦达定理,弦长公式转化求解四边形MPNQ面积的表达式,利用换元法结合二次函数的求解最小值即可.由求出PQ中点E的坐标为,同理点F的坐标为求出直线EF的斜率,得到直线EF的方程,即可求解直线EF恒过的定点.本小题主要考查抛物线及其性质、直线与抛物线的位置关系等基础知识;考查运算求解、推理论证能力和创新意识;考查化归与转化、数形结合等数学思想.22.答案:解:设点P的坐标为.因为点P为曲线与的公共点,所以点P同时满足曲线与的方程.曲线消去参数可得,曲线消去参数可得.由,所以.所以点P的轨迹方程为.由已知,直线l的极坐标方程,根据,可化为直角坐标方程:.因为P的轨迹为圆去掉两点,圆心O到直线l的距离为,所以点P到直线l的距离的取值范围为.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换,进一步利用三角函数关系式的变换和余弦型函数性质的应用求出结果.利用点到直线的距离公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:证明:当且仅当取“”.所以;由a,b,c都为正实数,且,可得当且仅当取“”.则.解析:由三个数的完全平方公式,结合均值不等式和不等式的性质,即可得证;将代入原不等式的左边,化简整理,再由基本不等式和不等式的性质,即可得证.本题主要考查基本不等式、不等式的证明方法、含绝对值的不等式等基本知识,考查化归与转化等数学思想和推理论证等数学能力,是一道中档题.。
2020届广西南宁市高三一模摸底数学(理科)试题(带答案解析)

三、解答题
17.为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间 之外,则认为该零件属“不合格”的零件,其中 ,s分别为样本平均数和样本标准差,计算可得 (同一组中的数据用该组区间的中点值作代表).
(1)求样本平均数的大小;
7.A
【解析】
【分析】
先由函数解析式可得函数 为奇函数,再结合奇函数图像的性质逐一检验即可得解.
【详解】
解:由已知可得函数 的定义域为 ,且 ,则函数 为奇函数,则函数 的图象应该关于原点对称,排除C和D,当 时, ,排除B,故A正确.
故选:A.
【点睛】
本题考查了函数的奇偶性,重点考查了奇函数的性质,属基础题.
故选:A
【点睛】
本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.
6.B
【解析】
【分析】
根据 求出 再根据 也在直线 上,求出b的值,即得解.
【详解】
因为 ,所以
所以 ,
又 也在直线 上,
所以 ,
解得
所以 .
故选:B
【点睛】
本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.
(2)若一个零件的尺寸是100cm,试判断该零件是否属于“不合格”的零件.
18.如图,在三棱柱 中, 平面ABC.
(1)证明:平面 平面
(2)求二面角 的余弦值.
19. 分别为 的内角 的对边.已知 .Fra bibliotek(1)若 ,求 ;
(2)已知 ,当 的面积取得最大值时,求 的周长.
20.已知函数 .
(1)讨论 的单调性;
广西南宁市第二中学2020届高三3月模拟考试数学(理)试题

南宁二中2020届高三模拟测试题数学(理)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数集R ,集合A={x|1<x<3},集合{|B x y ==则()(R AC B ⋂=) A.{x|1<x≤2} B.{x|1<x<2}.{|23}C x x <<D.{x1 <x<3}2.复数202020211(),1i z ii+=+-(i 是虚数单位)的共轭复数表示的点在() A.第一象限B.第二象限C.第三象限D.第四象限3.给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若a>b,则22a b >”的否命题为“若a≤b,则22a b ≤”; ③“∃x ∈R ,211x +≥的否定是“2,11x R x ∀∈+<”; ④在△ABC 中,“A>B”是“sin sin A B >”的充要条件. 其中正确的命题的个数是() A.1B.2C.3D.44.如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,1AP D P +的最小值为()A.2B.2C.D5.已知函数4()lg(3)3xxf x m =++的值域是全体实数R ,则实数m 的取值范围是() A.(-4,+∞)B. [- 4,+∞)C. (-∞,-4)D. (-∞,-4]6. 函数f(x)= sin(ωx+φ),其中x ,0,||2R πωϕ∈><的部分图象如图所示,如果122,(,)63x x ππ∈且12()(),f x f x =则12()f x x +=().2A -1.2B -1.2C2D7.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为p(0<p<1),发球次数为X ,若X 的数学期望E(X)> 1.75 ,则P 的取值范围1.(,1)2A1.(0,)2B7.(0,)12C7.(,1)12D8. 已知O 是三角形ABC所在平面内一定点,动点P满足||||(),sin sin AB AB AC AC OP OA C Bλλ⋅⋅=++u u u r u u u ru u u r u u u r ∈R.则P 点的轨迹一定通过三角形ABC 的( )A.内心B.外心C.重心D.垂心9.执行如图的程序框图,则输出的S 值为( ) A.13.2B1.2C -D.010.如右上图,某建筑工地搭建的脚手架局部类似于一个3×2×3 的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处, 则其最近的行走路线中不连续向上攀登的概率为()5.28A5.14B2.9C1.2D11.已知函数f(x)满足: f(x)=-f(-x), 且当x ∈(-∞,0]时,()()0f x xf x '+<成立,若0.60.622112(2),ln 2(ln 2),(log )(log ),88a fb fc f =⋅=⋅=⋅则a, b, c 的大小关系是( ) A.a> b> cB.c>a>bC.b>a>cD. c>b>a12.已知双曲线22221(0,0)x y a b a b-=>>的左右顶点分别为12,,A A M 是双曲线上异于12,A A 的任意一点,直线1MA 和2MA 分别与y 轴交于P,Q 两点, O 为坐标原点,若|OP|, |OM|,|OQ|依次成等比数列,则双曲线的离心率的取值范围是())A +∞.)B +∞.C.D二、填空题:本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广西南宁二中高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,共60.0分)1.已知实数集R,集合,集合,则A. B. C. D.2.复数,是虚数单位的共轭复数表示的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.给出如下四个命题:若“p且q”为假命题,则p、q均为假命题;命题“若,则”的否命题为“若,则”;“,”的否定是“,”;在中,“”是“”的充要条件.其中正确的命题的个数是A. 1B. 2C. 3D. 44.如图所示,在棱长为1的正方体中,P是上一动点,则的最小值为A. 2B.C.D.5.已知函数的值域是全体实数R,则实数m的取值范围是A. B. C. D.6.函数的部分图象如图所示,如果,且,则A. B. C. D.7.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为,发球次数为X,若X的数学期望,则p的取值范围为A. B. C. D.8.已知O是三角形ABC所在平面内一定点,动点P满足A. 内心B. 外心C. 重心D. 垂心9.执行如图的程序框图,则输出的S值为A. 1B.C.D. 010.如图,某建筑工地搭建的脚手架局部类似于一个的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为A.B.C.D.11.已知函数满足,且当时,成立,若,,,则a,b,c的大小关系是A. B. C. D.12.已知双曲线的左右顶点分别为、,M是双曲线上异于、的任意一点,直线和分别与y轴交于P,Q两点,O为坐标原点,若,,依次成等比数列,则双曲线的离心率的取值范围是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知随机变量服从正态分布,则______15.若,则在的展开式中,含x项的系数为______.16.数列满足,,若不等式对任何正整数n恒成立,则实数的最小值为______.三、解答题(本大题共7小题,共84.0分)17.近年来,南宁大力实施“二产补短板、三产强优势、一产显特色”策略,着力发展实体经济,工业取得突飞猛进的发展.逐步形成了以电子信息、机械装备、食品制糖、铝深加工等为主的4大支柱产业.广西洋浦南华糖业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据2,,,如表所示:试销单价456789元产品销量q8483807568件已知,,.Ⅰ求出q的值;Ⅱ已知变量x,y具有线性相关关系,求产品销量件关于试销单价元的线性回归方程;Ⅲ用表示用Ⅱ中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”现从6个销售数据中任取3个,求“好数据”个数的数学期望.参考公式:线性回归方程中,的最小二乘估计分别为:,18.如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路不考虑宽度,,.Ⅱ求道路AB,AE长度之和的最大值.19.如图,已知长方形ABCD中,,,M为DC的中点.将沿AM折起,使得平面平面ABCM.Ⅰ求证;Ⅱ点E是线段DB上的一动点,当二面角大小为时,试确定点E 的位置.20.已知A,B是x轴正半轴上两点在B的左侧,且,过A,B作x轴的垂线,与抛物线在第一象限分别交于D,C两点.Ⅰ若,点A与抛物线的焦点重合,求直线CD的斜率;Ⅱ若O为坐标原点,记的面积为,梯形ABCD的面积为,求的取值范围.21.已知函数其中a是实数.求的单调区间;若设,且有两个极值点,,求取值范围.其中e为自然对数的底数.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线l的参数方程为为参数.求曲线的直角坐标方程及直线l的普通方程;若曲线的参数方程为为参数,曲线上点P的极角为,Q为曲线上的动点,求PQ的中点M到直线l距离的最大值.23.已知函数,.当时,求不等式的解集;若不等式的解集包含,求a的取值范围.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查交、补集的混合运算,以及函数的定义域,属于基础题.由函数的定义域求出集合B,由补集的运算求出,由交集的运算求出.【解答】解:由得,则集合,所以,又集合,则.故选A.2.答案:D解析:解:,..z的共轭复数表示的点在第四象限,故选:D.利用复数的运算法则、共轭复数的定义、周期性即可得出.本题考查了复数的运算法则、共轭复数的定义、周期性,考查了推理能力与计算能力,属于基础题.3.答案:C解析:【分析】本题以命题的真假判断与应用为载体考查了复合命题,四种命题,全称命题,充要条件等知识点,属于中档题.根据复合命题真假判断的真值表,可判断;根据四种命题的定义,可判断;根据全称命题的否定,可判断;根据充要条件的定义及三角形正弦定理,可判断.【解答】解:若“p且q”为假命题,则p、q存在至少一个假命题,但不一定均为假命题,故错误;命题“若,则”的否命题为“若,则”,故正确;“,”的否定是“,”,故正确;在中,,故“”是“”的充要条件,故正确.故选C.4.答案:D解析:【分析】本题考查点、线、面间的距离计算,主要考查正方体的结构特征,考查平面内两点之间线段最短,考查计算能力,空间想象能力,属于中档题.把对角面绕旋转,使其与在同一平面上,连接并求出,根据平面内两点之间线段最短,即可解答.【解答】,即为所求的最小值.故选D.5.答案:D解析:解:由题意可知能取遍所有正实数,因为,则,即.故选:D.由题意可知能取遍所有正实数,结合基本不等式可求.本题主要考查了对数函数值域的简单应用,属于基础试题.6.答案:A解析:【分析】本题主要考查了函数的图象与性质,属于中档题.利用函数的周期求出,再利用五点作图法求出的值,再利用函数图象的对称性,求得,可得的值.【解答】解:由函数的部分图象,可得,.再根据五点法作图可得:,,因此在上,且,则,,.故选:A.7.答案:A解析:解:由已知条件可得,,,则,解得或,又由,可得故选:A.由已知条件可得,,,由此求数学期望,列出不等式,从而能求出结果.本题考查概率的取值范围的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理推论证能力、运算求解能力,考查函数与方程思想,是中档题.8.答案:C解析:解:由正弦定理可知:,R为三角形的外接圆的半径,所以动点P满足因为是以AB,AC为邻边的平行四边形的对角线A为起点的向量,经过BC的中点,所以P点的轨迹一定通过三角形ABC的重心.故选:C.通过向量的数量积,结合向量和的几何意义,判断P的轨迹经过的三角形的重心.本题考查向量的数量积的应用,正弦定理的应用,轨迹的判断,是中档题.9.答案:D解析:解:模拟程序的运行,可得程序运行后计算并输出的值.由于.故选:D.根据程序框图,得出时,输出利用三角函数的周期性即可得出.本题考查了算法与程序框图、三角函数的周期性与求值,考查了推理能力与计算能力,属于基础题.10.答案:B解析:解:最近的行走路线就是不走回头路,不重复,共有种,向上攀登共需要3步,向左向前共需要5步,不连续向上攀登,向上攀登的3步,要进行插空,共有种,其最近的行走路线中不连续向上攀登的概率为:.故选:B.最近的行走路线就是不走回头路,不重复,共有种,向上攀登共需要3步,向左向前共需要5步,不连续向上攀登,向上攀登的3步,要进行插空,由此能求出其最近的行走路线中不连续向上攀登的概率.本题考查概率的求法,考查古典概型概率计算公式等基础知识,考查运算求解能力,是基础题.11.答案:B解析:【分析】本题考查了函数的奇偶性,利用导数研究函数的单调性,对数函数及其性质和比较大小,属于较难题.构建函数,利用奇函数的定义得函数为R上奇函数,再利用导数研究函数的单调性得函数在R上为减函数,结合对数函数的性质知,再利用单调性比较大小得结论.【解答】解:根据题意,令,因为对成立,所以,因此函数为R上奇函数.又因为当时,,所以函数在上为减函数,又因为函数为奇函数,所以函数在R上为减函数,因为,所以,即.故选B.12.答案:A解析:【分析】本题考查双曲线的简单性质的应用,等比数列的性质的应用,考查计算能力.设,,,通过M,P,Q三点共线,求出,,利用等比数列求出b的范围,然后求解离心率即可.【解答】解:设,,,由M,P,Q三点共线,可知,同理,所以,从而,当时,满足题意,所以.故选A.13.答案:8解析:解:随机变量服从正态分布,,则.故答案为:8.由已知求得,再由得答案.本题考查正态分布曲线的特点及曲线所表示的意义,考查方差的求法,是基础题.14.答案:解析:解:由曲线可得:,令,可得函数的极值点为:,1,当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减,是函数的极小值点,是函数的极大值点,,,,又,b,c,d成等比数列,,故答案为:.利用导数得到是函数的极小值点,是函数的极大值点,从而求出c,b的值,由a,b,c,d成等比数列得,即可求得结果.本题主要考查了利用导数研究函数的极值,是中档题.15.答案:解析:解:若,则.在,表示5个因式的乘积.只要其中一个因式取,其余的因式都取,即可得到展开式中含x的项.故含x项的系数为,故答案为:.m x本题主要考查定积分、二项式定理、组合数的应用,乘方的意义,属于中档题.16.答案:解析:解:数列满足,,,,,,,由此可知:,,,又不等式对任何正整数n恒成立,对任何正整数n恒成立,由,可得,则实数的最小值为,故答案为:.通过计算出数列的前几项可知,进而变形可知,运用数列的裂项相消求和,以及不等式的性质和恒成立思想,可得所求最小值.本题考查数列的裂项相消求和,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.17.答案:解:,,解得.,,,.,,产品销量件关于试销单价元的线性回归方程.,是一个“好数据”,,,是一个“好数据”,,,是一个“好数据”,,的可能取值为0,1,2,3,,,,,“好数据”个数的分布列为:0 1 2 3P.解析:由,得,由此能求出q.求出,再由,,求出,,由此能求出产品销量件关于试销单价元的线性回归方程.推导出,,是“好数据”,的可能取值为0,1,2,3,分别求出相应的概率,由此能求出“好数据”个数的分布列和.本题考查实数值、回归直线方程、离散型随机变量的分布列的求法,考查回归直线方程、古典概型、排列组合等基础知识,考查运算求解能力,是中档题.18.答案:本题满分为13分解:如图,连接BD,在中,由余弦定理可得:,,,,又,,在中,分Ⅱ设,,,在中,由正弦定理,可得:,,,,,,,当,即时,取得最大值,即道路AB,AE长度之和的最大值为分解析:连接BD,由余弦定理可得BD,由已知可求,,可得,利用勾股定理即可得解BE的值.Ⅱ设,由正弦定理,可得,,利用三角函数恒等变换的应用化简可得,结合范围,利用正弦函数的性质可求的最大值,从而得解.本题考查余弦定理,考查正弦定理,考查三角函数的化简,考查学生分析解决问题的能力,属于中档题.19.答案:Ⅰ证明:长方形ABCD中,,,M为DC的中点平面平面ABCM,平面平面,平面ABCM 平面ADM平面ADM;Ⅱ过点E作MB的平行线交DM于F,平面ADM,平面ADM在平面ADM中,过点F作AM的垂线,垂足为H,则为二面角平面角,即设,则,在直角中,由,,可得,,,当E位于线段DB间,且时,二面角大小为.解析:Ⅰ先证明,再利用平面平面ABCM,证明平面ADM,从而可得;Ⅱ作出二面角的平面角,利用二面角大小为时,即可确定点E的位置.本题考查线面垂直,考查面面角,正确运用面面垂直的性质,掌握线面垂直的判定方法,正确作出面面角是关键.20.答案:解:Ⅰ由题意可得,,则,,又,可得,则直线CD的斜率为;Ⅱ可设CD:,,,且,由消去x,可得,,即,又,,可得,,则,O到CD的距离为,则,,则,,.解析:Ⅰ求得抛物线的焦点坐标A,可得B的坐标,代入抛物线方程可得C,D的坐标,应用直线的斜率公式可得所求值;Ⅱ可设CD:,,,且,联立抛物线方程消去x,可得y的二次方程,应用韦达定理和判别式大于0,可得,再由点到直线的距离公式可得O到CD的距离,应用三角形的面积和梯形的面积公式可得,即可点到所求范围.本题考查抛物线的方程和应用,考查直线方程和抛物线联立,应用韦达定理和弦长公式,考查直线的斜率和方程的应用,考查方程思想和运算能力,属于中档题.21.答案:解:其中a是实数,的定义域为,,分令,,对称轴,,当,即时,,函数的单调递增区间为,无单调递减区间.分当,即或时,若,则恒成立,的单调递增区间为,无减区间.分若,令,得,,当时,,当时,.的单调递增区间为,,单调递减区间为分综上所述:当时,的单调递增区间为,无单调递减区间.当时,的单调递增区间为和,单调递减区间为分由知,若有两个极值点,则,且,,,又,,,,又,解得分,分令,,则恒成立,在单调递减,,即,故的取值范围为分解析:求出的定义域为,,由此利用导数性质和分类讨论思想能求出的单调区间.推导出,令,,则恒成立,由此能求出的取值范围.本题考查函数的单调区间的求法,考查函数值之差的取值范围的求法,是中档题,解题时要认真审题,注意导数性质、构造法、分类讨论思想的合理运用.22.答案:解:曲线的极坐标方程为,即,可得直角坐标方程:.直线l的参数方程为为参数,消去参数t可得普通方程:.,直角坐标为,,到l的距离,从而最大值为.解析:曲线的极坐标方程为,即,可得直角坐标方程.直线l的参数方程为为参数,消去参数t可得普通方程.,直角坐标为,,利用点到直线的距离公式及其三角函数的单调性可得最大值.本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.23.答案:解:当时,,当时,令,解得,则的解集为;当时,令,解得,则的解集为.当时,令,此不等式无解,则的解集为.综上所述,的解集为;依题意得:在恒成立,即在上恒成立,则只需,解得,故a的取值范围是.解析:本题考查绝对值不等式的解法以及恒成立问题,属于中档题.通过对x讨论去掉的绝对值,分段求解即可;依题意得:在上恒成立在上恒成立,列不等式组,解之即可得a的取值范围.。