广西南宁二中柳铁一中2021 届高三 9 月联考数学文科答案
2021届广西南宁二中柳铁一中高三9月联考数学文试题

绝密★启用前数学试卷学校:___________注意事项:注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,0,1,2,3,4A =-,集合()(){}340B x x x =+-<,则A B =( )A.{}1,0,1,2,3-B.{}0,1,2,3C.{}1,0,1,2-D.{}1,0,1,2,3,4-2.已知复数z 满足()1234z i i ⋅+=-,则z =( )A.15B.5D.53.若0.43a =,0.2log 3b =,4log 2c =,则a 、b 、c 的大小关系为( ) A.a b c >>B.b a c >>C.c a b >>D.a c b >>4.n S 是等比数列{}n a 的前n 项和,若6338S S S -=-,且38a =,则1a =( ) A.18B.-1C.2D.-45.已知圆22:230C x y x ++-=,直线()():120l x a y a R +-+=∈,则( ) A.l 与C 相离B.l 与C 相交C.l 与C 相切D.以上三个选项均有可能6.已知向量1a =,若1c a -=,则c 的取值范围是( ) A.13,22⎡⎤⎢⎥⎣⎦B.1,22⎡⎤⎢⎥⎣⎦C.[]1,2D.[]0,27.某几何体的三视图如右图所示,则该几何体的体积为( )A.816π-B.816π+C.168π-D.88π+8.某程序框图如图所示,若输出1S =,则图中执行框内应填入( )A.()11S S i i =++B.()12S S i i =++C.S S =+D.S S =9.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ) A.310πB.320π C.3110π-D.3120π-10.已知函数()f x 为R 上的奇函数,当0x ≥时,()24f x x x =-,则曲线()y f x =在3x =-处的切线方程为( ) A.290x y -+=B.290x y --=C.260x y -+=D.260x y +-=11.已知函数()cos sin 2f x x x =⋅,下列结论中错误的是( )A.()y f x =的图像关于点(),0π中心对称B.()f xC.()y f x =的图像关于2x π=对称D.()f x 既是奇函数,又是周期函数12.若函数()()()22ln f x ax a x x a R =+--∈在其定义域上有两个零点,则a 的取值范围是( ) A.()()41ln 2,++∞ B.()(0,41ln 2+⎤⎦C.()(){},041ln 2-∞+D.()()0,41ln 2+第Ⅱ卷二、填空题:本题共4小题.每小题5分,共20分.13.若x ,y 满足约束条件102020x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最大值为________________.14.已知等差数列{}n a 中前n 项和为n S ,且513a =,535S =,则7S =_________________.15.已知O 为坐标原点,点1F ,2F 分别为椭圆22:143x y C +=的左、右焦点,A 为椭圆C 上的一点,且212AF F F ⊥,1AF 与y 轴交于点B ,则OB =_______________.16.已知球的直径SC =A ,B 是该球球面上的两点,若2AB =,45ASC BSC ∠=∠=︒,则棱锥S ABC -的表面积为___________________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,ccos sin C c B =-. (1)求B ;(2)若b =,AD 为BC 边上的中线,当ABC △的面积取得最大值时,求AD 的长. 18.(本小题满分12分)若养殖场每个月生猪的死亡率不超过1%,则该养殖场考核为合格.该养殖场2019年1月到8月的相关数据如下表所示:(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率; (2)根据1月到8月的数据,求出月利润y (十万元)关于月养殖量x (千只)的回归直线方程(精确到0.01).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系;若9月份的养殖量为1.5万只,请估计该月月利润是多少万元.附:线性回归方程ˆˆˆya bx =+中斜率和截距用最小二乘法估计计算公式如下:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =- 参考数据:821460ii x==∑,81379.5i i i x y ==∑.19.如图,矩形ABCD中,AB =AD =M 为DC 的中点,将DAM △沿AM 折到D AM '△的位置,AD BM '⊥.(1)求证:平面D AM '⊥平面ABCM ;(2)若E 为D B '的中点,求三棱锥A D EM '-的体积. 20.(本题满分12分)已知函数()2ln 23f x x x =-+,()()()4ln 0g x f x x a x a '=++≠.(1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围. 21.(本小题满分12分)已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题号后的方框涂黑. 22.【选修4-4:坐标系与参数方程】(10分)在平面直角坐标系xOy 中,直线l的参数方程为2x t y =⎧⎪⎨=-⎪⎩(t 为参数),以原点O 为极点,x正半轴为极轴建立极坐标系,曲线C 的极坐标方程为283cos 2ρθ=-.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设)P,直线l 与C 的交点为A ,B ,求PA PB -.23.【选修4-5:不等式选讲】(10分) 已知函数()223f x x x =++-. (1)求不等式()7f x ≥的解集;(2)若()f x 的最小值为m ,a 、b 、c 为正数且a b c m ++=,求证:222253a b c ++≥. 柳铁一中、南宁二中2021届高三9月联考数学文科试题答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:A解析:由()(){}{}34034B x x x x x =+-<=-<<,又{}{}251,0,1,2,3,4A x Z x =∈-<<=- 所以{}1,0,1,2,3AB =-2.答案:C解析:法一:()()()()341234510121212125i i i iz i i i i -----====--++-,∴z ==法二:3412i z i -=+,∴34341212i i z i i --====++3.答案:D解析:0.40331>=,0.20.2log 3log 10<=,∵444log 1log 2log 4<<,∴01c <<,∴a c b >> 4.答案:C解析:设公比为q ,则36338S S q S -==-,2q =-,312824a a q ===,故答案选C. 5.B 6.答案:D解析:由1a =知,建立直角坐标系,向量()1,0a =,设(),c x y =,由1c a -=得()2211x y -+=,而2c x y =+(),x y 到原点的距离的最大最小值分别为2,0.所以c 的取值范围是[]0,2.7.答案:A解析:根据三视图恢复原几何体为两个底面为弓形的柱体,底面积为一个半圆割去一个等腰直角三角形,其面积为221422422ππ⋅-⨯⨯=-,高为4,所以柱体体积为()424816ππ-=-. 8.答案:C解析:分母有理化,1S S i i =++-9.答案:D解析:由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:815381517r ⨯==⇒++落在内切圆内的概率为2331208152r ππ⨯==⨯⨯,故落在圆外的概率为3120π-. 10.答案:A解析:因为函数()f x 为R 上的奇函数,当0x ≥时,()24f x x x =-所以当0x <时,0x ->,()()()()24f x f x x x ⎡⎤=--=----⎣⎦即()24f x x x =--,则()24f x x '=--,所以()3642f '-=-=,即2k =,且当3x =-时,()39123f -=-+=,即切点的坐标为()3,3-, 所以切线的方程为()323y x -=+,即290x y -+=故选A. 11.答案:B解析:回归对称性的定义,奇偶性定义和周期性定义可排除. 12.答案:A()()222ln 0ln 2f x ax a x x ax ax x x =+--=⇒-=-,欲使()f x 有两个零点,由数形结合分析得()21111ln 1ln 2141ln 22224a a a a ⎛⎫-<-⇒-<--⇒>+ ⎪⎝⎭13.答案:4 14.答案:70解析:依题意51413a a d =+=,5151035S a d =+=,所以11a =,3d =,则71767702S a d ⨯=+= 或方法二:53535S a ==,37a =,又513a =,则173********a a a aS ++=⨯=⨯=。
2021年高三三校9月联考数学(文)试题 含答案

2021年高三三校9月联考数学(文)试题含答案本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
第一部分选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合,,则集合()A.B. C.D.2.如果复数为纯虚数,则实数的值 ( )A. 等于1B. 等于2C. 等于1或2D. 不存在3.为假命题,则的取值范围为()A. B. C. D.4.对某商店一个月30天内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53C.47,45,56 D.45,47,535.设是两条不同直线,是两个不同的平面,下列命题正确的是()A.且则B.且,则C.则D.则6.如图,三棱柱的棱长为2,底面是边长为2的正三角形,,正视图是边长为2 的正方形,俯视图为正三角形,则左视图的面积为()A.4 B. C. D.27.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.8.函数的图像大致是( )9.在平面直角坐标系中,若不等式组(为常数)所表示平面区域的面积等于2,则的值为()A. -5B. 1C. 2D. 310.已知函数在点(1,2)处的切线与的图像有三个公共点,则的取值范围是( )A .B .C .D .第二部分 非选择题(100分)二、填空题:本题共5小题,考生作答4小题,每小题5分,共20分(一)必做题(11~13题)11.已知向量(3,1),(0,1),(,3),2,a b c k a b c k ===+=若与垂直则 .12.在中,角的对边为,若,则角= .13.数列满足表示前n 项之积,则=_____________.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14. (几何证明选讲选做题)如图所示,是⊙的两条切线,是圆上一点,已知,则= .15. (坐标系与参数方程选做题)已知曲线的极坐标方程为,曲线的极坐标方程为(,曲线、曲线的交点为,则弦长为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知向量,函数·,且最小正周期为.(1)求的值;(2)设,求的值.17.(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者。
2021年高三9月测试数学(文)试题 含答案

2021年高三9月测试数学(文)试题含答案本试卷分选择题和非选择题两部分共24题,共150分,共2页.考试时间为120分钟.考试结束后,只交答题卡.第Ⅰ卷选择题(60分)一、选择题(共60分,每小题5分)1.设集合,,,则=A. B. C. D.2.下列函数中,既不是奇函数,也不是偶函数的是A. B. C. D.3.设函数,若,则A. B. C. D.4. 某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.其中,“累计里程“指汽车从出厂开始累计行驶的路程.则在这段时间内,该车每千米平均耗油量为A.升 B.升 C.升 D.升5. 下列命题,正确的是A. 命题“,使得”的否定是“,均有”B. 命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C. 命题“若,则”的逆否命题是真命题D. 命题“若,则”的否命题是“若,则”6.已知,是两条不同直线,,是两个不同平面,则下列命题正确的是A.若,垂直于同一平面,则与平行B.若,平行于同一平面,则与平行C.若,不平行,则在内不存在与平行的直线D.若,不平行,则与不可能垂直于同一平面7. 某三棱锥的三视图如图所示,则该三棱锥的表面积是A. B.C. D.58. 设R,定义符号函数则函数的图象大致是正视图侧视图9.若函数图象上的任意一点的坐标满足条件,则称函数具有性质,那么下列函数中具有性质的是A. B. C. D.10. 如图,在正方体中,、分别是、的中点,则下列说法错误的是A. B.C. D.平面11.已知函数,,则是的A.充分非必要条件 B.必要非充分条件C.充要条件 D.不是充分条件,也不是必要条件12.已知函数是定义在上的函数, 若存在区间,使函数在上的值域恰为,则称函数是型函数.给出下列说法:①函数不可能是型函数;②若函数是型函数, 则,;③设函数是型函数, 则的最小值为;④若函数是型函数, 则的最大值为.下列选项正确的是A.①③ B.②③ C.①④ D.②④第Ⅱ卷非选择题(90分)二、填空题(共20分,每小题5分)13. 函数的定义域为.14. 若定义在R上的可导函数是奇函数,且对,恒成立.如果实数满足不等式,则的取值范围是 .15. 三棱锥中,三条侧棱,底面三边,则此三棱锥外接球的表面积是 .16. 若函数有且只有一个零点,则的取值范围是 .三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知命题:“方程恰好有两个不相等的负根”;命题:“不等式存在实数解”.若为真命题,为假命题,求实数的取值范围.18.(本小题满分12分)已知函数.(Ⅰ)求函数的单调区间和极值;(Ⅱ)求函数闭区间上的最小值.19.(本小题满分12分)已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且(Ⅰ) 写出年利润(万元)关于年产量(万只)的函数解析式;(Ⅱ) 当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.(本小题满分12分)在三棱柱中,侧棱底面,为的中点,,,.(Ⅰ)求证:平面;(Ⅱ)求多面体的体积.21.(本小题满分12分)已知函数, (为常数).(Ⅰ) 函数的图象在点)处的切线与函数的图象相切,求实数的值;(Ⅱ) 若函数在定义域上存在单调减区间,求实数的取值范围;(Ⅲ) 若,,且,都有成立,求实数的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,是⊙的一条切线,切点为,都是⊙的割线,(Ⅰ)证明:;(Ⅱ)证明:∥.23.(本小题满分10分)选修4—4:坐标系与参数方程极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,射线与曲线交于(不包括极点)三点.(Ⅰ)求证:;(Ⅱ)当时,求三角形的面积.24.(本小题满分10分)选修4—5:不等式选讲(Ⅰ) 求证:;(Ⅱ) 若是不全相等的实数,求证:.答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C D B BDDCCA A C D13. 14. 15. 16.19.解:(1) 当0<x ≤40,W =xR(x)-(16x +40)=-6x 2+384x -40;当x>40,W =xR(x)-(16x +40)=-40 000x -16x +7 360.所以,W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x>40.(2) ① 当0<x ≤40,W =-6(x -32)2+6 104,所以W max =W(32)=6 104;② 当x>40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,W 取最大值为5 760.综合①②知,当x =32时,W 取最大值为6 104. 20.(Ⅰ) 证明:连接B 1C 交BC 1于O ,连接OD .∵ O ,D 分别为B 1C 与AC 的中点, OD 为△AB 1C 的中位线, OD//AB 1.又∵ AB 1平面BDC 1, OD 平面BDC 1,∴ AB 1//平面BDC 1.(Ⅱ)解:连接A 1B ,取BC 的中点E ,连接DE ,如图. ∵ A 1C 1=BC 1,∠A 1C 1B=60º, ∴ △A 1C 1B 为等边三角形. ∵ 侧棱BB 1⊥底面A 1B 1C 1, ∴ BB 1⊥A 1B 1,BB 1⊥B 1C 1, ∴ A 1C 1=BC 1=A 1B ==.∴ 在Rt △BB 1C 1中, B 1C 1==2,于是,A 1C 12= B 1C 12+A 1B 12, ∴ ∠A 1B 1C 1=90º,即A 1B 1⊥B 1C 1, ∴ A 1B 1⊥面B 1C 1CB . 又∵ DE//AB//A 1B 1,∴ DE ⊥面B 1C 1CB ,即DE 是三棱锥D-BCC 1的高. ∴ = ==.∴ 321111111-⨯=-=∆--BB S V V V C B A C BC D ABC C B A =.21.解:(1) 因为f(x)=lnx ,所以f ′(x)=1x ,因此f ′(1)=1,所以函数f(x)的图象在点(1,f(1))处的切线方程为y =x -1,由⎩⎪⎨⎪⎧y =x -1,y =12x 2-bx ,得x 2-2(b +1)x +2=0.由Δ=4(b +1)2-8=0,得b =-1± 2. (还可以通过导数来求b)(2) 因为h(x)=f (x)+g(x)=lnx +12x 2-bx(x >0),所以h ′(x)=1x +x -b =x 2-bx +1x,由题意知h ′(x)<0在(0,+∞)上有解,因为x >0,设u(x)=x 2-bx +1,因为u(0)=1>0, 则只要⎩⎪⎨⎪⎧b 2>0,-b 2-4>0,解得b >2,OE所以b的取值范围是(2,+∞).(3) 不妨设x1>x2,因为函数f(x)=lnx在区间[1,2]上是增函数,所以f(x1)>f(x2),函数g(x)图象的对称轴为x=b,且b>2.当b≥2时,函数g(x)在区间[1,2]上是减函数,所以g(x1)<g(x2),所以|f(x1)-f(x2)|>|g(x1)-g(x2)|等价于f(x1)-f(x2)>g(x2)-g(x1),即f(x1)+g(x1)>f(x2)+g(x2),等价于h(x)=f(x)+g(x)=lnx+12x2-bx在区间[1,2]上是增函数,等价于h′(x)=1x+x-b≥0在区间[1,2]上恒成立,等价于b≤x+1x在区间[1,2]上恒成立,所以b≤2. 又b≥2,所以b=2;Z25554 63D2 插 r]38056 94A8 钨25108 6214 戔22875 595B 奛23684 5C84 岄29657 73D9 珙?24Y。
广西南宁二中、柳州高中高三9月份两校联考数学文试题Word版含答案

2018届南宁二中、柳州高中两校联考第一次考试文科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{2,0,1},{|10}A B x x x =-=<->或,则A B ⋂=( ) A .{}2- B .{}1 C .{}2,1- D .{}2,0,1- 2.复数11iz i+=-(i 为虚数单位)的虚部是( ) A .1 B .-1 C .i D .i -3.“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:由()()()()()22n ad bc K a b c d a c b d -=++++算得()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”C .有99%以上的把握认为“喜欢该节目与性别有关”D .有99%以上的把握认为“喜欢该节目与性别无关” 4.若3sin 5α=-,且α为第三象限角,则()tan 45α+等于( )A .7B .17C .1D .0 5.设等差数列{}n a 的前n 项和为n S ,已知12345a a a a a ++=+,560S =,则10a =( ) A .16 B .20 C .24 D .266.已知,a b 是不共线的向量, 2AB a b λ=+,(1)AC a b λ=+-,且,,A B C 三点共线,则λ=( )A .-1B .-2C .-2或1D .-1或27.已知圆2220x y x my +-+=上任意一点M 关于直线0x y +=的对称点N 也在圆上,则m 的值为( )A .-1B .1C .-2D .28.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()112mod 3=,现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .249.某几何体的三视图如图所示,其正视图和侧视图都是边长为的外接球的表面积为( )A .9πB .16πC . 24πD .36π 10.已知()2sin(2)6f x x π=+,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴的方程为( ) A .12x π=B .4x π=C .3x π=D .2x π=11.已知函数()1xf x e =-,()243g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A.[2 B.(2 C .[1,3] D .()1,312.已知12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 为双曲线C 右支上一点,直线1PF 与圆222x y a +=相切,且212||||PF F F =,则双曲线C 的离心率为( ) A.43 C .53 D .2第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某人随机播放甲、乙、丙、丁4首歌曲中的2首,则甲、乙2首歌曲至少有1首被播放的概率是 .14.若变量,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则2z x y =-的最小值等于 .15.已知抛物线2:8C y x =的焦点为F ,准线l ,P 是l 上一点, Q 是直线PF 与C 的一个交点,若3PF QF =,则||QF = .16.已知数列2008,2009,1,-2008,…若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2018项之和2018S = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC 中,角,,A B C 所对的边分别是,,a b c2sin c A =且c b <. (Ⅰ)求角C 的大小;(Ⅱ)若4b =,延长AB 至D ,使BC BD =,且5AD =,求ABC 的面积.18.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(Ⅰ)若商店一天购进商品10件,求当天的利润y (单位:元)关于当天需求量n (单位:件,n N ∈)的函数解析式;(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数; ②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A ,求()P A 的估计值.19.已知三棱柱111ABC A B C -中,12AB AC AA ===,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,1160,B BA B D AB ∠=⊥.(Ⅰ)求证:AC ⊥面11ABB A ;(Ⅱ)求直线1AC 与平面ABC 所成线面角的正弦值.20.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点()1,0F ,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60. (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,线段OF 上是否存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由. 21.已知函数()()1ln f x ax x a R =--∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)对任意[1,4)a ∈,且存在3[1,]x e ∈,使得不等式()2f x bx ≥-恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩,(ϕ为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (Ⅰ)求曲线1C 的普通方程和2C 的直角坐标方程;(Ⅱ)已知曲线3C 的极坐标方程为()0,R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且,A B 均异于原点O ,且||AB =α的值. 23.选修4-5:不等式选讲已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x ≤的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围.试卷答案一、选择题1-5:CACAD 6-10:DDCBC 11、12:BC二、填空题13.56 14.52- 15.8316.4017 三、解答题17.【解析】2sin sin A C A =,∵sin 0A ≠ ∴sin C =, 又c b <,∴3C π=.(Ⅱ)设BC x =,则5AB x =-,在ABC 中,由余弦定理得()2225424cos 3x x x π-=+-⋅⋅,求得32x =,即32BC =,在ABC 中,ABC 的面积1sinC 2S AC BC =⋅⋅=13422⨯⨯= 18.【解析】(Ⅰ)当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当日需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-.所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N +≥∈⎧=⎨-<∈⎩.(Ⅱ)50天内有10天获得的利润380元,有10天获得的利润为440元,有15天获得的利润为500元,有10天获得的利润为530元,有5天获得的利润为560元, ①38010440105001553010560547650⨯+⨯+⨯+⨯+⨯=.②事件A 发生当且仅当日需求量n 为9或10或11时.由所给数据知,9n =或10或11的频率为10151075010f ++==,故()P A 的估计值为0.7.19.【解析】(Ⅰ)取AB 中点O ,连接1,OD B O ,1B BA 中,112,2,60AB B B B BA ==∠=,故1AB B 是等边三角形,∴1B O AB ⊥,又1B D AB ⊥,而1B O 与1B D 相交于1B ,∴AB ⊥面1B OD , 故AB OD ⊥,又OD AC ∥,所以AC AB ⊥,又∵侧面11ABB A ⊥底面ABC 于AB ,AC 在底面ABC 内,∴AC ⊥面11ABB A . (Ⅱ)过1C 作1C M ⊥平面ABC ,垂足为M ,连接AM ,1C AM ∠即为直线1AC 与平面ABC 所成的角,由(Ⅰ)知1B O AB ⊥,侧面11ABB A ⊥底面ABC ,所以1B O ⊥平面ABC ,由等边1AB B知11sin 602B O B B =⋅== 又∵11B C ∥平面ABC ,∴11BO C M == 由(Ⅰ)知AC ⊥面11ABB A ,所以1AC AA ⊥,∴四边形11ACC A 是正方形, ∵12AA =,∴1AC =, ∴在1C AM中,111sin 4C M C AM AC ∠===, 所以直线1AC 与平面ABC20.【解析】(Ⅰ)由题意知1c =, 又tan 603bc==,所以23b =,2224a b c =+=, 所以椭圆的方程为:22143x y +=. (Ⅱ)设直线PQ 的方程为:()()1,0y k x k =-≠,代入22143x y +=,得:()22223484120k x k x k +-+-=, 设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,R x y ,则212024234x x k x k +==+,()0023134ky k x k =-=-+, 由QP TP PQ TQ ⋅=⋅得:()(2)0PQ TQ TP PQ TR ⋅+=⋅=, 所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为:222314()3434k k y x k k k +=--++, 令0y =得:T 点的横坐标22213344k t k k ==++, 因为()20,k ∈+∞,所以()2344,k +∈+∞,所以1(0,)4t ∈. 所以线段OF 上存在点(),0T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈. 21.【解析】(Ⅰ)()()1,0ax f x x x-'=> 当0a ≤时, ()0f x '<在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递减,当0a >时,由()0f x '≤得10x a <≤;由()0f x '≥,得1x a≥, ∴()f x 在1(0,]a 上递减,在1[,)a+∞上递增.∴当0a ≤时,()f x 在()0,+∞上单调递减,当0a >时,()f x 在1(0,]a上单调递减,在1[,)a+∞上单调递增. (Ⅱ)()21ln 2f x bx ax x bx ≥-⇔--≥-, 记()()1ln 0h a ax x x =-->, 则()h a 是递增的函数,即不等式等价于()()min 212h a bx h bx ≥-⇔≥-,∴1ln 2x x bx --≥-,即1ln 1x b x x≤+-, 令()1ln 1x g x x x =+-,则()2ln 2x g x x-'=,令()0g x '=,得2x e =, 可得()g x 在2(1,)e 上递减,在23(,)e e 上递增,3max ()max{(1),g(e )}g x g =,而33313(1)2,()1g g e e e==+-, ∴max ()2g x =,即2b ≤,实数b 的取值范围是2b ≤.22.【解析】(Ⅰ)由22cos 2sin x y ϕϕ=+⎧⎨=⎩,消去参数ϕ可得1C 普通方程为()2224x y -+=,∵4sin ρθ=,∴24sin ρρθ=, 由cos sin x y ρθρθ=⎧⎨=⎩,得曲线2C 的直角坐标方程为22(2)4x y +-=;(Ⅱ)由(Ⅰ)得曲线221:(2)4C x y -+=,其极坐标方程为4cos ρθ=, 由题意设12(,),(,)A B ραρα,则12||||4|sin cos |AB ρραα=-=-sin()|4πα=-=,∴sin()14πα-=±,∴()42k k Z ππαπ-=+∈,∵0απ<<,∴34πα=.23.【解析】(Ⅰ)原不等式为:|23||21|5x x ++-≤, 能正确分成以下三类:当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<;当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤.所以原不等式的解集为73{|}44x x -≤≤.(Ⅱ)由已知函数342,231()4,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4,由()|1|f x m <-的解集非空得:|1|4m ->. 解得5m >或3m <-.。
2021年高三上学期9月质检数学试卷(文科)含解析

2021年高三上学期9月质检数学试卷(文科)含解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2] C.[﹣2,2] D.(﹣1,2]2.当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤03.设全集U是实数集R,M={x|x2>4},N={x|log2(x﹣1)<1},则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2} C.{x|1<x≤2} D.{x|x<2}4.下列函数中,在区间(﹣1,1)上为减函数的是()A.y= B.y=cosx C.y=ln(x+1)D.y=2﹣x5.已知x0是f(x)=()x+的一个零点,x1∈(﹣∞,x),x2∈(x,0),则()A.f(x1)<0,f(x2)<0 B.f(x1)>0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)<0,f(x2)>06.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)7.已知f(x)=,且f(0)=2,f(﹣1)=3,则f(f(﹣3))=()A.﹣2 B.2 C.3 D.﹣38.若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为()A.36 B.72 C.108 D.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.210.给出以下四个函数的大致图象:则函数f(x)=xlnx,g(x)=,h(x)=xe x,t(x)=对应的图象序号顺序正确的是()A.②④③①B.④②③①C.③①②④D.④①②③二、填空题(每题5分,满分25分,将答案填在答题纸上)11.命题“∀x∈R,x2+2x+5>0”的否定是.12.设函数f(x)=3x3﹣x+a(a>0),若f(x)恰有两个零点,则a的值为.13.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.14.若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.15.若直线y=kx+b(b<0)是曲线y=e x﹣2的切线,也是曲线y=lnx的切线,则b=.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知集合A={x|(x﹣6)(x﹣2a﹣5)>0},集合B={x|[(a2+2)﹣x]•(2a﹣x)<0}(1)若a=5,求集合A∩B;(2)已知a,且“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围.17.设命题p:关于x的不等式a x>1(0<a<1,或a>1)的解集是{x|x<0},命题q:函数y=lg(ax2﹣x+a)的定义域为R.(1)如果“p且q”为真,求实数a的取值范围;(2)如果“p且q”为假,“p或q”为真,求实数a的取值范围.18.已知函数f(x)对任意x,y∈R总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,.(1)求证:f(x)为减函数;(2)求f(x)在[﹣3,3]上的最大值和最小值.19.已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.20.某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q (x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?21.已知函数.(a∈R)(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值和最小值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.(Ⅲ)设g(x)=f(x)﹣2ax,.当时,若对于任意x1∈(0,2),存在x2∈[1,2],使g (x1)≤h(x2),求实数b的取值范围.xx学年山东省枣庄三中高三(上)9月质检数学试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2] D.(﹣1,2]【考点】对数函数的定义域;函数的定义域及其求法.【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.2.当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤0【考点】四种命题间的逆否关系.【分析】直接利用逆否命题的定义写出结果判断选项即可.【解答】解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0.故选:D.3.设全集U是实数集R,M={x|x2>4},N={x|log2(x﹣1)<1},则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1}B.{x|﹣2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【考点】Venn图表达集合的关系及运算.【分析】欲求出图中阴影部分所表示的集合,先要弄清楚它表示的集合是什么,由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由图可知,图中阴影部分所表示的集合是N∩C U M,又C U M={x|x2≤4}={x|﹣2≤x≤2},N={x|log2(x﹣1)<1}={x|1<x<3},∴N∩C U M={x|1<x≤2}.故选:C.4.下列函数中,在区间(﹣1,1)上为减函数的是()A.y= B.y=cosx C.y=ln(x+1)D.y=2﹣x【考点】函数单调性的判断与证明.【分析】根据函数单调性的定义,余弦函数单调性,以及指数函数的单调性便可判断每个选项函数在(﹣1,1)上的单调性,从而找出正确选项.【解答】解:A.x增大时,﹣x减小,1﹣x减小,∴增大;∴函数在(﹣1,1)上为增函数,即该选项错误;B.y=cosx在(﹣1,1)上没有单调性,∴该选项错误;C.x增大时,x+1增大,ln(x+1)增大,∴y=ln(x+1)在(﹣1,1)上为增函数,即该选项错误;D.;∴根据指数函数单调性知,该函数在(﹣1,1)上为减函数,∴该选项正确.故选D.5.已知x0是f(x)=()x+的一个零点,x1∈(﹣∞,x0),x2∈(x0,0),则()A.f(x1)<0,f(x2)<0 B.f(x1)>0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)<0,f(x2)>0【考点】函数零点的判定定理.【分析】已知x0是的一个零点,可令h(x)=,g(x)=﹣,画出h(x)与g(x)的图象,判断h(x)与g(x)的大小,从而进行求解;【解答】解:∵已知x0是的一个零点,x1∈(﹣∞,x0),x2∈(x0,0),可令h(x)=,g(x)=﹣,如下图:当0>x>x0,时g(x)>h(x),h(x)﹣g(x)=<0;当x<x0时,g(x)<h(x),h(x)﹣g(x)=>0;∵x1∈(﹣∞,x0),x2∈(x0,0),∴f(x1)>0,f(x2)<0,故选C;6.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)【考点】函数的零点.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g (x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.7.已知f(x)=,且f(0)=2,f(﹣1)=3,则f(f(﹣3))=()A.﹣2 B.2 C.3 D.﹣3【考点】函数的值.【分析】根据条件求出a,b的值进行求解即可.【解答】解:∵f(0)=2,f(﹣1)=3,∴1+b=2,则b=1,+1=3,则=2,则a=,即当x≤0时,f(x)=()x+1,则f(﹣3)=()﹣3+1=8+1=9,则f(9)=log39=2,故f(f(﹣3))=2,故选:B8.若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为()A.36 B.72 C.108 D.【考点】对数的运算性质.【分析】设2+log2a=3+log3b=log6(a+b)=x,则a=2x﹣2,b=3x﹣3,a+b=6x,由此能求出+的值.【解答】解:∵正数a,b满足2+log2a=3+log3b=log6(a+b),∴设2+log2a=3+log3b=log6(a+b)=x,则a=2x﹣2,b=3x﹣3,a+b=6x,∴+===108.故选C.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2【考点】抽象函数及其应用.【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.给出以下四个函数的大致图象:则函数f(x)=xlnx,g(x)=,h(x)=xe x,t(x)=对应的图象序号顺序正确的是()A.②④③①B.④②③①C.③①②④D.④①②③【考点】函数的图象.【分析】利用函数的定义域,以及函数的特殊值判断四个函数的图象即可.【解答】解:函数f(x)=xlnx,g(x)=,的定义域为:x>0;x=1时,两个函数y=0,x→+∞时,f(x)=xlnx→+∞,g(x)=→0,f(x)=xlnx的图象是②,g(x)=的图象是④.h(x)=xe x,x=0时,函数值为0,函数的图象为:③;t(x)=,的定义域x≠0,函数的图象为:①.故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.命题“∀x∈R,x2+2x+5>0”的否定是∃x0∈R,x02+2x0+5≤0.【考点】命题的否定.【分析】利用全称命题的否定是特称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:“∀x∈R,x2+2x+5>0”的否定是:∃x0∈R,x02+2x0+5≤0.故答案为:∃x0∈R,x02+2x0+5≤0.12.设函数f(x)=3x3﹣x+a(a>0),若f(x)恰有两个零点,则a的值为.【考点】函数零点的判定定理.【分析】利用导数求出函数的极大值和极小值,要使函数f(x)=3x3﹣x+a恰有2个零点,则满足极大值等于0或极小值等于0,由此求得a值.【解答】解:∵f(x)=3x3﹣x+a,∴f′(x)=9x2﹣1,由f'(x)>0,得x>或x<﹣,此时函数单调递增,由f'(x)<0,得﹣<x<,此时函数单调递减.即当x=﹣时,函数f(x)取得极大值,当x=时,函数f(x)取得极小值.要使函数f(x)=3x3﹣x+a恰有两个零点,则满足极大值等于0或极小值等于0,由极大值f(﹣)==0,解得a=﹣;再由极小值f()=,解得a=.∵a>0,∴a=.故答案为:.13.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】函数奇偶性的性质;函数单调性的性质.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)14.若函数f(x)=a x(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.【考点】指数函数综合题.【分析】根据指数函数的性质,需对a分a>1与0<a<1讨论,结合指数函数的单调性可求得g(x),根据g(x)的性质即可求得a与m的值.【解答】解:当a>1时,有a2=4,a﹣1=m,此时a=2,m=,此时g(x)=﹣为减函数,不合题意;若0<a<1,则a﹣1=4,a2=m,故a=,m=,g(x)=在[0,+∞)上是增函数,符合题意.故答案为:.15.若直线y=kx+b(b<0)是曲线y=e x﹣2的切线,也是曲线y=lnx的切线,则b=﹣1.【考点】利用导数研究曲线上某点切线方程.【分析】分别设出直线与两曲线的切点坐标,求出导数值,得到两切线方程,由两切线重合得答斜率和截距相等,从而求得切线方程得答案.【解答】解:设y=kx+b与y=e x﹣2和y=lnx的切点分别为(x1,)、(x2,lnx2);由导数的几何意义可得k==,曲线y=e x﹣2在(x1,)处的切线方程为y﹣=(x﹣x1),即y=,曲线y=lnx在点(x2,lnx2)处的切线方程为y﹣,即,则,解得x2=1.∴切线方程为y=x﹣1,即b=﹣1.故答案为:﹣1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知集合A={x|(x﹣6)(x﹣2a﹣5)>0},集合B={x|[(a2+2)﹣x]•(2a﹣x)<0}(1)若a=5,求集合A∩B;(2)已知a,且“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;交集及其运算.【分析】(1)a=2时,集合A、B为两确定的集合,利用集合运算求解;(2)a>时,根据元素x∈A是x∈B的必要条件,说明B⊆A,确定端点的大小,结合数轴分析条件求解即可【解答】解:(1)由集合A中的不等式(x﹣6)(x﹣15)>0,解得:x<6或x>15,即A=(﹣∞,6)∪(15,+∞),集合B中的不等式为(27﹣x)•(10﹣x)<0,即(x﹣27)(x﹣10)<0,解得:10<x<27,即B=(10,27),∴A∩B(15,27),(2)当a>时,2a+5>6,∴A=(﹣∞,6)∪(2a+5,+∞),a2+2>2a,∴B=(2a,a2+2),∵x∈A”是“x∈B”的必要不充分条件,∴B⊆A,∴a2+2≤6,∴<a≤2.17.设命题p:关于x的不等式a x>1(0<a<1,或a>1)的解集是{x|x<0},命题q:函数y=lg(ax2﹣x+a)的定义域为R.(1)如果“p且q”为真,求实数a的取值范围;(2)如果“p且q”为假,“p或q”为真,求实数a的取值范围.【考点】复合命题的真假;对数函数的图象与性质.【分析】先求出命题P与命题q为真命题的等价条件.(1)由复合命题真值表得,若“p且q”为真命题,则命题P,q都是真命题,确定实数m 的范围.(2)由复合命题真值表得:若p∨q为真,p∧q为假,则命题P,q一真一假,确定实数m的取值范围.【解答】解:若p为真命题,即关于x的不等式a x>1的解集是{x|x<0},则0<a<1,若q为真命题,即函数y=lg(ax2﹣x+a)的定义域为R.则⇒a>,(1)由复合命题真值表得,若“p且q”为真命题,则命题P,q都是真命题,故a的取值范围是<a<1;(2)由复合命题真值表得,若且q”为假,“p或q”为真,则命题P,q一真一假,若命题P为真,命题q为假时,0若命题P为假,命题q为真,a>1,所以实数a的取值范围是:0<a≤或a>1.18.已知函数f(x)对任意x,y∈R总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,.(1)求证:f(x)为减函数;(2)求f(x)在[﹣3,3]上的最大值和最小值.【考点】函数单调性的判断与证明;函数的最值及其几何意义.【分析】(1)直接利用函数单调性的定义进行判定,设在R上任意取两个数m,n且m>n,判定f(m)﹣f(n)的符号即可得到结论;(2)先研究函数的奇偶性,然后根据单调性可得函数f(x)在[﹣3,3]上的最大值和最小值.【解答】解:(1)设在R上任意取两个数m,n且m>n则f(m)﹣f(n)=f(m﹣n)∵m>n∴m﹣n>0而x>0时,f(x)<0则f(m﹣n)<0即f(m)<f(n)∴f(x)为减函数;(2)由(1)可知f(x)max=f(﹣3),f(x)min=f(3).∵f(x)+f(y)=f(x+y),令x=y=0∴f(0)=0令y=﹣x得f(x)+f(﹣x)=f(0)=0即f(﹣x)=﹣f(x)∴f(x)是奇函数而f(3)=f(1)+f(2)=3f(1)=﹣2,则f(﹣3)=2∴f(x)max=f(﹣3)=2,f(x)min=f(3)=﹣2.19.已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.【考点】对数函数图象与性质的综合应用;二次函数的性质.【分析】(1)根据f(1)=1代入函数表达式,解出a=﹣1,再代入原函数得f(x)=log4(﹣x2+2x+3),求出函数的定义域后,讨论真数对应的二次函数在函数定义域内的单调性,即可得函数f(x)的单调区间;(2)先假设存在实数a,使f(x)的最小值为0,根据函数表达式可得真数t=ax2+2x+3≥1恒成立,且真数t的最小值恰好是1,再结合二次函数t=ax2+2x+3的性质,可列出式子:,由此解出a=,从而得到存在a的值,使f(x)的最小值为0.【解答】解:(1)∵f(x)=log4(ax2+2x+3)且f(1)=1,∴log4(a•12+2×1+3)=1⇒a+5=4⇒a=﹣1可得函数f(x)=log4(﹣x2+2x+3)∵真数为﹣x2+2x+3>0⇒﹣1<x<3∴函数定义域为(﹣1,3)令t=﹣x2+2x+3=﹣(x﹣1)2+4可得:当x∈(﹣1,1)时,t为关于x的增函数;当x∈(1,3)时,t为关于x的减函数.∵底数为4>1∴函数f(x)=log4(﹣x2+2x+3)的单调增区间为(﹣1,1),单调减区间为(1,3)(2)设存在实数a,使f(x)的最小值为0,由于底数为4>1,可得真数t=ax2+2x+3≥1恒成立,且真数t的最小值恰好是1,即a为正数,且当x=﹣=﹣时,t值为1.∴⇒⇒a=因此存在实数a=,使f(x)的最小值为0.20.某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个方面:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的平均费用是每单位(x+﹣30)元(试剂的总产量为x单位,50≤x≤200).(Ⅰ)把生产每单位试剂的成本表示为x的函数关系P(x),并求出P(x)的最小值;(Ⅱ)如果产品全部卖出,据测算销售额Q(x)(元)关于产量x(单位)的函数关系为Q (x)=1240x﹣x3,试问:当产量为多少时生产这批试剂的利润最高?【考点】根据实际问题选择函数类型.【分析】(Ⅰ)根据生产这批试剂厂家的生产成本有三个方面,可得函数关系P(x),利用配方法求出P(x)的最小值;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),利用导数,可得结论.【解答】解:(Ⅰ)P(x)=[50x+7500+20x+x(x+﹣30)]÷x=x++40,∵50≤x≤200,∴x=90时,P(x)的最小值为220元;(Ⅱ)生产这批试剂的利润L(x)=1240x﹣x3﹣(x2+40x+8100),∴L′(x)=1200﹣x2﹣2x=﹣(x+120)(x﹣100),∴50≤x<100时,L′(x)>0,100<x≤200时,L′(x)<0,∴x=100时,函数取得极大值,也是最大值,即产量为100单位时生产这批试剂的利润最高.21.已知函数.(a∈R)(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值和最小值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.(Ⅲ)设g(x)=f(x)﹣2ax,.当时,若对于任意x1∈(0,2),存在x2∈[1,2],使g (x1)≤h(x2),求实数b的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可;(Ⅱ)令g(x)=f(x)﹣2ax=(a﹣)x2﹣2ax+lnx,由题意可得g(x)<0在区间(1,+∞)上恒成立.求出g(x)的导数,对a讨论,①若a>,②若a≤,判断单调性,求出极值点,即可得到所求范围;(Ⅲ)由题意可得任意x1∈(0,2),存在x2∈[1,2],只要g(x1)max≤h(x2)max,运用单调性分别求得g(x)和h(x)的最值,解不等式即可得到所求b的范围【解答】解:(Ⅰ)当a=0时,,,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,∴f(x)在区间[,1]上是增函数,在[1,e]上为减函数,∴f(x)max=f(1)=﹣,又>,∴;(2)令g(x)=f(x)﹣2ax=(a﹣)x2﹣2ax+lnx,则g(x)的定义域为(0,+∞).在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0在区间(1,+∞)上恒成立.g′(x)=(2a﹣1)x﹣2a+=①,①若a>,令g'(x)=0,得极值点x1=1,x2=,当x2>x1=1,即<a<1时,在(0,1)上有g'(x)>0,在(1,x2)上有g'(x)<0,在(x2,+∞)上有g'(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞),不合题意;当x2≤x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若a≤,则有2a﹣1≤0,此时在区间(1,+∞)上恒有g'(x)<0,从而g(x)在区间(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足g(1)=﹣a﹣≤0⇒a≥﹣,由此求得a的范围是[﹣,].综合①②可知,当a∈[﹣,]时,函数f(x)的图象恒在直线y=2ax下方;(3)当a=时,由(Ⅱ)中①知g(x)在(0,1)上是增函数,在(1,2)上是减函数,所以对任意x1∈(0,2),都有g(x1)≤g(1)=﹣,又已知存在x2∈[1,2],使g(x1)≤h(x2),即存在x2∈[1,2],使x2﹣2bx+≥﹣,即存在x2∈[1,2],2bx≤x2+,即存在x2∈[1,2],使2b≤x+.因为y=x+∈[,](x∈[1,2]),所以2b≤,解得b≤,所以实数b的取值范围是(﹣∞,].xx年10月18日32395 7E8B 纋39817 9B89 鮉/ 37222 9166 酦28654 6FEE 濮29994 752A 甪w36245 8D95 趕`28207 6E2F 港21233 52F1 勱n。
2021年广西壮族自治区柳州市铁第一中学高三数学文期末试卷含解析

2021年广西壮族自治区柳州市铁第一中学高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设集合,集合为函数的定义域,则A. B. C. D.参考答案:D略2. 已知直线与圆相切,其中,且,则满足条件的有序实数对共有的个数为 ( ).(A)1 (B)2 (C)3 (D)4参考答案:D3. 已知双曲线(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.B.C.﹣y2=1 D.x2﹣=1参考答案:D【考点】双曲线的简单性质.【分析】由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.4. 已知一个几何体是由上、下两部分构成的组合体,其三视图如下图,若图中圆的半径为1,等腰三角形的腰长为,则该几何体的体积是()A.π B.2π C.π D.π参考答案:A【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个组合体,上面是一个圆锥,圆锥的底面半径是1,母线长是,圆锥的高是2,下面是一个半球,半球的半径是1,做出两个几何体的体积求和.【解答】解:由三视图知几何体是一个组合体,上面是一个圆锥,圆锥的底面半径是1,母线长是,∴圆锥的高是2,圆锥的体积是下面是一个半球,半球的半径是1∴半球的体积是∴组合体的体积是=故选A.5. 一个几何体的三视图如图所示,则这个几何体的表面积为A.B.C.D.参考答案:A略6. 已知是边长为2的正三角形,在内任取一点,则该点落在内切圆内的概率是( )A.B. C. D.参考答案:D如图所示,△ABC是边长为2的正三角形,则AD=,OD=,∴△ABC内切圆的半径为r=,所求的概率是P=.故答案为:D 7. 在中,角所对的边分别为.若,则等于( )A.B.C.D.参考答案:B略8. 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为……………………()A.B.C.D.参考答案:A6节课共有种排法.语文、数学、外语三门文化课中间隔1节艺术课有种排法,三门文化课中、都相邻有种排法,三门文化课中有两门相邻有,故所有的排法有,所以相邻两节文化课之间最多间隔1节艺术课的概率为,选A.9. 某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元参考答案:C【考点】用样本的频率分布估计总体分布.【专题】计算题;图表型.【分析】设11时到12时的销售额为x万元,因为组距相等,所以对应的销售额之比等于之比,也可以说是频率之比,解等式即可求得11时到12时的销售额.【解答】解:设11时到12时的销售额为x万元,依题意有,故选 C.【点评】本题考查频率分布直方图的应用问题.在频率分布直方图中,每一个小矩形的面积代表各组的频率.10. 过轴正半轴上一点,作圆的两条切线,切点分别为,若,则的最小值为()A.1 B.C.2 D.3参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域是。
2021届广西柳铁一中高三下学期模拟考试(二)文科数学试卷(带解析)

Print
2013届广西柳铁一中高三下学期模拟考试(二)文科数学试卷(带解析)选择题
1.已知集合,,若,则的值为()
A.B.C.D.
2.已知是实数,则“且”是“且”的()条件
A.充分不必要B.必要不充分C.充要D.既不充分也不必要
A.B.C.D.
4.已知,,则等于()
A.B.C.D.
5.若,则()
A.B.C.D.
6.将红、黑、蓝、黄个不同的小球放入个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.B.C.D.
7.已知向量满足,满足,,若与共线,则的最小值为()A.B.C.D.
8.将函数的图像按向量平移,得到函数,那么函数可以是()A.B.C.D.
9.若函数为奇函数,且函数的图像关于点对称,点在直线,则
的最小值是()
A.B.C.D.
10.若实数满足,则的最小值为()
A.B.C.D.
11.设椭圆的左、右焦点分别为,为椭圆上异于长轴端点的一点,,△的内心为I,则()
A.B.C.D.
12.已知且方程恰有个不同的实数根,则实数的取值范围是()A.B.C.D.
填空题
1.函数的图像与函数的图像关于直线对称,则函数的解析式
为
解答题。
2023届广西南宁三中、柳铁一中高三上学期9月联考数学试题 PDF版

2023届高三年级9月月考理科数学(考试时间120分钟满分150分)第I 卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目)1.设集合{}2|30M x x x =-≤,{}|14N x x =<<,则M N = ()A .{}|01x x ≤<B .{}|13x x <≤C .{}|34x x ≤<D .{}|04x x ≤<2.已知复数324i1i z -=+,则z =()AB C .D .3.已知n S 为等差数列{}n a 的前n 项和,若3715,35a a ==,则9S =()A .225B .350C .400D .4504.电子商务发展迅速,某螺蛳粉网店2021年全年的月收支数据如图所示,则针对2021年这一年的收支情况,下列说法中错误的...是()A .月收入的最大值为90万元,最小值为30万元B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元5.函数()()ee sin 2xx x f x --=的大致图象是()A .B .C .D .6.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是()A .30m -<<B .32m -<<C .34m -<<D .3m <7.若函数()ax x x f -=ln 在区间()∞+,0上的最大值为0,则()=e f ()A .0B .e1C .1D .e8.《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学.“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如下流程框图,若输入的a ,b 分别为91,39,则输出的i =()A .5B .4C .3D .29.椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,点P ,Q 均在C 上,且关于x 轴对称.若直线,AP AQ 的斜率之积为43,则C 的离心率为()A .32B .22C .12D .1310.如图,半径为1的四分之一球形状的玩具储物盒,放入一个玩具小球,合上盒盖,当小球的半径最大时,小球的表面积为()A .πB .2πC .()322π-D .()1282π-11.已知函数()sin 2cos 2f x a x b x =+,其中,,0a b ab ∈≠R .若()π6f x f ⎛⎫≤ ⎪⎝⎭对一切的x ∈R 恒成立,且π02f ⎛⎫> ⎪⎝⎭,则函数()f x 的一个单调递减区间为()A .π2π,63⎡⎤⎢⎥⎣⎦B .π3π,22⎡⎤⎢⎥⎣⎦C .4π7π,33⎡⎤⎢⎥⎣⎦D .2π7π,36⎡⎤⎢⎥⎣⎦12.已知函数2()2cos f x x x =+,设()()2.03.03.0,2.0f b f a ==,()2log 2.0f c =,则()A .c b a >>B .c a b >>C .c a b >>D .a b c>>第II 卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()0,1a =- ,4b = ,22a b ⋅=,则a 与b 的夹角为________.14.6211(1)x x ⎛⎫++ ⎪⎝⎭展开式中3x 的系数为______.15.已知数列{}n a 的前n 项和为n S ,11a =,13n n S a +=,则n S =___________.16.在棱长为1的正方体1111A B C D ABCD -中,M 为底面ABCD 的中心,Q 是棱11A D 上一点,且111D Q D A λ=,[0,1]λ∈,N 为线段AQ 的中点,给出下列命题:①Q N M C ,,,四点共面;②三棱锥A DMN -的体积与λ的取值有关;③当 90=∠QMC 时,0=λ;④当21=λ时,过A ,Q ,M322.其中正确的有___________(填写序号).三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)17.(本小题满分12分)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,ccos 2B C a c =-.(1)求角B .(2)若AC 边上的中线长为52,求ABC 的面积.18.(本小题满分12分)某学校社团为调查学生课外阅读的情况,随机抽取了100名学生进行调查,并根据调查结果绘制了学生日均课外阅读时间的频率分布直方图(如图所示),将日均课外阅读时间不低于40min 的学生称为“读书迷”.(1)请根据已知条件完成上面2×2列联表,并判断是否有95%的把握认为“读书迷”与性别有关;(2)为了进一步了解“读书迷”的阅读情况,从“读书迷”中按性别分层抽样抽取5名学生组队参加校际阅读交流活动该校需派3名学生参加,若从5名学生中随机抽取3人参加,设被抽中的男同学人数为ξ,求ξ的分布列和期望.附表:()2P K k ≥0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)非读书迷读书迷总计男女1055总计19.(本小题满分12分)如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 为菱形,2PA PB AB ===,E 为AD 中点.(1)证明:AC PE ⊥;(2)若AC=2,F 点在线段AD 上,当直线PF 与平面PCD 所成角的正弦值为41,求AF 的长.20.(本小题满分12分)已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在点A ,B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程.21.(本小题满分12分)已知函数2(1)1()(0)e 2x a x f x a +=+≠.(1)讨论()x f 的单调性;(2)若函数()f x 有两个零点12,x x ,证明:120x x +>,并指出a 的取值范围.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2
即 AD 7 .
18.
(1)2 月到 6 月中,合格的月份为 2,3,4 月份,
则 5 个月份任意选取 3 个月份的基本事件有
2,3, 4 , 2,3,5 , 2,3,6 , 2, 4,5 , 2, 4,6 , 2,5, 6 ,
2
21.
(1)设 Q x, y ,由题意,得 x 2 y a y a ,化简得 x 4ay ,
2
所以动圆圆心 Q 的轨迹方程为 x 4ay ,
2
它是以 F 为焦点,以直线 l 为准线的抛物线.
t2
(2)不妨设 A t ,
t 0 .
4a
已知函数 f x x 2 2 x 3 .
t1 t2
2
(1)求不等式 f x 7 的解集;
2
2
2
(2)若 f x 的最小值为 m , a 、 b 、Байду номын сангаасc 为正数且 a b c m ,求证: a b c
25
.
3
23.解:
(1)当 x 2 时, f x x 2 2 x 3 2 x 2 x 3 3x 4 ,由 f x 7 ,得
1
+ ln.
1
1
依题意,方程 + ln − = 0有实数根,即函数() = + ln − 存在零点.
又′ () = −
1
2
−1
1
2
+ =
.令′ () = 0,得 = .
当 < 0时,′ () < 0.即函数()在区间(0, +∞)上单调递减,
68
aˆ 6 0.640 7 1.52 ,
故 yˆ 0.64 x 1.52 ;
(3)当 x 15 千只,
yˆ 0.64 15 1.52 11.12 (十万元) 111.2 (万元),
故 9 月份的利润约为 111.2 万元.
19.(1)由题知,在矩形 ABCD 中, AMD BMC 45 , AMB 90 ,又 DA BM ,
得 x2 4akx 4a 2 0 .
首先, 16a
2
k
2
1 0 ,解得 k 1 或 k 1 .
其次,设 M x1 , y1 , N x2 , y2 ,
2
则 x1 x2 4ak , x1 x2 4a .
kFM kFN
y1 a y2 a x2 y1 a x1 y2 a
当 x 3 时, f x x 2 2 x 3 2 x 2 x 3 3x 4 ,由 f x 7 ,解得 x
综上所述,不等式 f x 7 的解集为 ,1
x1
x2
x1 x2
x2 kx1 2a x1 kx2 2a
2a x1 x2
2k
x1 x2
x1 x2
2k
2a 4ak
0.
4a 2
AFM AFN 得证.
x t
8
8
2
得直线 l 的普通方程为 3x y 2 0 ,由
所以切线的方程为 y 3 2( x 3) ,即 2 x y 9 0 故选 A.
11.答案:B
解析:回归对称性的定义,奇偶性定义和周期性定义可排除。
12.答案:A
13.答案: 4
14.答案:70
解析:依题意 a5 a1 4d 13
,
S5 5a1 10d 35 ,所以 a1 1, d 3
3x 4 7 ,
解得 x 1,此时 x -2 ;
当 2 x 3 时, f x x 2 2 x 3 2 x 2 x 3 x 8 ,由 f x 7 ,得 8 x 7 ,
解得 x 1,此时 2 x 1 ;
3, 4,5 , 3, 4,6 , 3,5,6 , 4,5, 6 ,共计 10 个,
故恰好有两个月考核合格的概率为 P
6 3
;
10 5
(2) x 7 , y 6 ,
379.5 8 7 6 43.5
bˆ
0.640 ,
460 8 72
2
8.答案:C
解析:.分母有理化, S S i 1 i
9.答案:D
解析:由题意可知:直角三角向斜边长为 17,由等面积,可得内切圆的半径为:
落
在内切圆内的概率为
,故落在圆外的概率为
10.答案:A
解析:因为函数 f ( x ) 为 R 上的奇函数,当 x 0 时, f ( x ) x 2 4 x
2
2
所以当 x 0 时, x 0, f ( x) f ( x ) [( x) 4( x)] 即 f ( x) x 4 x ,则 f ( x) 2 x 4,
所以 f ( 3) 6 4 2 ,即 k 2 ,
且当 x 3 时, f ( 3) 9 12 3 ,即切点的坐标为 ( 3,3) ,
1
而(1) = 1 − > 0, (e1− ) =
1
1
1−
1
1
1
e1−
+ (1 − ) − =
1
− 1 < − 1 < 0.所以函数()存在零点;
e
当 > 0时,′ (),()随的变化情况如下表:
1
1
所以 ( ) = + ln − = −ln为函数()的极小值,也是最小值.
x
x2
因为 y
,所以 y
,
2a
4a
t2
a
t ,解得 t 2a ,即 A 2a, a ,
从而直线 PA 的斜率为 4a
t 0
2a
又 F 0, a ,所以 AF //x 轴.
要使 AFM AFN ,只需 kFM kFN 0 .
设直线 m 的方程为 y kx a ,代入 x 2 4ay 并整理,
3 4i
,| z ||
|
5
1 2i |1 2i |
1 2i
5
3.答案:D
0.4
解析: 3
30 1, log0.2 3 log0.2 1 0
log4 1 log4 2 log4 4 0 c 1 a c b
4.答案:C
解析:设公比为 q,则
因为 a 2 c 2 ac 3ac ,所以 ac 4 ,
当且仅当 a c 2 时, ABC 的面积取得最大值,此时 C
π
.
6
在 ACD 中,由余弦定理得
AD 2 CA2 CD 2 2 CA CD cos
3
π
12 1 2 2 3 1
2
3 cos 2 3 cos sin 2
y 2 3t
22.解:
(1)由
2
2
2
2
2
2
2
2
得 3 cos sin 8 ,又 x y , cos x, sin y ,化简得
曲线 C 的直角坐标方程为
∴BO⊥SC,AO⊥SC.又 AO∩BO=O,∴SC⊥面 ABO.△SAB 中,SA=AB=√10 ,AB=2,∴S△SAB=3,
同理 S△ABC=3,∵S△BSC=S△ASC=5∴棱锥 S﹣ABC 的表面积为 16,
17.解(1)由正弦定理及已知得 3 sin A 3 sin B cos C sin C sin B ,
1
当 ( ) > 0,即0 < < 1时,函数()没有零点;
1
当 ( ) ≤ 0,即 ≥ 1时,注意到(1) = 1 − ≤ 0,
1
1
e
e
(e) = + − = > 0,所以函数()存在零点.
综上所述,当 ∈ (−∞, 0) ∪ [1, +∞)时,方程() = 有实数根.
, ∈ (0, +∞).
1
令 ′() > 0,即1 − 2 > 0.解得0 < < ;
2
1
令 ′() < 0,即1 − 2 < 0.解得 > .
2
1
1
2
2
故函数()的单调递增区间为(0, ),单调递减区间为( , +∞).
(2)由题得,() = ′() + 4 + ln =
B 1,0,1, 2,3
所以 A
2.答案:C
解析:法一: z
法二: z
3 4i (3 4i)(1 2i) 5 10i
1 2i ,| z | (1)2 (2)2 5
1 2i (1 2i)(1 2i)
5
3 4i | 3 4i | 5
x2 y 2
1 ,所以
4
2
x2 y 2
1;
4
2
(2)由(1)可知直线 l 过点 P
3,1 ,斜率为 3 ,所以倾斜角为 600 ,所以直线 l 的参数方程为