高三联考数学试题文科

合集下载

2024届联考高三一轮复习联考(三)全国卷文科数学全国卷2024届高三一轮复习联考(三)文科数学试卷

2024届联考高三一轮复习联考(三)全国卷文科数学全国卷2024届高三一轮复习联考(三)文科数学试卷

2024届高三一轮复习联考(三)全国卷文科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知M,N 是全集U 的非空子集,且MC[uN, 则A.NCMB.MCNC.CuMCCuND.NC[uM2.若复数z 满足(1+i)z=—2+i, 则z=3.已知非零平面向量a,b, 那么“a//b”是“|a-b|=|a| 一 |b| ”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D.既不充分也不必要条件4.已知实数x,y 满足不等式组,则z=2x+y 的最小值为A.2B.3C.4D.65.记△ABC 的内角A,B,C 所对的边分别为a,b,c, a=4,c=6, ,则AC 边上的高为6.已知某物种t 年后的种群数量y 近似满足函数模型:y=ko ·e¹.4e-0.1254(k₀>0).自2023年初起,经过n 年后(n∈N*), 当该物种的种群数量不足2023年初的20%时,n 的最小值为(参考数据:1n 5≈1.6094)A.10B.11C.12D.13一轮复习联考(三)全国卷文科数学试题第1页(共4页)7.关于三条不同直线a,b,l 以及两个不同平面γ,β,下面命题正确的是A.若a//γ,b//γ, 则a//bB.若a//γ,b⊥γ, 则bLaC.若a//γ,γLβ,则aLβD.若aCγ,bCγ, 且lLa,lLb, 则l⊥γ8.已知函数在区间[0,1]上是减函数,则实数a 的取值范围是A.( 一,2)B.( 一0,0)C.(2,+)D.(0, 十一)9.函数f(x)=sin(2x+φ)(φ>0) 的图象向左平个单位长度得到函数g(x) 的图象,若函数g(x) 是偶函数,则φ的最小值为B. C 口A10.过点(2,0)作曲线f(x)=xe²的两条切线,切点分别为(x₁,f(x₁)),(x₂,f(x₂)), 则X1X2=A.—2B.—1C.1D.211.已知数列{an}的前n 项和为S。

2022-2023学年新高考基地学校高三上学期12月第三次大联考 文科数学试题(含答案) 解析版

2022-2023学年新高考基地学校高三上学期12月第三次大联考   文科数学试题(含答案) 解析版

2023届新高考基地学校高三第三次大联考文科数学试题一、单选题1.已知复数i z =,则1z zz z +=⋅+( ) A .1i 2B.C .i - D. 【答案】B【分析】若i z a b =+,则2z z a +=,222z z z a b ⋅==+.【详解】i z =,则(i)+(i)=z z +=-(i)(i)3z z ⋅==,故1z z z z +==⋅+. 故选:B.2.已知集合{}20A x x =-,集合{}0,1,2,3B =,集合{}11C x x =-<<,则()A B C =( ) A .(]1,1- B .(]{}1,12-⋃ C .(]1,2- D .{}0【答案】B【分析】求出集合A ,然后根据交集、并集的定义求解即可.【详解】{2}A xx =∣,所以{0,1,2}A B ⋂=,所以()(1,1]{2}A B C ⋂⋃=-⋃. 故选:B .3.已知数列{}n a ,{}n b 均为公差不为0的等差数列,且满足32a b =,64a b =,则4132a ab b -=-( ) A .2 B .1C .32D .3【答案】A【分析】根据等差数列性质:()m n a a m n d -=-,运算求解. 【详解】设数列{}n a ,{}n b 的公差分别为12,d d ∵32a b =,64a b =,则6432a b a b =-- ∴1232d d =,则41123222322a a d d b b d d -===- 故选:A.4.函数()()22241x x x x f x -+=-的部分图象大致是( )A .B .C .D .【答案】B【分析】判断函数的奇偶性,再确定0x >时函数值的正负,利用排除法得正确结论.【详解】定义域是{|0}x x ≠,222(2)2(2)()()4114x x x xx x x x f x f x ---+-+-===---,函数为奇函数,排除A ,0x >时,410->x ,20x >,2221722()024x x x x x -+=-+=-+>,所以()0f x >,排除CD .故选:B .5.若x ,y 满足约束条件37,321,321,x y x y x y +≥⎧⎪-≤⎨⎪-≥-⎩则z =y -3x 的最大值为( )A .4311-B .32-C .-1D .3111-【答案】C【分析】根据约束条件画出可行域,根据目标函数的几何意义即可求解最值.【详解】根据约束条件画出可行域(如图),联立3713212x y x x y y +≥=⎧⎧⇒⎨⎨-≥-=⎩⎩,故(1,2)A ,当直线=3y x z +经过点(1,2)A 时,z 最大,此时1z =- , 故选:C6.记n S 为各项均为正数的等比数列{}n a 的前n 项和,378S =,312a =,则5a =( )A .14B .18C .1D .2【答案】D【分析】根据题意求出数列的首项和公比,即可根据通项公式求得答案.【详解】由{}n a 为各项均为正数的等比数列,且378S =,312a =,设数列公比为0q > ,可得211178a a q a q ++= ,且2112a q =,则1138a a q +=,解得112,8q a == ,故451228a =⨯= ,故选:D.7.在ABC 中,点F 为AB 的中点,2,AE EC BE =与CF 交于点P ,且满足BP BE λ=,则λ的值为( )A .35B .47C .34D .23【答案】C【分析】把AP 用,AF AC 表示,然后由,,F P C 三点共线定理得出结论. 【详解】由题意()(1)AP AB BP AB BE AB AE AB AB AEλλλ=+=+=+-=-+22(1)2(22)33AF AC AF AC λλλλ=-⋅+⋅=-+,因为,,F P C 三点共线,所以22213λλ-+=,解得34λ=.故选:C .8.《天才引导的过程——数学中的伟大定理》的作者威廉·邓纳姆曾写道:“如果你想要做加法你需要0,如果你想要做乘法你需要1,如果你想要做微积分你需要e ,如果你想要做几何你需要π,如果你想要做复分析你需要i ,这是数学的梦之队,他们都在这个方程里”.这里指的方程就是:()i e e cos isin x y x y y +=+,令0x =,πy =,则i πe 1=-,令0x =,πy n ,则i πe cos πisin πn n n =+,若数列{}n a 满足i πe n n a =,n S 为数列{}n a 的前n 项和,则下列结论正确的个数是( )①{}n a 是等比数列 ②22n n a a = ③211S = ④2n n a a +=A .1个B .2个C .3个D .4个【答案】C【分析】根据题意可知1,1n n a n ⎧=⎨-⎩为偶数,为奇数,进而即可根据所给式子逐一判断.【详解】i π1,e cos πisin π=cos π=1n n n a n n n n ⎧==+⎨-⎩为偶数,为奇数,故{}n a 是公比为1-的等比数列,A 正确,2222=1=1n n n n a a a a ,,∴=,B 正确,2111S a ==-,故C 错误,由{}n a 的定义可知2n n a a +=,故D 正确, 故选:C9.已知点O 为ABC 的外心,2340,OA OB OC ABC ++=的外接圆的半径为1,则OA 与OB 的夹角的正弦值为( )A B .14C .14-D 【答案】A【分析】由已知可得:234OA OB OC +=-,两边同时平方利用数量积运算和已知条件1OA OB OC ===,即可得出结果;【详解】2340OA OB OC ++=,∴234OA OB OC +=-, ∴222164912OC OA OB OA OB =++⋅,又1OA OB OC ===,164912cos ,OA OB ∴=++,∴1cos ,4OA OB =, 而[],0,πOA OB ∈,故sin ,415OA OB =故选:A10.已知函数()32f x x x =-,若过点()2,A a 能作三条直线与()f x 的图像相切,则实数a 的取值范围是( ) A .[]4,4- B .[)4,+∞ C .(),4-∞ D .()4,4-【答案】D【分析】根据已知条件有三条直线相切,得两函数图像有三个交点,利用函数的单调性即可得到a 的取值范围.【详解】由已知:()32f x x x =-,故()232f x x '=-,设切点为()3,2m m m -所以切线斜率为2=32k m -,切线方程为()()()32232y m m m x m --=--,将A 点坐标代入切线方程可得()()()322322a m m m m --=--化简可得 ()()32322322=264a m m m m m m =-----+-即函数()g x a =与函数32264y m m =-+-有三个不同的交点. 故2612y m m '=-+,当(),0m -∞时,0'<y ,函数y 单调递减 当()0,2m 时,0'>y ,函数y 单调递增 当()2,m +∞时,0'<y ,函数y 单调递减 且0m =时,4y =-,,且2m =时,4y = 所以a 的取值范围为()4,4a ∈- 故选:D11.设2021202220231ln ,,e 20222022a b c -===,则( )A .a c b <<B .b a c <<C .b<c<aD .a b c <<【答案】D【分析】构造两个函数()ln(1)f x x x =-+,01x <<,与1()e x g x x -=-,01x <<,利用导数确定单调性后可得.【详解】设()ln(1)f x x x =-+,01x <<,则1()1011xf x x x'=-=>++,所以()f x 在(0,1)上单调递增,()(0)0f x f >=,ln(1)x x >+,1012022<<,所以112023ln(1)ln 202220222022>+=, 设1()e x g x x -=-,01x <<,则1()e 10x g x -'=-<,()g x 在(0,1)上递减, ()(1)0g x g >=,1ex x ->,1120221e2022->,即202120221e 2022->, 所以c b a >>. 故选:D .12.已知()y f x =是定义域为R 的奇函数,若()1y f x =+的最小正周期为2,则下列说法一定正确的是( )A .()()11f x f x +=-+B .1是()f x 的一个周期C .()()110f f =-=D .13122f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】由函数(1)y f x =+与()y f x =的关系得其最小正周期,判断B ,利用周期性与奇偶性求得(1)f -和(1)f 判断C ,假若A 成立,结合周期性得出函数为偶函数,从而判断A ,利用周期性与奇偶性得出1()2f 与3()2f 的关系判断D .【详解】(1)y f x =+的最小正周期是2,则()y f x =的最小正周期是2,B 错; ∴(1)(1)f f -=-又(1)(1)f f -=,∴(1)(1)0f f =-=,C 正确;若()()11f x f x +=-+,又(1)(1)f x f x +=-,则(1)(1)f x f x -=-+,令1x t -=,则有()()f t f t =-,因此()f x 是偶函数,与题意不符,A 错;311()()()222f f f =-=-,∴31()()022f f +=,D 错. 故选:C .二、填空题13.若向量,a b 满足2,21,b a b a =+=与a b +垂直,则a =__________.【分析】由向量垂直得22a b a a ⋅=-=-,然后由已知模等式21a b +=平方后可得. 【详解】a 与a b +垂直,则2()0a a b a a b ⋅+=+⋅=,22a b a a ⋅=-=-, 22222(2)441a b a b a a b b +=+=+⋅+=,即2224421a a -+⨯=,5a =,14.若πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度得到cos 2y x =的图象,则ϕ的值可以是______.(写出满足条件的一个值即可)【答案】π6(答案不唯一,满足ππ,N 6k k ϕ=+∈均可)【分析】根据图象平移得平移后的函数,从而可得π22π,Z 3k k ϕ-+=∈,再根据0ϕ>,取合适的一个ϕ的值即可.【详解】解:πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移()0ϕϕ>后得到的函数为()ππcos 2cos 22cos 233y x x x ϕϕ⎡⎤⎛⎫=-+=-+= ⎪⎢⎥⎣⎦⎝⎭则π22π,Z 3k k ϕ-+=∈,解得ππ,Z 6k k ϕ=-∈,又0ϕ> 所以ϕ的值可以是当0k =时,π6ϕ=. 故答案为:π6(答案不唯一,满足ππ,N 6k k ϕ=+∈均可)15.已知点P (m ,n )是函数()11f x x =-图象上的点,当1m >时,2m +n 的最小值为______.【答案】2【分析】根据基本不等式即可求解最小值. 【详解】P (m ,n )是函数()11f x x =-图象上的点,所以1111n mm n,因为1m >,所以0n >,所以122=212222m n nn nn,当且仅当n =故2m n +的最小值为2.故答案为:216.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若113tan tan sin B C bc A +=⋅,且()1sin sin 2C B A -=,则22c b -=__________. 【答案】32【分析】已知条件113tan tan sin B C bc A+=⋅,利用切化弦,两角和的正弦公式,正弦定理化简可得23a =,已知条件()1sin sin 2C B A -=,利用和差角的正弦公式和正弦定理,解得43cos ab C =,最后用余弦定理解得22c b -. 【详解】ABC 中,1cos tan sin B B B =,1cos tan sin CC C=,sin cos cos sin sin()sin(π)sin C B C B C B A A +=+=-=,由正弦定理有sin sin A B ba=,sin sin c A a C =, 由113tan tan sin B C bc A +=⋅,得cos cos 3sin sin sin B C B C bc A +=⋅, 有sin cos cos sin 3sin sin sin C B C B B C bc A +=⋅,即sin 3sin sin sin A B C bc A=⋅,3sin sin a b C ba C=,得23a =, 由()1sin sin 2C B A -=,可得2sin cos 2cos sin sin cos cos sin C B C B C B C B -=+,即sin cos 3cos sin C B C B =,代入sin cos cos sin 3sin sin sin C B C B B C bc A+=⋅,得4cos 33sin sin sin C C bc A ab C ==⋅,∴43cos ab C =, 由余弦定理,2222cos c a b ab C =+-22332c b =+-,得2232c b -=,故答案为:32三、解答题17.已知公比的绝对值大于1的等比数列{}n a 中的前三项恰为32,2,3,8--中的三个数,n S 为数列(){}21nn a +的前n 项和.(1)求n a ; (2)求n S .【答案】(1)()2112nn n a -=-⋅; (2)()2110714122525nn n S n ++=-⋅⋅-.【分析】(1)根据题意确定前三项,结合等比数列通项公式可得结果; (2)利用错位相减法求和即可.【详解】(1)根据题意可知,1232,8,32a a a =-==-, 所以公比214a q a ==-,所以()()()112112412n n n n n a a q ---==--=-⋅; (2)由(1)知,()2112nn n a -=-⋅,()()()21212112n n nn b n a n -=+=+-⋅⋅,所以()()135213*********nn n n S -=-⨯+⨯-⨯+-⋅+⋅+, 所以()()51213732527214122n n n n S ++=⨯-⨯+⨯+-⋅+⋅+-,所以()()()1135212153222222122112nn n n n S n +-+=-⨯+⨯-⨯++-⋅-+⋅-⋅,()()()12116142112614n n n n -+⎡⎤--⎣⎦=++⋅-⋅-+ ()()()212121412211255n nn n n ++=⋅-⋅++⋅-⋅- ()21107141255nn n ++=-⋅⋅-, 所以()2110714122525nn n S n ++=-⋅⋅-. 18.已知()()22662,2cos ,cos sin ,sin ,3,422a b c θθθθ⎛⎫==-=- ⎪ ⎪⎝⎭. (1)若a 与c 的夹角为钝角,()0,θπ∈,求cos θ的取值范围;(2)若函数()1f a b θ=⋅-在[]0,m θ∈上有10个零点,求m 的取值范围. 【答案】(1)1,⎛⎛-⋃ ⎝⎭⎝⎭(2)5921124ππ≤<m【分析】(1)根据a 与c 的夹角为钝角,可得a 与c 数量积小于零,且a 与c 不共线,化简求出cos θ范围即可.(2)根据()1f a b θ=⋅-的解析式及[]0,m θ∈进行换元,转化为2sin 1,=-y t 在,233ππ⎡⎤∈+⎢⎥⎣⎦t m 上有10个零点的问题,画图像进行分析,求出m的取值范围.【详解】(1)解:由题知,a 与c 的夹角为钝角,所以0a c ⋅<且a 与c 不共线,则有()()2,2cos 3,48cos 0,cos θθθ⋅=⋅-=-<a c 且6cos 0,cos θθ≠≠因为()0,θπ∈,故222232cos 1,,338θ⎛⎫⎛⎫∈--⋃- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, (2)由题知,()2213cos 3sin 2cos sin 12sin(2)13πθθθθθθ=⋅-=-+-=+-f a b ,令2,,2333πππθ⎡⎤=+∈+⎢⎥⎣⎦t t m , 则()f θ在[]0,m θ∈上有10个零点,即2sin 1,=-y t 在,233ππ⎡⎤∈+⎢⎥⎣⎦t m 上有10个零点,画出2sin 1=-y t 的图像如下所示故只需61652636πππ≤+<m ,解得5921124ππ≤<m , 故5921124ππ≤<m . 19.已知数列{}n a 满足11,2,n n na n a a n ++⎧=⎨-⎩为奇数时为偶数时,11a =(1)若数列{}n b 为数列{}n a 的奇数项组成的数列,{}n c 为数列{}n a 的偶数项组成的数列,求出123,,c c c ,并证明:数列{}n b 为等差数列; (2)求数列{}n a 的前10项和. 【答案】(1)答案见解析; (2)105S =-.【分析】(1)由已知递推关系求出数列{}n a 前几项,易得123,,c c c ,利用已知递推关系得出21n a +与21n a -的关系即得1n b +与n b 的关系,从而证明{}n b 是等差数列; (2)用分组求和法求10S .【详解】(1)由定义,11a =,22a =,30a =,41a =,51a =-,60a =,72a =-,81a =-,93a =-,102a =-,所以12c =,21c =,30c =,1212212121211n n n n n n b a a a a b ++--==-=+-=-=-,所以11n n b b ,所以{}n b 是等差数列,公差为1-;(2)由(1)1n n c b =+,111b a ==,1255451(1)52b b b ⨯+++=⨯+⨯-=-, 10125125()()S b b b c c c =+++++++1252()52(5)55b b b =++++=⨯-+=-.20.如图,ABC 中,点D 为边BC 上一点,且满足AD CD AB BC =.(1)证明:sin sin BAC DAC ∠∠=;(2)若2,1,7AB AC BC ===ABD △的面积.【答案】(1)证明见解析;3【分析】(1)利用正弦定理,结合已知条件进行证明.(2)结合第(1)问的结论,利用余弦定理、三角形的面积公式求解.【详解】(1)因为AD CD AB BC =,所以BC CD AB AD =, 在ABC 中,由正弦定理有:sin sin BAC C BC AB ∠=, 在ACD 中,由正弦定理有:sin sin DAC C DC AD ∠=, 所以sin sin sin sin BC CD AB A BAC C C CD DA ==∠=∠, 所以sin sin ∠=∠BAC DAC ,而BAC DAC ∠≠∠,所以πBAC DAC ∠+∠=,所以sin sin BAC DAC ∠∠=.(2)因为2,1,7AB AC BC ===ABC 中,由余弦定理有:222222171cos 22212AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯, 因为BAC ∠是三角形的内角,所以2π3BAC ∠=, 由(1)有:πBAC DAC ∠+∠=,所以π3DAC ∠=, 所以AD 是BAC ∠的角平分线,所以21BD AB DC AC ==,所以BD CD ==,又AD CD AB BC =,所以23AD =,所以112sin 2223ABD S AB AD BAD =⋅⋅∠=⨯⨯=. 21.已知函数()()2e 24x f x x a x a ⎡⎤=-+++⎣⎦有两个极值点()1212,x x x x <.(1)若120x x <<,求a 的取值范围;(2)当4a 时,求()()12f x f x ⋅的最大值.【答案】(1)a >(2)4e -.【分析】(1)求出导函数()f x ',由()0f x '=有两个不等正根(转化为一元二次方程有两个不等正根)可得参数范围;(2)由(1)得出极值点12,x x 满足12x x a +=,122x x =,计算12()()f x f x 化为a 的函数,然后引入新函数,利用导数求得其最大值.【详解】(1)2()e (2)x f x x ax '=-+,由题意220x ax -+=有两个不等的正根,所以21212Δ80020a x x a x x ⎧=->⎪+=>⎨⎪=>⎩,解得a >(2)由(1)知12x x a +=,122x x =,1222121122()()e [(2)4]e [(2)4]x x f x f x x a x x a x =-++⋅-++12e [x x +=22222121212121212(2)16(2)()4()4(2)()]x x a x x a x x x x x x a x x +++-++++-++ 22e [42(2)162(2)4(4)4(2)a a a a a a a =+++-++--+]4e (3)a a =--,设()e (3),4x g x x x =--≥,则()e (2)x g x x '=--,4x ≥时,()0g x '<,()g x 单调递减,所以4()(4)e g x g ≤=-,从而412()()e f x f x ≤-,所以12()()f x f x 的最大值是4e -.【点睛】思路点睛:本题考查用导数研究函数的极值点问题,求与极值点有关的最值.解题关键是理解极值点的定义,第一小问极值点的存在性转化为一元二次方程有两个不等的正根,由此可得参数范围,第二小问求二元函数的最值,关键是利用极值点与参数a 的关系把二元函数转化为一元函数,从而再利用导数求最值.22.在直角坐标系xOy 中,曲线1C 的参数方程为1x y t ⎧=⎪⎨=-⎪⎩(t 为参数),曲线2C 的参数方程为5cos 2sin x y αα=+⎧⎨=-+⎩(α为参数). (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求曲线2C 的极坐标方程与1C 的普通方程;(2)若A B , 分别为曲线1C ,曲线2C 上的动点,求AB 的最小值.【答案】(1)1C 的普通方程为21,(0)y x x =-≥,曲线2C 的极坐标方程为210cos 4sin 280ρθθ-++=.(2)1.【分析】(1)根据消参法可求得1C 的普通方程,利用直角坐标与极坐标的转化公式可求得曲线2C 的极坐标方程;(2)设1),0A t t -≥,求得其与点(5,2)P -距离的表达式,利用导数求得其最小值,结合几何意义即可求得AB 的最小值.【详解】(1)由题意曲线1C 的参数方程为1x y t ⎧=⎪⎨=-⎪⎩(t 为参数)。

陕西省商洛市山阳中学等校2023届高三上学期第一次联考文科数学试题

陕西省商洛市山阳中学等校2023届高三上学期第一次联考文科数学试题
对于 D,当 x - y > 1时, lg ( x - y) > 0 ;当 0 < x - y < 1时, lg ( x - y) < 0 ,
例如当
x
=
1 5

y
=
1 10
时,
lg
(
x
-
y)
=
lg
æ çè
1 5
-
1 10
ö ÷ø
=
lg 1 10
=
-1
<
0
,故选项
D
不正确.
故选:C. 5.B
【分析】根据正余弦函数的取值范围,分别求解 sina
=(

A. -2
B.0
C. 4 5
D.
-
14 3
10.已知
a

b

c
都是正实数,且
a
+
b
+
c
=
2
,则当
2 2
+ -
b c
+
b b
+ +
a c
取得最小值时,
ab
的最大值为( )
A.
1 2
B.1
C.2
D.3
11.已知函数 f ( x) = 1+ lnx , g ( x) = ex ,若 f ( x1 ) = g ( x2 ) 成立,则 x1 - x2 的最小值为
{ } 15.设集合 A = 0,1, a2 ,若 a -1Î A ,则实数 a = ______.
16.已知a , b 满足(1+ tana )(1- tanb ) = 2 ,则 b -a = ______.

2022年12月高三全国大联考(全国乙卷)文科数学试卷及答案

2022年12月高三全国大联考(全国乙卷)文科数学试卷及答案
(2)建立 关于 的回归方程,并预测在19℃的温度下,种子发芽的颗数.
参考数据: , , , .
参考公式:相关系数 ,回归直线方程 中斜率和截距的最小二乘估计公式分别为
, .
19.如图,正三棱柱 的底面边长为2,高为3, 在棱 上, , 为 的中点.
(1)求证: 平面 ;
(2)求三棱锥 的体积.
20.已知函数 , , 为常数, 的图象在点 处的切线方程为 .
故选:D
8.C
【分析】先判断函数 的奇偶性与单调性,再解不等式,求不等式成立的一个充分不必要条件是求其一个真子集.
【详解】函数 定义域为R,
因为 ,所以 是一个奇函数.
因为 ,所以 在R上单调递增.
因为 ,又 是一个奇函数,
所以 ,
又 在R上单调递增,
所以 ,解得 .
不等式 成立的一个充分不必要条件是集合 的真子集,所以选项C正确.
【详解】由抛物线 : ,可知 ,焦点 ,
因为 过焦点 ,所以 ,
设 ,
联立 ,消元得 ,
则 ,
由抛物线定义知 .
故选:A
7.D
【分析】根据图像变换求得 的解析式,再求得 的对称中心.
【详解】函数 的图像向右平移 个单位长度,得到函数 ,所以 ,
令 ,即 的对称中心为 ,
令 ,求得 的一个对称中心为 .
A. B. C. D.3
12.已知各项不等于0的数列 满足 , , .设函数 , 为函数 的导函数.令 ,则 ()
A. B.36C. D.54
二、填空题
13.已知平面向量 , ,则平面向量 与 的夹角为______.
14.已知圆 : ,且圆外有一点 ,过点 作圆 的两条切线,且切点分别为 , ,则 ______.

河南省豫南九校2022-2023学年高三上学期第二次联考文科数学试题

河南省豫南九校2022-2023学年高三上学期第二次联考文科数学试题

豫南九校2022-2023学年上期第二次联考高三数学(文)试题(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,考生务必将自己的娃名、准考证号.考场号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时.将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}22610A x x =∈<+≤N ,{}04B x x =<<,则A B ⋂=()A .{}1,2,3B .{}0,2,3C .{}1,2D .{}2,32.已知i 为虚数单位,则43i1i -=+()A .17i 22+B .17i22-C .53i 22+D .53i 22-3.已知“24x x >”是“2x m <”的充分不必要条件,则实数m 的取值范围为()A .()2,2-B .[]2,2-C .()(),22,⋃-∞-+∞D .(][),22,-∞-⋃+∞4.已知圆O 的半径为2,AB 为圆O 的直径,点C 在圆O 上,若6cos 4BOC ∠=,则OA OC ⋅= ()A .BC .D 5.已知函数()1xf x ax x =++,若()02f '=,则()2f =()A .83B .2C .53D .36.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b ==,且12CA CB ⋅=- ,则c =()A .2B .C D7.已知sin18m ︒=,则cos 2424︒+︒=()A .242m-B .224m-C .4D .4-8.已知{}n a 为等差数列,公差为黄金分割比512(约等于0.618),前n 项和为n S ,则()2106842a a S S -+-=()A 1-B 1+C .16D .49.2022年8月26日,河南平顶山抽干湖水成功抓捕了两只鳄雀鳝,这一话题迅速冲上热搜榜.与此同吋,关于外来物种泛滥的有害性受到了热议.为了研究某池塘里某种植物生长面积S (单位:m 2)与时间t (单位:月)之间的关系,通过观察建立了函数模型()tS t ka =(t ∈Z ,0k >,0a >且1a ≠).已知第一个月该植物的生长面积为1m 2,第3个月该植物的生长面积为4m 2,则该植物的生长面积达到100m 2,至少要经过()A .6个月B .8个月C .9个月D .11个月10.已知()e xf x x =,过1,02P ⎛⎫⎪⎝⎭作曲线()y f x =的切线,切点在第一象限,则切线的斜率为()A .3e2B .23e C .2e D11.已知函数()()sin 034f x A x πωω⎛⎫=+<< ⎪⎝⎭的最小正周期为T ,若4T f ⎛⎫= ⎪⎝⎭()f x 的图象向左平移2π个单位长度,得到奇函数()g x 的图象,则2f π⎛⎫-= ⎪⎝⎭()A .2-B .2C .D 12.已知数列{}n a 的通项公式为()2(1)n n a n n =--,前n 项和为n S ,则满足212023n S +≤-的最小正整数n 的值为()A .28B .30C .31D .32二、填空题(本大题共4小题,每小题5分,共20分)13.已知点()1,2A ,()2,3B -,则与AB垂直的单位向量的坐标为______.14.已知等差数列{}n a 的前n 项和为n S ,若945S =,且8996a a +=,则123a a +=______.15.已知函数()2sin f x x =的导函数为()f x ',()()()g x f x f x =+',则函数()g x 图象的对称中心为______.16.已知函数()231sin 3e 12xf x x π⎛⎫⎛⎫=-+-⎪ ⎪+⎝⎭⎝⎭,则()f x 在[],ππ-上的最大值与最小值之和为______.三、解答题,本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 的共轭复数为z ,()()2i 3i zm m -=+∈R (其中i 为虚数单位).(1)若6z z +=,求z ;(2)若3z z ⋅<,求m 的取值范围.18.(本小题满分12分)已知命题p :()21,02,0x a x f x xx x x ⎧++>⎪=⎨⎪+≤⎩的最小值为1-,命题q :x ∀∈R ,2420x x a -+≥恒成立.(1)若p ⌝为真,求实数a 的取值范围;(2)若()p q ∧⌝为真,求实数a 的取值范围.19.(本小题满分12分)已知在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c,且sin cos a B A =.(1)若2c b =,求证:ABC △为直角三角形;(2)若ABC △的面积为6a =,求ABC △的周长.20.(本小题满分12分)已知向量()cos ,sin a x x =,()cos ,cos sin b x x x =- ,向量b 在a 上的投影记为()f x .(1)若()a ab ⊥-,求()f x 的值;(2)若()2f x =,求b .21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n s a =-.(1)求{}n a 的通项公式;(2)若()()1122n n n n a b a a ++=+⋅+,求数列{}n b 的前n 项和n T ;(3)若()10nn c n a =-,数列{}n c 的前n 项和为n A ,求n A 的最大值.22.(本小题满分12分)已知函数()()2ln exf x x k k =+∈R .(1)若1x =是()f x 的一个极值点,求()f x 的极值;(2)设()ln e x x h x =的极大值为()0h x ,且()f x 有零点,求证:02e x kx ≥-.豫南九校2022-2023学年上期第二次联考高三数学(文)参考答案123456789101112CBDAADBCBCAD1.【答案】C【解析】由题意,得{}{}220,1,2A x x =∈-<≤=N ,又{}04B x x =<<,故{}1,2A B ⋂=.故选C .2.【答案】B【解析】()()()()43i 1i 43i 17i 17i 1i 1i 1i 222----===-++-.故选B .3.【答案】D【解析】由24x x >,得04x <<,由题意,得24m≥,即(][),22,m ∈-∞-⋃+∞.故选D .4.【答案】A【解析】由cos 4BOC ∠=,得cos 4AOC ∠=-,故6224OA OC ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭.故选A .5.【答案】A 【解析】由()1x f x ax x =++,得()()211f x a x +'=+,故()012f a ='+=,故1a =,故()1x f x x x =++,故()282233f =+=.故选A .6.【答案】D【解析】由12CA CB ⋅=- ,得1cos 2ab C =-.又22a b ==,故1cos 4C =-,由余弦定理,得22212cos 4122164c a bab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,故c =D .7.【答案】B 【解析】()1cos 24242cos 24sin 242cos 60242cos3622⎛⎫︒+︒=⨯︒+︒=︒-︒=︒ ⎪ ⎪⎝⎭()()222212sin 1821224m m =⨯-︒=⨯-=-.故选B .8.【答案】C 【解析】设{}n a 的公差为d ,则d 是方程210x x +-=的一个解,则21d d +=,故()()()2221068424161616a a S S d d d d -+-=+=+=.故选C .9.【答案】B【解析】由题意,得()()31134S ka S ka ⎧==⎪⎨==⎪⎩,解得122k a ⎧=⎪⎨⎪=⎩,故()11222t t S t -=⨯=.令()12100t S t -=>,结合t ∈Z ,解得8t ≥,即该植物的生长面积达到100m 2时,至少要经过8个月.故选B .10.【答案】C 【解析】由()e x f x x =,得()()1e x f x x +'=,设切点坐标为()000,e x x x ,则切线方程为()()00000e 1e x x y x x x x -=+-,把点1,02P ⎛⎫ ⎪⎝⎭代入并整理,得()000112x x x ⎛⎫-=+- ⎪⎝⎭,解得01x =或012x =-(舍去),故切线斜率为()12e f '=.故选C .11.【答案】A 【解析】∵2T πω=,∴3sin 44T f A π⎛⎫==⎪⎝⎭2A =,∴()2sin 24g x x ππω⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,∵()g x 为奇函数,∴()00g =,即()24k k ωπππ+=∈Z ,∴()122k k ω=-∈Z .又03ω<<,∴32ω=,∴()32sin 24f x x π⎛⎫=+ ⎪⎝⎭,∴2sin 222f ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭.故选A .12.【答案】D 【解析】由题意,得()()()()222222212143221n S n n +⎡⎤=-+-++---⎣⎦ ()()22112345221n n n ⎡⎤+--+-+-+⋅⋅⋅+-+⎣⎦()()()()()()()221124334221212(21)21n n n n n n n ⎡⎤⎡⎤⎡⎤=-⨯++-⨯++⋅⋅⋅+---+-+--+⎣⎦⎣⎦⎣⎦()()()()2222121234221121122n n n n n n n n n +=++++⋅⋅⋅+-+++=+++=-+,由212023n S +≤-,得()222023n n -+≤-,即220232n n +≥,结合*n ∈N ,解得32n ≥,故n 的最小值为32.故选D .13.【答案】10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭【解析】由题意,得()3,1AB =- .设与AB 垂直的向量为(),a x y =,由0AB a ⋅= ,得30x y -+=,即3y x =,当a的坐标是()1,3时,可得与AB 垂直的单位向量为a a ± ,即10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭.故答案为:10310,1010⎛⎫ ⎪ ⎪⎝⎭或10310,1010⎛⎫-- ⎪ ⎪⎝⎭.14.【答案】182【解析】因为945S =,所以()19599452a a a +==,解得55a =.又8951296a a a a +=+=,所以1291a =,所以123122182a a a +==.故答案为:182.15.【答案】(),04k k ππ⎛⎫-+∈ ⎪⎝⎭Z【解析】由()2sin f x x =,得()2cos f x x =',故()2sin 2cos 4g x x x x π⎛⎫=+=+ ⎪⎝⎭,令()4x k k ππ+=∈Z ,得()4x k k ππ=-+∈Z .故答案为:(),04k k ππ⎛⎫-+∈ ⎪⎝⎭Z .16.【答案】-6【解析】由题意,得()2321sin 31cos 3e 12e 1xx f x x x π⎛⎫⎛⎫⎛⎫=-+-=---⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,把()f x 的图象向上平移3个单位长度,可得函数()21cos e 1x g x x ⎛⎫=-- ⎪+⎝⎭的图象.当[],x ππ∈-时,()()()221cos 1cos e 1e 1x x g x x x g x -⎛⎫⎫-=---=-=- ⎪⎪++⎝⎭⎝⎭,即()g x 为奇函数,在[],ππ-上的最大值与最小值之和为0,故()f x 在[],ππ-上的最大值与最小值之和为6-.故答案为:6-.17.【解析】由()2i 3i z m -=+,得()()()()3i 2i 3i 236i 2i 2i 2i 55m m m m z +++-+===+--+.(2分)∴236i 55m m z -+=-.(3分)(1)由6z z +=,得23265m -⨯=,解得9m =,∴33i z =+,故z ==.(6分)(2)由3z z ⋅<,得22236355m m -+⎛⎫⎛⎫+< ⎪ ⎪⎝⎭⎝⎭,(8分)即26m<,解得m <<∴m 的取值范围是(.(10分)18.(1)对于命题p ,当0x >时,()12f x x a a x=++≥+,当且仅当1x =时取等号,故当0x >时,()f x 的最小值为2a +.(2分)当0x ≤时,()()22211f x x x x =+=+-,当1x =-时,()f x 的最小值为1-.(4分)由()f x 的最小值为1-,得21a +≥-,即3a ≥-.即若命题p 为真,则3a ≥-.(5分)故若命题p ⌝为真,则3a <-,即实数a 的取值范围是(),3-∞-.(6分)(2)对于命题q ,由x ∀∈R ,2420xx a -+≥,得Δ1680a =-≤,解得2a ≥.即若命题q 为真,则2a ≥.(9分)故若q ⌝为真,则2a <.由()p q ∧⌝为真,得32a -≤<,即实数a 的取值范围为[)3,2-.(12分)19.【解析】由sin cos a B A =及正弦定理,得sin sin cos A B B A =,又sin 0B >,故tan A =()0,A π∈,故3A π=.(3分)(1)因为2c b =,所以结合余弦定理,得22222222cos 423a b c bc A b b b b =+-=+-=,所以22224ab bc +==,所以ABC △是以C 为直角的直角三角形.(6分)(2)由ABC △的面积为1sin 2bc A =8bc =,(8分)由6a =,结合余弦定理,得()()222222cos 32436a b c bc A b c bc b c =+-=+-=+-=,所以b c +=(11分)故ABC △的周长为6.(12分)20.【解析】(1)由题意,得()a b f x a b a⋅==⋅,由()a ab ⊥-,得()0a a b ⋅-=,(2分)即20a a b -⋅= ,21a b a ⋅== ,∴()1f x =.(4分)(2)由(1),得()()2215cos sin cos sin sin 2cos 2sin 222f x a b x x x x x x x ϕ=⋅=+-=+=+ (其中25sin 5ϕ=,5cos 5ϕ=).(6分)令()()55sin 222f x x ϕ=+=,得()sin 21x ϕ+=,∴()222x k k πϕπ+=+∈Z ,(8分)∴()222x k k ππϕ=+-∈Z ,(8分)∴sin 2sin 2cos 25x k ππϕϕ⎛⎫=+-== ⎪⎝⎭,cos 2cos 2sin 25x k ππϕϕ⎛⎫=+-== ⎪⎝⎭.(10分)∴b ===.(12分)21.【解析】(1)由22n n S a =-,得1122S a =,得12a =,当2n ≥时,()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=,(2分)∴{}n a 是首项为2,公比为2的等比数列,∴{}n a 的通项公式为2n n a =.(4分)(2)由(1),得()()111211222222222n n n n n n b +++⎛⎫==- ⎪+++⋅+⎝⎭,(5分)∴11111111124661010182222n n n T +⎛⎫=⨯-+-+-+⋅⋅⋅+-⎪++⎝⎭111112422221n n+⎛⎫=⨯-=- ⎪++⎝⎭.(7分)(3)∵()()10102n nn c n a n =-=-⋅,∴当9n ≤时,0n c >;当10n =时,0n c =;当11n ≥时,0n c <.∴当9n =或10时,n A 取得最大值,且910A A =.(9分)239992827212A =⨯+⨯+⨯++⨯ .①∴234109292827212A =⨯+⨯+⨯+⋅⋅⋅+⨯.②②-①,得()923910941218222218202612A ⨯-=-+++⋅⋅⋅++=-=-,∴n A 的最大值为2026.(12分)22.【解析】(1)解法一:由()2ln e x f x x k =+,得()()2e 0xf x k x x=+>',由1x =是()f x 的一个极值点,得()10f '=,即2e 0k +=,即2ek =-.(2分)此时,()12ln 2ex f x x -=-,()()1121e 22e x x x f x x x---=-=',设()()11e 0x g x x x -=->,则()()11e 0x g x x -'=-+<,即()g x 在()0,+∞上单调递减.(3分)又()10g=,所以当()0,1x ∈时,()0g x >,即()0f x '>,当()1,x ∈+∞时,()0g x <,即()0f x '<.所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有极大值()12f =-,无极小值.(5分)解法二:由()2ln e x f x x k =+,得()()2e 0xf x k x x=+>',由1x =是()f x 的一个极值点,得()10f '=,即2e 0k +=,即2ek =-.(2分)此时,()12ln 2e x f x x -=-,()122e x f x x-=-',显然()f x '是减函数,又()10f '=,当()0,1x ∈时,()0f x '>,当()1,x ∈+∞时,()0f x '<.所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有极大值()12f =-,无极小值.(5分)(2)由()ln e x x h x =,得()()1ln 1ln 0e ex x xx x x h x x x --==>'.(6分)设()1ln x x x ϕ=-,则()ln 1x x ϕ'=--.令()0x ϕ'=,得1ex =.当10e x <<时,()0x ϕ'>,当1e x >时,()0x ϕ'<,故()x ϕ在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,故()x ϕ的极大值为1110e e ϕ⎛⎫=+>⎪⎝⎭.(8分)当10ex <<时,()0x ϕ>.又()110ϕ=>,()212ln 20ϕ=-<,故()x ϕ存在唯一的零点0x ,且()01,2x ∈.由()0001ln 0x x x ϕ=-=,得001ln x x =.(10分)当()00,x x ∈时,()0x ϕ>,即()0h >,当()0,x x ∈+∞时,()0x ϕ<,即()0h x '<,即()hx 在()00,x 上单调递增,在()0,x +∞上单调递减.故()hx 的极大值为()00000ln 1e e x x x h x x ==,(11分)令()0f x =,得2ln e 0x x k +=,即1ln 2e x xk -=.由()f x 有零点,得00112e x k x -≤,即02e x kx ≥-.(12分)。

2023年高三2月大联考(全国乙卷)文科数学试卷

2023年高三2月大联考(全国乙卷)文科数学试卷

2023年高三2月大联考(全国乙卷)文科数学试卷一、单选题1.已知复数,则( )A.B.C.D.2.若集合,,则( )A.B.C.D.3.已知命题p:,,则为( )A.,B.,C.,D.,4.下列函数中,既是奇函数又在上单调递增的为( )A.B.C.D.5.如图,已知正三棱柱的棱长都相等,为棱的中点,则与所成角的正弦值为( )A.B.C.D.6.已知数列的前项和为,且,则的值为( )A.B.C.D.7.将函数的图象向右平移个单位长度后得到函数的图象.若是函数的一个极值点,则的值为( )A.B.C.D.8.已知函数是偶函数,当时,.若曲线在点处的切线方程为,则实数a的值为( )A.4B.2C.1D.9.克罗狄斯·托勒密是古希腊著名数学家、天文学家和地理学家,他在所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当凸四边形的对角互补时取等号,后人称之为托勒密定理的推论.如图,四边形ABCD内接于半径为的圆,,,,则四边形ABCD的周长为( )A.B.C.D.10.如图,已知线段AD的长为3,B,C是线段AD上的两点,则线段AB,BC,CD 能构成三角形的概率为( )A.B.C.D.11.已知O为坐标原点,F是椭圆的左焦点.若椭圆C上存在两点A,B满足,且A,B,O三点共线,则椭圆C的离心率的取值范围为( )A.B.C.D.12.已知,,,则下列判断正确的是( )A.B.C.D.二、填空题13.已知双曲线上一点到两个焦点的距离之差为,且双曲线E的离心率为2,则双曲线E的方程为______.14.已知,平面向量,.若,则实数的取值范围是______.15.已知的内角A,B,C的对边分别为a,b,c,,,,则的面积等于______.16.在四面体ABCD中,,,.若四面体ABCD的体积为,则四面体ABCD外接球的表面积的最小值为______.三、解答题17.希望种子公司销售一种新品种蔬菜种子,其说明书标明:此品种蔬菜果实的平均长度为11.5cm.某种植大户购买了这种蔬菜种子,种植后从收获的蔬菜果实中随机选取了一个容量为20的样本,得到果实长度数据如下表:(单位:cm)序号(i)12345678910长度11.613.012.811.812.012.811.512.713.412.4序号(i)11121314151617181920长度12.912.813.213.511.212.611.812.813.212.0(1)估计该种植大户收获的蔬菜果实长度的平均数和方差;(2)判断说明书标明的“蔬菜果实的平均长度为11.5cm”的说法是否成立.(记,其中为蔬菜果实长度的平均数,s为蔬菜果实长度的标准差,n是选取蔬菜果实的个数.当时,.若,则说明书标明的“蔬菜果实的平均长度为11.5cm”的说法不成立)参考数据:,,,.18.已知数列满足对任意m,都有,数列是等比数列,且,,.(1)求数列,的通项公式;(2)设,求数列的前n项和.19.如图,多面体ABCDEF的面ABCD是正方形,其中心为M.平面平面(1)求证:平面AEFB;(2)在内(包括边界)是否存在一点N,使得平面CEF?若存在,求点N 的轨迹,并求其长度;若不存在,请说明理由.20.已知抛物线,圆与抛物线有且只有两个公共点.(1)求抛物线的方程;(2)设为坐标原点,过圆心的直线与圆交于点,直线分别交抛物线于点(点不与点重合).记的面积为,的面积为,求的最大值.21.已知函数,是的导函数.(1)讨论函数的单调性;(2)设,若函数在上存在小于1的极小值,求实数a的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出直线l的直角坐标方程;(2)设曲线C与x轴的交点为A,B(点A在点B的左侧),若直线l上存在点M,满足,求实数m的取值范围.23.已知函数.(1)当时,求不等式的解集;(2)若存在,使得,求a的取值范围.参考答案:1.D【分析】利用复数的除法运算求解.【详解】解:因为,所以,所以.故选:D.2.C【分析】根据分式不等式、自然数集计算集合,再直接利用交集的运算求解即可.【详解】因为,,所以.故选:C.3.B【分析】根据全称命题的否定为特称命题,可得答案.【详解】根据全称命题的否定为特称命题,可知为“,”,故选:B.4.D【分析】求出函数定义域判断AB;求出函数的单调区间判断C;利用定义判断奇偶性,再利用导数判断D的单调性作答.【详解】对于A,函数的定义域是,在上不是单调函数,A错误.对于B,由题得,解得,所以函数的定义域为,不符合题意,B错误;对于C,根据对勾函数单调性可知:函数在上单调递减,C错误;对于D,令,则的定义域为,且,因此是奇函数,又,当且仅当时等号成立,则函数在R上单调递增,D正确.故选:D5.B【分析】取的中点,连接、、,设正三棱柱的棱长为,证明出,所以,与所成的角即为与所成的角,或其补角即为所求,推导出,即可计算出的正弦值,即为所求.【详解】取的中点,连接、、,设正三棱柱的棱长为,如下图所示:因为且,所以,四边形为平行四边形,所以,且,又因为、分别为、的中点,则且,所以,四边形为平行四边形,则且,又因为且,所以,且,所以,四边形为平行四边形,所以,,所以与所成的角即为与所成的角,或其补角即为所求.在中,,,.因为,所以为直角三角形,且,所以.故选:B.6.A【分析】根据题意结合与的关系分析可得数列为等比数列,再利用等比数列的通项公式和求和公式运算求解.【详解】当时,得,解得;由,得,两式相减得,整理得,故数列是以6为首项,为公比的等比数列,所以,,则.故选:A.7.A【分析】利用二倍角公式和两角差的公式得到,利用平移变换得到,再根据是函数的一个极值点,即当时,函数取得最值求解.【详解】由,化简得,所以.又是函数的一个极值点,所以当时,函数取得最值,所以,解得.因为,所以.故选:A.8.C【分析】利用函数的奇偶性求出当时,,再利用导数求出切线的斜率,得到切线方程,比较系数即可得到答案.【详解】当时,,所以,又函数是偶函数,所以当时,,则,所以.又,所以曲线在点处的切线方程为,即,所以,,解得.故选:C9.A【分析】连接AC,BD.利用正弦定理求出,,,再利用托勒密定理求出,即得解.【详解】连接AC,BD.由,及正弦定理,得,解得,.在中,,,,所以.因为四边形ABCD内接于半径为的圆,它的对角互补,所以,所以,所以,所以四边形ABCD的周长为.故选:A.10.B【分析】设,,根据题意转化为几何概型,利用面积关系求概率.【详解】设,,则,且,即.作出不等式组表示的平面区域,如图中(不含边界),其面积为.若线段AB,BC,CD能构成三角形,则还要满足,即.作出不等式组表示的平面区域,如图中(不含边界),其面积为.由几何概型概率计算公式得,线段AB,BC,CD能构成三角形的概率.故选:B.11.C【分析】设椭圆C的右焦点为,连接.由椭圆的性质分析出以为直径的圆与椭圆有公共点,得到,消去,即可求出离心率的取值范围.【详解】设椭圆C的右焦点为,连接.由椭圆的性质得,,,即椭圆上存在点A,满足,即以为直径的圆与椭圆有公共点.设椭圆C的半焦距为,所以只需,所以,即,所以椭圆C的离心率的取值范围为.故选:C12.D【分析】结合对数函数、导数的知识确定正确答案.【详解】(1)比较a,b的大小:因为,所以,所以.(2)比较b,c的大小:令,则.当时,;当时,,所以当时,,即,所以,即.(3)比较a,c大小:因为,所以,即,所以,即.综上,.故选:D.【点睛】比较对数式的大小,结合的是对数函数的单调性,此时要注意对数函数的底数的取值范围对单调性的影响.比较对数式和实数的大小,可考虑分段法或构造函数法来进行求解.13.【分析】利用双曲线的定义得到a,再根据离心率为2求解.【详解】由题意知,,.又因为,所以,所以,所以双曲线E的方程为.故答案为:.14.【分析】利用向量平行的坐标表示以及基本不等式即可求解【详解】由,,,得,因为,所以,当且仅当时取等号,所以实数的取值范围是.故答案为:.15.##【分析】由,,结合余弦定理得到,再由利用正弦定理得到求解.【详解】解:由,①知,,由余弦定理,得.又,所以.由及正弦定理,得②.联立①②,得,所以的面积为.故答案为:.16.【分析】证明四面体ABCD外接球的球心O是AD的中点,连接OB,OC,设的中心H.连接OH,AH,设,,根据四面体的体积得到,设四面体ABCD外接球O的半径为R,求出,再利用导数求的最值即得解.【详解】由,知,四面体ABCD外接球的球心O是AD的中点,连接OB,OC,则.因为,所以为等边三角形,所以的外接圆的圆心为的中心H.连接OH,AH,则平面ABC.设,,则点D到平面ABC的距离为2h,所以四面体ABCD的体积为,即,.设四面体ABCD外接球O的半径为R,则,即.设,则,令,则,当时,,当时,,所以在上单调递减,在上单调递增,所以在处取得极小值,即最小值,所以当时,R取得最小值,为,所以四面体ABCD外接球O的表面积的最小值为.故答案为:.【点睛】关键点睛:解答本题的关键有两个,其一是能准确求出四面体ABCD外接球的表面积的解析式,其二是能利用导数求解函数的最值.17.(1)平均数和方差分别为12.5,0.43(2)不成立,理由见解析【分析】(1)根据统计数据表,利用平均数与方程的计算式,求解蔬菜果实长度的平均数和方差即可;(2)结合已知等式与条件,求解,从而做出判断即可.【详解】(1)由题意知,,所以,.所以估计该种植大户收获的蔬菜果实长度的平均数和方差分别为12.5,0.43.(2)结合已知,由(1)得,,所以说明书标明的“蔬菜果实的平均长度为11.5cm”的说法不成立.18.(1),(2)【分析】(1)根据条件证得数列是等差数列,再由已知求得数列的公差、的公比,写出通项公式即可;(2)使用错位相减求和.【详解】(1)因为对任意m,,,所以,所以数列是公差的等差数列,.设等比数列的公比为q,因为,,,所以.又因为,解得,,所以,.(2)因为,所以,,两式相减,得,所以.19.(1)证明见解析(2)存在;点N的轨迹为线段DG(AE的中点G),长度为【分析】(1)取AE的中点G,连接GF,DG,证明,根据面面垂直的性质可得平面ADE,从而可得,在证明平面AEFB,即可得证;(2)先证明平面CEF,平面CEF,再根据面面平行的判定定理可得平面平面CEF,再根据面面平行的性质即可得出结论.【详解】(1)如图,取AE的中点G,连接GF,DG,因为,,所以,,所以四边形ABFG是平行四边形,所以,,又因为,,所以,,所以四边形CDGF是平行四边形,所以,因为,平面平面ABCD,平面ABCD,平面平面,所以平面ADE,又平面ADE,所以,因为,G为AE的中点,所以,又AE,平面AEFB,且,所以平面AEFB,所以平面AEFB;(2)如图,连接BD,BG,由(1)知,,,所以,,所以四边形BGEF是平行四边形,所以,因为平面CEF,平面CEF,所以平面CEF,又由(1)知,,平面,平面CEF,所以平面CEF,因为DG,平面,且,所以平面平面CEF,设点N为线段DG上任意一点,则平面BDG,平面CEF,所以点N的轨迹为线段DG,长度为.20.(1)(2)【分析】(1)联立抛物线和圆的方程并消元,由对称性可得关于的方程有两个相等的正的实数根,由且根为正数解出,得出抛物线的方程;(2)设直线的方程为,代入圆的方程中,消去,可得的纵坐标;设直线的方程为,代入抛物线方程,可得的纵坐标;将和的面积用公式表示,并转为坐标形式,利用韦达定理和参数的范围,求出最大值.【详解】(1)由,得,即.由对称性可得关于的方程有两个相等的正的实数根,所以,且,解得,所以抛物线C的方程为.(2)由题意,知直线的斜率不为,故设直线的方程为,如图,设,,,.将直线的方程代入圆的方程中,消去,得,所以,所以,且.直线的方程为,代入抛物线方程,消去,得,解得或,所以.同理,得,所以,所以当时,取得最大值,为.21.(1)在上单调递增;(2).【分析】(1)求导得到,令,证明,即得函数的单调性;(2)求导得到,再对分求函数的极值即得解.【详解】(1)由题意,知的定义域为,.令,则,∴,且当时,;当时,,∴在上单调递减,在上单调递增,∴,,从而,,∴在上单调递增.(2)由题意,得,,.①当时,,.由(1)知,,且当时,;当时,,∴仅在处取得极小值,且极小值为,不符合题意.②当时,令,则.(i)若,即,则,,所以恒成立,此时无极值,不符合题意.(ii)若,即,则图象的对称轴为,所以在上单调递增.∵,,由函数单调性和零点存在性定理得,在上存在唯一的实数,使得,从而,且当时,,从而;当时,,从而.∴在上单调递减,在上单调递增,∴仅在处取得极小值,极小值为.∵在上单调递减,且,∴,符合题意.综上,实数a的取值范围为.【点睛】关键点睛:解答本题有两个关键,其一,第一问利用了二次求导,其二,第二问,利用了隐零点,这些都是求解导数问题常见到的题型,要理解掌握灵活运用.22.(1)(2)【分析】(1)利用三角函数的差角公式,整理直线方程,根据极坐标与直角坐标的转换公式,可得答案;(2)将参数方程整理为普通方程,求得,由题意,建立方程,将问题转化为直线与圆的位置问题,可得答案.【详解】(1)∵,∴,即.又∵,,∴,即直线l的直角坐标方程为;(2)由,且,则曲线C的普通方程为,其与x轴的交点分别为,.设点,由,得,即,∴,它表示圆心为,半径为的圆.∵点既在直线l上,又在圆E上,∴,即,∴,即实数m的取值范围为.23.(1)(2)【分析】(1)分类讨论取绝对值可求出不等式的解集;(2)去绝对值转化为不等式组在时有解,进一步转化为可求出结果.【详解】(1)当时,原不等式可化为.当时,原不等式可化为,整理得,所以.当时,原不等式可化为,整理得,所以此时不等式的解集是空集.当时,原不等式可化为,整理得,所以.综上,当时,不等式的解集为.(2)若存在,使得,即存在,使得①.①式可转化为,即②.因为,所以②式可化为③,若存在使得③式成立,则,即,所以,即a的取值范围为.。

2022-2023学年江西省部分学校2023届高三上学期1月联考数学(文)试卷含答案

2022-2023学年江西省部分学校2023届高三上学期1月联考数学(文)试卷含答案

高三数学考试(文科)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2280A x x x =--<,{}4,2,1,1,2,4B =---,则A B = ()A .{}1,1,2-B .{}2,1,1,2,4--C .{}2,1,1--D .{}4,2,1,1,2---2.已知复数z 满足i 212i z +=+,则z =()A .2i--B .2i-+C .2i-D .2i+3.要得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象()A .向左平移6π个单位长度B .向右平移6π个单位长度C .向左平移12π个单位长度D .向右平移12π个单位长度4.函数()2cos 31xx f x x =+的部分图象大致为()A .B .C .D .5.若α是第二象限角,且5sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭()A .3-B .3C .13-D .136.某数学兴趣小组的学生为了了解会议用水的饮用情况,对某单位的某次会议所用矿泉水饮用情况进行调查,会议前每人发一瓶500ml 的矿泉水,会议后了解到所发的矿泉水饮用情况主要有四种:A .全部喝完;B .喝剩约13;C .喝剩约一半;D .其他情况.该数学兴趣小组的学生将收集到的数据进行整理,并绘制成所示的两幅不完整的统计图.根据图中信息,本次调查中会议所发矿泉水全部喝完的人数是()A .40B .30C .22D .147.在四棱雉P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是正方形,PA AB =,2PH HC = ,E ,F 分别是棱CD ,PA 的中点,则异面直线BH 与EF 所成角的余弦值是()A .13B .33C .63D .2238.已知抛物线2:4C y x =的焦点为F ,过点()2,0A 的直线l 与抛物线C 交于,P ,Q 两点,则4PF QF +的最小值是()A .8B .10C .13D .159.当光线入射玻璃时,表现有反射、吸收和透射三种性质.光线透过玻璃的性质,称为“透射”,以透光率表示.已知某玻璃的透光率为90%(即光线强度减弱10%).若光线强度要减弱到原来的125以下,则至少要通过这样的玻璃的数量是(参考数据:lg 20.30≈,lg 30.477≈)A .30块B .31块C .32块D .33块10.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,()f x '是()f x 的导函数,当0x >时,()()20xf x f x '+>.若()20f =,则不等式()30x f x >的解集是()A .()(),20,2-∞-B .()(),22,-∞-+∞ C .()()2,02,-+∞ D .()()2,00,2- 11.数学中有许多形状优美、寓意独特的几何体,图1所示的礼品包装盒就是其中之一.该礼品包装盒可以看成是一个十面体,其中上、下底面为全等的正方形,所有的侧面是全等的等腰三角形.将长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到如图2所示的十面体ABCD EFGH -.已知2AB AD ==,AE =,则十面体ABCD EFGH -外接球的球心到平面ABE 的距离是()A .(51248π-B .364312+C .(81248π+D .(81212π+12.已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x --=-,()()23g x f x ++=.若()f x 的图象关于直线1x =对称,且()33f =-,则()221k g k ==∑()A .80B .86C .90D .96二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知向量(),2AB m = ,()1,3AC = ,()4,2BD =--,若B ,C ,D 三点共线,则m =________.14.已知实数x ,y 满足约束条件230301x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩,则z x y =-的最大值为________.15.在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,cos 14B =,且ABC △的周长和面积分别是10和215b =________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,过1F 作圆222x y a +=的切线交双曲线C 的右支于点P ,切点为M .若13PM MF = ,则双曲线C 的离心率为________.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)公差不为0的等差数列{}n a 的前n 项和为n S ,且满足310a =,2a ,4a ,7a 成等比数列.(1)求{}n a 的前n 项和n S ;(2)记26n n b S =+,求数列{}n b 的前n 项和n T .18.(12分)某商场在周年庆举行了一场抽奖活动,抽奖箱中所有乒乓球都是质地均匀,大小与颜色相同的,且每个小球上标有1,2,3,4,5,6这6个数字中的一个,每个号都有若干个乒乓球.抽奖顾客有放回地从抽奖箱中抽取小球,用x 表示取出的小球上的数字,当5x ≥时,该顾客积分为3分,当35x ≤<时,该顾客积分为2分,当3x <时,该顾客积分为1分.以下是用电脑模拟的抽芕,得到的30组数据如下:131163341241253126316121225345(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.19.(12分)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1A CE .(2)求点1C 到平面1A CE 的距离.20.(12分)已知椭圆()2222:10x y C a b a b+=>>的离心率是22,点()0,2M 在椭圆C 上.(1)求椭圆C 的标准方程.(2)已知()0,1P ,直线():0l y kx m k =+≠与椭圆C 交于A ,B 两点,若直线AP ,BP 的斜率之和为0,试问PAB △的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.21.(12分)已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)若4a ≥,证明:对于任意[)1,x ∈+∞,()2323f x x ax >-+恒成立.(参考数据:ln10 2.3≈)(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 22sin x y αα=-+=+⎧⎨⎩(α为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos 2sin 40ρθρθ-+=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知()4,0P -,设直线l 和曲线C 交于A ,B 两点,线段AB 的中点为Q ,求PQ 的值.23.[选修4—5:不等式选讲](10分)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.高三数学考试参考答案(文科)1.A 【解析】本题考查集合的运算,考查数学运算的核心素养.由题意可得{}24A x x =-<<,则{}1,1,2A B =- .2.D 【解析】本题考查复数,考查数学运算的核心素养.设(),z a bi a b =+∈R ,则()2212a bi i ai b i ++=+-=+,即221a b =⎧⎨-=⎩,解得2a =,1b =,故2z i =+.3.C【解析】本题考查三角函数的图象,考查数学运算的核心素养.因为2sin 22sin 23126y x x πππ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以要得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度.4.B【解析】本题考查函数的图象,考查数学抽象的核心素养.当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,则排除A ,D ;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <,则排除C .故选B .5.D【解析】本题考查三角恒等变换,考查函数与方程的数学思想.因为α是第二象限角,且sin 5α=,所以cos 5α=-,所以1tan 2α=-,故11tan 112tan $141tan 312πααα-++⎛⎫+=== ⎪-⎛⎫⎝⎭-- ⎪⎝⎭.6.C【解析】本题考查统计图表,考查数据分析的核心素养.由题中统计图可知参加这次会议的总人数为4040%100÷=,则所发矿泉水喝剩约一半的人数为10030%30⨯=,故会议所发矿泉水全部喝完的人数为1004030822---=.7.A 【解析】本题考查异面直线所成角,考查直观想象的核心素养.如图,分别取PB ,PH 的中点M ,N ,连接MF ,CM ,MN .易证四边形CEFM 是平行四边形,则CM EF ∥,CM EF =.因为M ,N 分别是PB ,PH 的中点,所以MN BH ∥,则CMN ∠是异面直线BH 与EF 所成的角(或补角).设6AB =,则CM EF ==,12PM PB ==,2CN PN ==,MN ==,故1cos 3CMN ==∠.8.C 【解析】本题考查抛物线的性质,考查数学运算的核心素养.设直线:2l x my =+,()11,P x y ,()22,Q x y ,联立224x my y x=+=⎧⎨⎩,整理得2480y my --=,则128y y =-,故()21212416y y x x ==.因为11PF x =+,21QF x =+,所以122244454513PF QF x x x x +=++=++≥,当且仅当21x =时,等号成立.9.B【解析】本题考查指数、对数的运算,考查数学建模的核心素养.设原来的光线强度为()0a a >,则要想通过n 块这样的玻璃之后的光线强度()190%25na a ⨯<,即0.1925n <,即1lg 0.9lg25n <,即()21lg 22lg522033042lg312lg3..1247.071n ----+⨯>==≈--⨯-,故至少要通过31块这样的玻璃,才能使光线强度减弱到原来的125以下.10.B【解析】本题考查导数的运用,考查化归与转化的数学思想.设()()2g x x f x =,则()()()22g x xf x x f x ''=+.当0x >时,因为()()20xf x f x '+>,所以()0g x '>,所以()g x 在()0,+∞上单调递增.因为()f x 是奇函数,所以()()f x f x -=-,所以()()()()()22g x x f x x f x g x -=--=-=-,则()g x 是奇函数.()30x f x >,即()0xg x >.因为()20f =,所以()()220g g -=-=,则()0xg x >等价于()00x g x ⎧>>⎪⎨⎪⎩或()00x g x ⎧<<⎪⎨⎪⎩,解得2x <-或2x >.11.B 【解析】本题考查多面体的外接球,考查直观想象的核心素养.由题中数据可知)221114A E =+=-,则11AA ==+.因为十面体ABCD EFGH -是由长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到的,所以长方体1111ABCD A B C D -的外接球就是十面体ABCD EFGH -的外接球.设十面体ABCD EFGH -外接球的半径为R ,则211224R +=.因为AE BE ==,2AB =,所以42sin7BAE =∠=.设ABE △外接圆的半径为r ,则22492sin 24BAE BE r ⎛⎫==⎪∠ ⎝⎭,则该十面体ABCD EFGH -外接球的球心到平面ABE的距离是364312=.12.C【解析】本题考查函数的基本性质,考查逻辑推理的核心素养.因为()y f x =的图象关于直线1x =对称,所以()()2f x f x =-,所以()()2f x f x +=-.因为()()25f x g x --=-.所以()()225f x g x ---=-,所以()()5f x g x ---=-.因为()()23g x f x ++=,所以()()3g x f x +-=,所以()()8g x g x +-=,则()g x 的图象关于点()0,4对称,且()04g =.因为()()25f x g x --=-,所以()()25f x g x --+=-,所以()()28g x g x ++=,所以()()248g x g x +++=,则()()4g x g x =+,即()g x 的周期为4.因为()33f =-,且()()23g x f x ++=,所以()16g =.因为()()28g x g x ++=,所以()32g =.因为()04g =,所以()24g =,则()()()()()()()22151234125161090k g k g g g g g g ==+++++=⨯+=⎡⎤⎣⎦∑.13.1-【解析】本题考查平面向量,考查数学运算的核心素养.由题意可得()1,1BC AC AB m =-=-.因为B ,C ,D 三点共线,所以BC BD ∥,所以()2140m --+=,解得1m =-.14.4【解析】本题考查线性规划,考查数形结合的数学思想.画出可行域(图略),当直线z x y =-经过()1,5A --时,z 取得最大值,最大值为4.15.3【解析】本题考查余弦定理,考查数学运算的核心素养.因为cos 14B =,所以sin 154B =,所以1158sin 2a ac B c ==16ac =.因为10a b c ++=,所以10a c b +=-,所以222210020a c ac b b ++=-+,所以2226820a c b b +-=-.由余弦定理可得2222cos b a c ac B =+-,即2228b a c =+-,所以2228a c b +-=,则68208b -=,解得3b =.16.53【解析】本题考查双曲线的性质,考查数形结合的数学思想.如图,取1PF 的中点N ,连接ON .由题意可知1OM NF ⊥,OM a =,1OF c =.则1MF b =,ON c =.因为13PM MF =,所以14PF b =.因为O ,N 分别是线段11F F ,1PF 的中点,所以222PF ON c ==.由双曲线的定义可知12422PF PF b c a -=-=,即2b a c =+,即22242b a ac c =++.因为222b c a =-,所以223250c ac a --=,即23250e e --=,解得53e =.17.解:(1)设数列{}n a 的公差为d ,由题意可得()()()1211121036a d a d a d a d +=+=++⎧⎪⎨⎪⎩,即121210330a d d a d +=-=⎧⎨⎩,2分因为0d ≠,所以16a =,2d =,4分则()21152n n n dS na n n -=+=+.6分(2)由(1)可知22211265623n n b S n n n n ⎛⎫===- ⎪+++++⎝⎭,9分则1211111111234455623n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,10分故11223339n n T n n ⎛⎫=-=⎪++⎝⎭.12分评分细则:(1)第一问中,也可以将2a ,4a ,7a 用3a 和d 表示,从而求出d ,再根据前n 项和公式求出n S ;(2)第二问中,求出2233n T n =-+,不扣分;(3)若用其他解法,参照评分标准按步骤给分.18.解:(1)由题意可知某顾客抽奖1次,积分为3分的频率是61305=,则估计某顾客抽奖1次,积分为3分的概率为15.2分某顾客抽奖1次,积分为2分的频率是933010=,则估计某顾客抽奖1次,积分为2分的概率为310.4分(2)由(1)可知某顾客抽奖1次,积分为1分的概率是12,则某顾客抽奖1次,所得积分是1分和所得积分大于1分是等可能事件.6分设某顾客抽奖1次,积分为1分,记为A ,积分大于1分,记为a ,则某顾客抽奖2次,每次所得积分的情况为aaa ,aaA ,aAA ,aAa ,AAa ,AAA ,AaA ,Aaa ,共8种,8分其中符合条件的情况有aAA ,AAa ,AAA ,AaA ,共4种,10分故所求概率4182P ==.12分评分细则:(1)第一问中,直接求出概率,不予扣分;(2)第二问中,也可以先求出有2次和3次的积分大于1的概率,再由对立事件的概率计算公式求出该顾客至多有1次的积分大于1的概率;(3)若用其他解法,参照评分标准按步骤给分.19.(1)证明:由正三棱柱的性质,易证1BCE D CC △≌△,则1BCE D CC ∠∠=,因为1190CC C D DC ∠∠+=︒,所以190C BCE C D ∠=∠+︒,即1CE C D ⊥.1分因为AB AC =,D 是棱BC 的中点,所以AD BC ⊥.由正三棱柱的定义可知1CC ⊥平面ABC ,则1CC AD ⊥.2分因为BC ,1CC ⊂平面11BCC B ,且1BC C CC = ,所以AD ⊥平面11BCC B .3分因为CE ⊂平面11BCC B ,所以AD CE ⊥.4分因为AD ,1C D ⊂平面1AC D ,且1AD D C D = ,所以CE ⊥平面1AC D .5分因为CE ⊂平面1A CE ,所以平面1AC D ⊥平面1A CE .6分(2)解:连接1EC .因为12AA AB ==,所以1E CC △的面积112222S =⨯⨯=.由正三棱柱的性质可知1AA ∥平面11BCC B ,则点1A 到平面11BCC B 的距离为AD .因为ABC △是边长为2的等边三角形,所以AD =故三棱锥11A CC E -的体积11233V =⨯=.8分因为12AA AB ==,E 是1BB的中点,所以1A E CE ==,1A E =,则1E A C △的面积212S =⨯=设点1C 到平面1A CE 的距离是d ,则三棱锥11C A CE -的体积21633V d ==.10分因为12V V =,所以62333d =,解得d =12分评分细则:(1)第一问中,证出1CE D C ⊥,得1分,证出AD ⊥平面11BCC B ,得2分;(2)第二问中,也可以记1CE F C D = ,连接1A F ,过1C 作1A F 的垂线,垂足为H ,则1C F 是点1C 到平面1A CE 的距离;(3)若用其他解法,参照评分标准按步骤给分.20.解:(1)由题意可得222222c a b c a b ===-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得28a =,24b =.3分故椭圆C 的标准方程为22184x y +=.4分(2)设()11,A x y ,()22,B x y ,联立22184y kx mx y ⎧=++=⎪⎨⎪⎩,整理得()222214280k x kmx m +++-=,则122421kmx x k +=-+,21222821m x x k -=+.5分设直线AP ,BP 的斜率分别是1k ,2k ,()()()121212121221212122121111124kx x m x x km m y y kx m kx m k k k x x x x x x m +-+---+-+-+=+=+=--.因为120k k +=,所以()221204km m k m --=-,解得4m =,7分则12AB x =-=,8分因为点P到直线l的距离d=,所以PAB△的面积2112221S AB dk===+.9分设t=,则2223k t=+,从而2626232442St t=≤=+,当且仅当24t=,即2234k-=,即272k=时,等号成立.11分经验证当272k=时,直线l与椭圆C有两个交点,则PAB△的面积存在最大值322.12分评分细则:(1)第一问中,求出b的值得1分,求出a的值得2分;(2)第二问中,没有检验直线l与椭圆C的位置关系,扣1分;(3)若用其他解法,参照评分标准按步骤给分.21.(1)解:由题意可得()xf x e a'=-.1分当0a≤时,()0f x'>,则()f x在R上单调递增;2分当0a>时,由()0f x'>,得lnx a>,由()0f x'<,得lnx a<,则()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.4分综上,当0a≤时,()f x在R上单调递增;当0a>时,()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.5分(2)证明:因为4a≥,且1x≥,所以4ax x≥,则要证()2323f x x ax>-+对于任意[)1,x∈+∞恒成立,即证233x e x ax>-+对于任意[)1,x∈+∞恒成立,即证2343x e x x>-+对于任意[)1,x∈+∞恒成立,即证23431xx xe-+<对一切[)1,x∈+∞恒成立.7分设()2343xx xg xe-+=,则()()()23713107x xx xx xg xe e----+-'==.8分当71,3x⎛⎫∈ ⎪⎝⎭时,()0g x'>,当7,3x⎛⎫∈+∞⎪⎝⎭时,()0g x'<,则()g x在71,3⎛⎫⎪⎝⎭上单调递增,在7,3⎛⎫+∞⎪⎝⎭上单调递减.9分故()213777max33773437101000333g x g e e e ⎛⎫⨯-⨯+ ⎪⎛⎫⎛⎫⎝⎭==== ⎪ ⎪⎝⎭⎝⎭.10分因为ln1023.≈,所以ln100067.9≈<,即71000e <,所以710001e<,则()max 1g x <.11分故23431xx x e-+<对一切[)1,x ∈+∞恒成立,即()2323f x x ax >-+对一切[)1,x ∈+∞恒成立.12分评分细则:(1)第一问中,正确求导得1分,判断出0a ≤的单调性,得1分,判断出0a >的单调性,得2分;(2)第二问中,构造出函数()g x 得1分,直接得出()137max 10001g x e ⎛⎫=< ⎪⎝⎭,扣1分;(3)若用其他解法,参照评分标准按步骤给分.22.解:(1)由12cos 22sin x y αα=-+=+⎧⎨⎩,(α为参数),得()()22124x y ++-=,故曲线C 的普通方程为()()22124x y ++-=.3分由cos 2sin 40ρθρθ-+=,得240x y -+=,故直线l 的直角坐标方程为240x y -+=.5分(2)由题意可知点P 在直线l 上,则直线l 的参数方程为254555x y =-+=⎧⎪⎪⎨⎪⎪⎩,(t 为参数),6分将直线l 的参数方程代入曲线C 的普通方程,整理得25450t -+=.7分设A ,B 对应的参数分别为1t ,2t,则125t t +=,8分故128525t t PQ +==.10分评分细则:(1)第一问中,曲线C 的普通方程写成222410x y x y ++-+=,不予扣分;(2)第二问中,也可以由点到直线的距离公式求出圆心C 到直线l 的距离d ,再由两点之间的距离公式求出CP 的值,最后根据勾股定理求出PQ 的值;(3)若用其他解法,参照评分标准按步骤给分.23.解:(1)()82f x x ≤-+,即3182x x -+≤-+,等价于23182x x x <--++≤++⎧⎨⎩或232831x x x --++≤-≤-≤⎧⎨⎩或33182x x x >-+≤--⎧⎨⎩,3分解得34x -≤≤,即不等式()82f x x ≤-+的解集是[]3,4-.5分(2)当03x <<时,()f x ax ≥恒成立等价于()31a x x --+≥恒成立,6分则41a x ≤-在()0,3上恒成立,故13a ≤;7分当3x ≥时,()f x ax ≥恒成立等价于31x ax -+≥恒成立,8分则21a x ≤-在[)3,+∞上恒成立,故13a ≤.9分综上,a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.10分评分细则:(1)第一问中,也可以按2x <-,23x -≤≤和3x >这三种情况分别求出x 的取值范围,再求它们的并集,即不等式的解集,只要计算正确,不予扣分:(2)第二问中,最后结果没有写成集合或区间的形式,扣1分;(3)若用其他解法,参照评分标准按步骤给分.。

高中高三数学文科联考试卷 试题(共9页)

高中高三数学文科联考试卷 试题(共9页)

广西二中(èr zhōnɡ)、高中2021—2021学年度高三年级联考数学试题〔文科〕一、选择题:本大题一一共12小题,每一小题5分,一共60分,将每一小题给出的四个选项里面的唯一正确的选项填在答题卡相应的题号中。

1.,并且是第二象限角,那么的值是〔〕A.B.C.D.2.假设,那么以下不等式中成立的是〔〕A. B.C.D.3.函数的反函数是〔〕A.B.C.D.4.在公差为2的等差数列中,假如前17项和为,那么的值是〔〕A.2 B.4 C.6 D.85.向量,,且与的夹角为钝角,那么的取值范围是〔〕A.B.C .D .6.向量,,假设时,∥;时,m ⊥n ,那么〔 〕A .B .C .D .7.数列(sh ùli è)}{n a 前项和为,且,那么}{n a 的通项公式为 〔 〕A .B .C .D .8.函数在内是减函数,那么实数的取值范围是 〔 〕A .B .C .D .9.对任意实数,都有,,且时,那么时〔 〕A .B .C .D .10.将周期为的函数的图象按向量平移后,所得函数图象的解析式为〔 〕A .B .C .D .11.直线与曲线相切于点,那么的值是 〔 〕A .5B .C .3D . 12.设函数的反函数为,且,那么=〔 〕A .B .C .1D .2二、填空题:本大题一一共(y īg òng)4小题,每一小题5分,一共20分,将每一小题之答案填在答题卡相应的题号中。

13.设集合,,那么.14.设周期为4的奇函数的定义域为,且当时,,那么的值是 .15.数列}{n a 满足,且,那么.16.下面有五个命题:①函数的最小正周期是π;②终边在轴上的角的集合是;③在同一坐标系中,函数的图象和函数的图象有三个公一共点;④把函数的图象向左平移得到的图象;⑤角α为第一象限角的充要条件是.其中,真命题的编号是 .〔写出所有真命题的编号〕三、解答题:本大题一一共6小题,一共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省野寨中学岳西中学高三联考数学试题(文科)命题人:储诚节 审核人:许旺华 时间120分钟 满分150分一.选择题:共10题,每题5分,共50分。

1.设,,,则( ) A .B .C .D .2..如果实数b 与纯虚数z 满足关系式(2-i)z=4-bi (其中i 是虚数单位),那么b 等于 A .-8 B .8 C .-2 D .2 3.已知是实数,则函数的图象不可能是( )4.右图是函数的部分图象,则函数的零点所在的区间是( ) A .B .C .D .5.已知为等差数列,若且它的前n项和有最大值,那么当取得最小正值时,n =( ) A .10 B .11C .12D . 136.椭圆(>>)的离心率为,右焦点为f (,),方程的两个实根分别为,,则点 ( )A .在圆内B .在圆上C .在圆外D .以上三种情形都有可能 7.已知函数是上的偶函数,若对于,都有,且当U =R {|0}A x x =>{}11B x x=≥|=⋂B C A U {|01}x x <≤{|01}x x ≤<{|0}x x <{|1}x x >a ()1sin f x a ax =+2()f x x ax b =++()ln '()g x x f x =+11(,)42(1,2)1(,1)2(2,3)761a a -<n S n S 22221x y a b+=12e =αβ(,)P αβ222x y +=222x y +=222x y +=()f x (,)-∞+∞0x ≥(3)()f x f x +=[)0,3x ∈时,,则的值为( ) A .B .C .D .8.已知等差数列的前n 项和,若,且A .B .C 三点共线(该直线不过原点O ),则 ( ) A . 1004 B .C .D .9.如果函数的图像关于点中心对称,那么的最小值为( ) A .B .C .D .10.已知,是原点,点的坐标满足,则的最大值是( ) A .B .C .D .二.填空题:共5题,每题5分,共25分11.已知直线与曲线在点处的切线互相垂直,则=______ 12.定义在上的函数满足,当,,则= .13.已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点在双曲线上.则·=_______14.已知中满足,则面积的最大值是_____ 15.给出下列命题:(1)若实数满足成立;(2)若则不等式恒成立;(3)对于函数若则函数在内至多有一零点; (4)函数与的图像关于直线对称; 则其中所有正确命题的序号是 .3()log (1)f x x =+(2009)(2010)f f -+2-1-12}{n a n S 220091122OB a OA a OC =+=2010S sin(2),(0)y A x A φ=+>4(,0)3πφ6π4π3π2πA O (,)P x y 0400y x y y ⎧-≤⎪⎪+≥⎨⎪≥⎪⎩OP OA OA ⋅13220ax by --=3y x =(1,1)P abR ()f x ()(2)0f x f x +-=1x >2()log (1)f x x =+(1)f -)0(12222>=-b by x 1F 2F x y =),3(0y P 1PF 2PF ABC ∆||2AB AC AB AC ⋅=-=ABC ∆x 1,2009log 22009>>=-x x x x 则有,0,0>>b a 2333ab b a ≥+,2)(2n mx x x f ++=,0)(,0)(>>b f a f ),(b a )2(-=x f y )2(x f y -=2=x三.解答题(本大题共6小题,满分75分.解答须写出文字说明,证明过程和演算步骤.)16.(本小题12分)已知函数 (1)判断函数奇偶性与单调性,并说明理由;(2)若,求实数的取值范围。

17.(本小题12分) 已知ΔABC 的角A .B .C 所对的边分别是a 、b 、c ,设向量, , .若=,求证:ΔABC 为等腰三角形; 若⊥,边长c = 2,角C = ABC 的面积 .18.(本小题12分)已知R ,命题:对任意,不等式恒成立;命题:对任意,不等式恒成立.(Ⅰ)若为真命题,求的取值范围;(Ⅱ)若且为假,或为真,求的取值范围.19(本小题13分).已知数列 的首项前n 项和满足,数列的前n 项和(Ⅰ)求数列与的通项公式;(Ⅱ)设,①求数列前n 项和 ②证明:当且仅当n ≥2时,<224,()4,0x x x f x x x x ⎧+≥=⎨-<⎩()f x 2(2)()f a f a ->a (,)m a b =(sin ,sin )n B A =(2,2)p b a =--m λ⋅n (λ>2)m p ∈m p ]8,0[∈x m m x 3)1(log 231-≥+q 2(0,)3x π∈1sin 2cos 22cos()4x x m x π+-≤-p m p q p q m {}n a 11a =n S *11,n n n S S a n N +=++∈}{nb 113nn Tb =-{}n a }{n b n n C a =}{n c n P20.(本小题13分).过椭圆内一点引一条弦,使弦被点平分,(1) 求这条弦所在直线的方程。

(2)与这条弦所在直线平行的所有的直线中,求与椭圆相交所截得的最长弦所在的直线方程。

21.(本小题13分)已知函数,.(Ⅰ) 求函数在点处的切线方程;(Ⅱ) 若函数与在区间上均为增函数,求的取值范围; (Ⅲ) 若方程有唯一解,试求实数的值.141622=+y x )1,2(M M 22()8ln ,()14f x x x g x x x =-=-+()f x (1,(1))f ()f x ()g x (,1)a a +a ()()f x g x m =+m-度岳野联考数学(文)答案一.选择题:共10题,每题5分,共50分。

1—5:D A D C B ,6—7:A C B C B 。

二.填空题:共5题,每题5分,共25分 11. 12. -2 13. 0 14.15. ⑴⑷三.解答题(本大题共6小题,满分75分.解答须写出文字说明,证明过程和演算步骤.)16.(本小题12分)已知函数 (1)判断函数奇偶性与单调性,并说明理由;(2)若,求实数的取值范围。

解:(1),当 时,当 时,则当 时,则时,都有故是奇函数 …………6分又恒成立,是R 上的增函数。

…………9分(2)由(1)是R 上的增函数。

要使不等式成立,只要, …………12分17.(本小题12分) 已知ΔABC 的角A .B .C 所对的边分别是a 、b 、c ,设向量, , .若=,求证:ΔABC 为等腰三角形; 若⊥,边长c = 2,角C = ABC 的面积 . 证明:(1)即,其中R 是三角形ABC 外接圆半径, 13-3224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩()f x 2(2)()f a f a ->a x R ∈0x =(0)(0)0f f -=-=0x >0x -<22()4()()(4)()f x x x x x f x ∴-=---=-+=-0x <0x ->22()()4()(4)()f x x x x x f x ∴-=-+-=--=-x R ∴∈()()f x f x -=-()f x ''24,(0)()()042,(0)x x f x f x x x +≥⎧=∴⎨-⎩><()f x ()f x 2(2)()f a f a ->222,2021a a a a a -∴+-∴-><<<()2,1a ∈-(,)m a b =(sin ,sin )n B A =(2,2)p b a =--m λn (λ>2)m p m n m n λ=∴sin sin a A b B ∴=22a b a b R R⋅=⋅a b =为等腰三角形 …………5分解(2)由题意可知…………7分由余弦定理可知, …………9分…………10分…………12分 18.(本小题12分)已知R ,命题:对任意,不等式恒成立;命题:对任意,不等式恒成立.(Ⅰ)若为真命题,求的取值范围;(Ⅱ)若且为假,或为真,求的取值范围.(Ⅰ)令,则在上为减函数,因为,所以当时,. ……2分不等式恒成立,等价于,解得.……4分(Ⅱ)不等式,即,所以,……7分即命题:. ……8分若且为假,或为真,则与有且只有一个为真.若为真,为假,那么,则;ABC ∴∆//0,(2)(2)0m p a b b a =-+-=即a b ab ∴+=2224()3a b ab a b ab =+-=+-2()340ab ab --=即4(1)ab ab ∴==-舍去11sin 4sin 223S ab C π∴==⋅⋅=∈m p ]8,0[∈x m m x 3)1(log 231-≥+q 2(0,)3x π∈1sin 2cos 22cos()4x x m x π+-≤-p m p q p q m =)(x f )1(log 31+x )(x f ),1(+∞-]8,0[∈x 8=x 2)8()(min -==f x f m m x 3)1(log 231-≥+m m 322-≥-21≤≤m 1sin 2cos 22cos()4x x m x π+-≤-2sin (sin cos )(sin cos )x x x x x +≤+2(0,)0sin 13m xx x π≥∈∴≤<m ≥q 2≥m p q p q p q p q ⎩⎨⎧<≤≤221m m 21<≤m若为假,为真,那么,则. 综上所述,或,即的取值范围是. ……12分19.(本小题13分).已知数列 的首项前n 项和满足,数列的前n 项和(Ⅰ)求数列与的通项公式;(Ⅱ)设,①求数列前n 项和 ②证明:当且仅当n ≥2时,<解. (1)由于是首项为1,公差为1的等差数列 …………2分又当时又 数列是等比数列,其首项为,公比为 …………4分(2)① 由(1)知p q ⎪⎩⎪⎨⎧≥><221m m m 或2>m 21<≤m 2>m m ),2()2,1[+∞ {}n a 11a =n S *11,n n n S S a n N +=++∈}{nb 113nn Tb =-{}n a }{n b n n C a =}{n c n P *11,n n n S S a n N +=++∈1111n n n n n S S a a a ++∴-=+∴-=}{n a ∴n a n ∴=2n ≥11111133n n n n n b T T b b --=-=--+14n n b b -∴=111131,34b b b =-∴=∴{}n b 341413()4nn b ∴=n n C a =…………9分②由,由即即 又时由于恒成立. 因此,当且仅当时, …………13分20.(本小题13分).过椭圆内一点引一条弦,使弦被点平分,(1) 求这条弦所在直线的方程。

相关文档
最新文档