2017年黑龙江省大庆市中考数学模拟试卷及解析答案word版(三)
2017大庆市中考数学模拟试题

初四数学测试题一.选择题(共10小题)1.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边2.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A .B .C .D .3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个 B.13个 C.11个 D.5个5.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .6.若0<x<1,则x ,,x2的大小关系是()A .<x<x2 B.x <<x2 C.x2<x < D .<x2<x7.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形8.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.39.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x110.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上一年减少;本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业的收人每年比上年增加,设4年内(本年度为第一年)的总投入为M万元,总收入为N万元,则有()A.M=N B.M>N C.M<N D.无法确定二.选择题(共8小题)11.在函数中,自变量x的取值范围是.12.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=.14.若a2n=5,b2n=16,则(ab)n=.15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.16.如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.17.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA 交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三.选择题(共10小题)19.计算:.20.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.21.若关于x 的不等式组恰有三个整数解,求实数a的取值范围.22.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?23.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?24.在△ABC中,AC=BC,∠ACB=90°,E是线段BC的中点,D在边AC上,线段BD和AE交于点F.(1)如图1,AD=CD 时,求的值;(2)如图2,=时,求∠BFE的正切值.25.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m 为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.27.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.28.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.。
2017大庆中考数学模拟试卷

2017大庆中考数学模拟试卷备战中考的考生可以对中考数学模拟试题多加练习,这样可以提高自己的中考数学成绩,以下是小编精心整理的2017大庆中考数学模拟试题,希望能帮到大家!2017大庆中考数学模拟试题一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是( )A.-2B.-8或 -2C.-8或 8D.8或-22.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是( )A.0.4B.C.0.6D.0.83.下列四个图案中,属于中心对称图形的是( )A. B. C. D.4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为( )A.323×103B.3.22×105C.3.23×105D.0.323×1065.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )A.5个B.6个C.7个D.8个6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是 ( )A.-B.2-C.1-D.1+7.如果( )2÷( )2=3,那么a8b4等于( )A.6B.9C.12D.818.若非零实数a、b满足4a2+b2=4ab,则 =( )A.2B.﹣2C.4D.﹣49.使有意义的x的取值范围是( )A.x≥B.x>C.x>﹣D.x≥﹣10.下列说法中,正确的是( )A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数关系式为( )12.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )二、填空题:13.分解因式:a2﹣6a+9﹣b2= .14.化简: =_______.15.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一个社区参加实践活动的概率为 .16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为 .18.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为 .三、解答题:19.解不等式组 .20.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.21.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)23.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC 为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y 轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.。
2017年黑龙江大庆中考数学模拟真题

2017年黑龙江大庆中考数学模拟真题学生在准备中考数学的时候多做中考数学模拟试题并多复习,这样才能更好提升,以下是小编精心整理的2017年黑龙江大庆中考数学模拟试题,希望能帮到大家!2017年黑龙江大庆中考数学模拟试题一、选择题(每小题3分,共30分)1 .在下列各数中,比-1小的数是( )A.1B.-1C.-2D.02.某种生物细菌的直径为0.0000382cm,把0.0000382用科学记数法表示为( )A.3.82×10-4B.3.82×10-5C.3.82×10-6D.38.2×10-63.所示是由四个大小相同的正方体组成的几何体,那么它的主视图是( )4.下列运算正确的是( )A.a6+a3=a9B.a2•a3=a6C.(2a)3=8a3D.(a-b)2=a2-b25.剪纸是中国特有的民间艺术,在所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是( )6.已知:,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为( )A.55°B.110°C.125°D.72.5°第6题图第7题图第8题图7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得(单位:尺),则井深为( )A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0. 7 7,tan40°≈0.84)()A.5.1米B.6.3米C.7.1米D.9.2米9.,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG的延长线恰好经过点D,则CD的长为( )A.2cmB.23cmC.4cmD.43cm第 9题图第10题图10.,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交于点C,与双曲线y=kx(k>0,x>0)交于点B,若OA=3BC,则k的值为( )A.3B.6C.94D.92二、填空题(每小题3分,共24分)11.分解因式:x3-4x= .12.,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是.第12题图第14题图第15题图13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.14.某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.15.,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC 交AD于点F,那么FGAG= .16.设一列数中相邻的三个数依次为m、n、p,且满足p=m2-n,若这列数为-1,3,-2,a,-7,b,…,则b= .17.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′1x,1y称为点P的“倒影点”,直线y=-x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=22,则k= .18.,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④S阴影=32.其中正确结论的序号是.三、解答题(共66分)19.(6分),AB∥CD,点E是CD上一点,∠ AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.20.(6分)(1)计算:(2017-π)0-14-1+|-2|;(2)化简:1-1a-1÷a2-4a+4a2-a.21.(8分),延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连接AE,CF.求证:AE=CF.22.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:030),根据图中信息,解答下列问题:(1)求调查的总人数并补全条形统计图;(2)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.23.(8分)在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3∶1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其他因素),那么每个机器人的标价至少是多少元?24.(8分),直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN于点E.(1)求证:DE是⊙O 的切线;。
【真卷】2017年黑龙江省大庆市中考数学模拟试卷及解析PDF(三)

2017年黑龙江省大庆市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣82.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣19.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y110.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)若a x+y=6,a y=3,则a2x=.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=度.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=m.(结果保留根号)17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有个.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是.22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2017年黑龙江省大庆市中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b【解答】解:由点的坐标,得A、0>a>﹣3,故本选项错误;B、a<b﹣3故本选项错误;C、﹣a<b,故本选项错误;D、a<﹣b,故本选项正确;故选:D.3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【解答】解:∵平行四边形的对角线互相平分,∴A选项正确;∵五边形内角和=(5﹣2)×180°=540°,∴B选项正确;∵菱形的对角线互相垂直,∴C选项正确;∵只有对角线互相垂直且平分的四边形才是菱形,∴D选项错误;∴错误的是D,故选D.4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x【解答】解:∵0<x<1,∴假设x=,则x=,x2=,x3=,∵<<,∴x3<x2<x.故选C.5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个【解答】解:由俯视图易得最底层有4个正方体,由主视图第二层最多有2个正方体,最少有1个正方体,那么最少有4+1=5个立方体.故选:B.7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.【解答】解:A、有4条对称轴,故此选项正确;B、有无数条对称轴,故此选项错误;C、有2条对称轴,故此选项错误;D、有6条对称轴,故此选项错误.故选:A.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣1【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.9.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠3.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.(3分)若a x+y=6,a y=3,则a2x=4.【解答】解:∵a x+y=6,a y=3,∴a x•a y=6,∴a x=2,∴a2x=(a x)2=22=4,故答案为:4.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是2.8.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]=2.8.故答案为:2.8.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=30度.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是2692.【解答】解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2﹣k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k,有4k=(k+1)2﹣(k﹣1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2﹣y2=(x+y)(x﹣y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x﹣y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x﹣y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2﹣y2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为2017=(1+3×672),4×(672+1)=2692,所以2692是第2017个“智慧数”,故答案为:2692.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=(4+4)m.(结果保留根号)【解答】解:如图,过点D作DG⊥AF于点G,设DG=xm,则CG=(x+2)m,在Rt△BGD中,∵∠BGD=90°,∠DBG=45°,∴BG=DG=xm,∴AG=BG+AB=(x+10)m.在Rt△AGC中,∵∠AGC=90°,∠CAG=30°,∴tan30°=,∴=,∴x=4+2,∴EF=CG=CD+DG=2+4+2=4+4(m)答:广告牌的高EF=(4+4)m.故答案为(4+4).17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为π.【解答】解:连接AD,CD,∵沿直线CB将半圆折叠,点A落在点A′处,∴∠ABC=∠CBA′=30°,AB=A′B=6,∴∠ABD=60°,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD=30°,∴==,BD=AB=A′B,∴CD=BD=A′B,∠A′DC=60°,∴图中阴影部分的面积==π,故答案为:π.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有4个.【解答】解:①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH 全等,那么A、P重合;由于∠AOH=30°,设A坐标为(a,b),在直角三角形OAH中,tan∠AOH=tan30°==,设直线OA的方程为y=kx,把A的坐标代入得k==,所以直线OA:y=x,联立抛物线的解析式,得:,解得,;故A(,);②当∠POQ=∠AOH=30°,此时△POQ≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得,;故P(,3),那么A(3,);③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得、,故P(,3),∴OP=2,QP=2,∴OH=OP=2,AH=QP=2,故A(2,2);④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;此时直线OP:y=x,联立抛物线的解析式,得:,解得、,∴P(,),∴QP=,OP=,∴OH=QPQP=,AH=OP=,故A(,).综上可知:符合条件的点A有四个,且坐标为:(,)或(3,)或(2,2)或(,).故答案为:4.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.【解答】解:(π﹣2017)0++|﹣2|+()﹣1=1+2+2﹣+2=5+20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.【解答】解:∵(m﹣n)2+(m+n)2=m2+n2﹣2mn+m2+n2+2mn=2(m2+n2)=8+2=10,∴m2+n2=10÷2=5.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是x﹣1≤1(答案不唯一).【解答】解:(1)去括号得,6x+15>8x+6,移项得,6x﹣8x>6﹣15,合并同类项得,﹣2x>﹣9,把x的系数化为1得,x<4.5;(2)x﹣1≤1.故答案为:x﹣1≤1(答案不唯一).22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【解答】解:设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=32,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.【解答】(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=,∵△ABF∽△EAD,∴,即,∴BF=.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)①直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),②∵OA∥BC,∴S=S△OBC=×BO×x C=×3×4=6.△ABC26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.【解答】解:(1)由图象可知,当手机通话时间为50分钟时,A、B两种套餐的通话费用分别为10元、20元;(2)a==0.2,b==0.18,所以,a,b的值分别是0.2,0.18;(3)A种套餐超过免费时间y与x的函数关系式为y=0.2x﹣5(x>75),由图象可知,当75<x<150时,若A、B两种套餐的通话费相同,则0.2x﹣5=20,解得x=125,∴当x>125时,选择B种套餐更合算.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【解答】(1)解:直线PD为⊙O的切线证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,∴,解得OD=1∴∴PA=PO﹣AO=2﹣1=1(3)(方法一)证明:如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF ∵∠PDA=∠PBD∠ADF=∠ABF∴∠ADF=∠PDA=∠PBD=∠ABF∵AB是圆O的直径∴∠ADB=90°设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°即90°+x+2x=180°,解得x=30°∴∠ADF=∠PDA=∠PBD=∠ABF=30°∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°∴∠DBE=60°,∴△BDE是等边三角形.∴BD=DE=BE又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°∴△BDF是等边三角形.∴BD=DF=BF∴DE=BE=DF=BF,∴四边形DFBE为菱形(方法二)证明:如图3,依题意得:∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF∴AD=AF,BF∥PD∴DF⊥PB∵BE为切线∴BE⊥PB∴DF∥BE∴四边形DFBE为平行四边形∵PE、BE为切线∴BE=DE∴四边形DFBE为菱形28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,。
2017年黑龙江省大庆市林甸四中中考数学三模试卷(解析版)

2017年黑龙江省大庆市林甸四中中考数学三模试卷一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b22.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.(3分)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.5.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.6.(3分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°7.(3分)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1B.1C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.9.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336C.510D.132610.(3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P 沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,y=t2;③直线NH的解析式为y=﹣t+27;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.4B.3C.2D.1二、填空题(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是.12.(3分)据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为.13.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是.14.(3分)对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.15.(3分)已知关于x的分式方程+=1的解是非负数,则a的取值范围是.16.(3分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.17.(3分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.18.(3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数对应的点上.三、解答题:(共66分)19.(4分)计算:﹣sin60°+×.20.(6分)先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0的根.21.(8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.22.(6分)已知关于x的方程x2+3x+=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的根.23.(6分)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;(2)若∠C=30°,CD=10cm,求圆O的半径.24.(8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是;学校共选取了名学生;(2)补全统计图中的数据:条形统计图中羽毛球人、乒乓球人、其他人、扇形统计图中其他%;(3)该校共有1200名学生,请估计喜欢“乒乓球”的学生人数.25.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y =(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C 的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.26.(8分)在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式y=.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?27.(10分)以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ被⊙O截得的弦长.28.(12分)已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).(1)求抛物线的解析式;(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.2017年黑龙江省大庆市林甸四中中考数学三模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.2.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.3.(3分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.4.(3分)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.【解答】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选:C.5.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.6.(3分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.7.(3分)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1B.1C.D.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选:C.9.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336C.510D.1326【解答】解:1×73+3×72+2×7+6=510,故选:C.10.(3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P 沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,y=t2;③直线NH的解析式为y=﹣t+27;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.4B.3C.2D.1【解答】解:①根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,∴AD=BE=5(故①正确);②如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2(故②正确);③根据5﹣7秒面积不变,可得ED=2,当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,故点H的坐标为(11,0),设直线NH的解析式为y=kx+b,将点H(11,0),点N(7,10)代入可得:,解得:.故直线NH的解析式为:y=﹣t+,(故③错误);④当△ABE与△QBP相似时,点P在DC上,如图2所示:∵tan∠PBQ=tan∠ABE=,∴=,即=,解得:t=.(故④正确);综上可得①②④正确,共3个.故选:B.二、填空题(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【解答】解:根据题意,得,解得x≥﹣1且x≠0.12.(3分)据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为 2.6×108.【解答】解:2 6000 0000用科学记数法表示为2.6×108.故答案为:2.6×108.13.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是±2.【解答】解:∵是二元一次方程组的解,∴,解得∵2n﹣m=2×3﹣2=4,∴2n﹣m的平方根为±2.故答案为:±2.14.(3分)对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是4≤a<5.【解答】解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为4≤a<5,故答案为:4≤a<515.(3分)已知关于x的分式方程+=1的解是非负数,则a的取值范围是a≥1且a≠2.【解答】解:分式方程去分母得:a﹣2=x﹣1,解得:x=a﹣1,由方程的解为非负数,得到a﹣1≥0,且a﹣1≠1,解得:a≥1且a≠2.故答案是:a≥1且a≠2.16.(3分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是8cm.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=C△HAE=8.故答案为:8.17.(3分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,∴S△CDB′=×CD×DB′=×1×=,S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.18.(3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数2对应的点上.【解答】解:由4起跳,4是偶数,沿逆时针下一次只能跳一个点,落在3上,3是奇数,沿顺时针跳两个点,落在5上,5是奇数,沿顺时针跳两个点,落在2上,2是偶数,沿逆时针下一次只能跳一个点,落在1上,1是奇数,沿顺时针跳两个点,落在3上,…3﹣5﹣2﹣1﹣3,周期为4;又由2015=4×503+3,经过2015次跳后它停在的点所对应的数为2.故答案为:2.三、解答题:(共66分)19.(4分)计算:﹣sin60°+×.【解答】解:原式=﹣+4×=﹣+2=+2=.20.(6分)先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0的根.【解答】解:原式=×=×=,∵3x2﹣x﹣1=0,∴x+1=3x2,∴原式==.21.(8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.【解答】解:(1)△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)△A2BC2为所作,点A2、C2的坐标分别为(﹣2,2),(﹣1,4).22.(6分)已知关于x的方程x2+3x+=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的根.【解答】解:(1)∵关于x的方程x2+3x+=0有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0,∴m<3;(2)∵m<3,∴符合条件的最大整数是2,∴原方程为x2+3x+=0,解得:x1=,x2=.23.(6分)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;(2)若∠C=30°,CD=10cm,求圆O的半径.【解答】(1)证明:连接OD,∵D是BC的中点,O为AB的中点,∴OD∥AC.又∵DE⊥AC,∴OD⊥DE,∵OD为半径,∴DE是圆O的切线.(2)解:连接AD;∵AB是圆O的直径,∴∠ADB=90°=∠ADC,∴△ADC是直角三角形.∵∠C=30°,CD=10,∴AD=.∵OD∥AC,OD=OB,∴∠B=30°,∴△OAD是等边三角形,∴OD=AD=,∴圆O的半径为cm.24.(8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是抽样调查;学校共选取了100名学生;(2)补全统计图中的数据:条形统计图中羽毛球21人、乒乓球18人、其他25人、扇形统计图中其他25%;(3)该校共有1200名学生,请估计喜欢“乒乓球”的学生人数.【解答】解:(1)校采用的调查方式是抽样调查,总人数=36÷36%=100(名),故答案为抽样调查,100.(2)条形统计图中羽毛球人数:100×21%=21(人),乒乓球人数:100×18%=18(人),扇形统计图中其他占:1﹣36%﹣21%﹣18%=25%,其他有100×25%=25(人),故答案分别为21,18,25,25%.(3)1000×18%=180(人),答:估计喜欢“乒乓球”的学生人数有180人.25.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y =(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C 的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.【解答】解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)26.(8分)在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式y=﹣3x+138.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?【解答】解:(1)设y=kx+b,则(34,36),(39,21),故,解得:,∴y与x之间的函数关系式y=﹣3x+138;故答案为:﹣3x+138;(2)设每件的销售价格定为x元时,才能使每天获得的利润P最大,P=(x﹣30)(﹣3x+138)=﹣3x2+228x﹣4140,当x=﹣=﹣=38,故当每件的销售价格定为38元时,才能使每天获得的利润P最大.27.(10分)以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ被⊙O截得的弦长.【解答】解:(1)如图一,连接AQ.由题意可知:OQ=OA=1.∵OP=2,∴A为OP的中点.∵PQ与⊙O相切于点Q,∴△OQP为直角三角形.∴.即△OAQ为等边三角形.∴∠QOP=60°.(2)由(1)可知点Q运动1秒时经过的弧长所对的圆心角为30°,若Q按照(1)中的方向和速度继续运动,那么再过5秒,则Q点落在⊙O与y轴负半轴的交点处(如图二).设直线PQ与⊙O的另外一个交点为D,过O作OC⊥QD于点C,则C为QD的中点.∵∠QOP=90°,OQ=1,OP=2,∴QP=.∵,∴OC==.∵OC⊥QD,OQ=1,OC=,∴QC==.∴QD=.28.(12分)已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).(1)求抛物线的解析式;(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2;(2)存在.当x=0,y═﹣x2﹣x+2=2,则C(0,2),∴OC=2,∵A(﹣4,0),B(1,0),∴OA=4,OB=1,AB=5,当∠PCB=90°时,∵AC2=42+22=20,BC2=22+12=5,AB2=52=25∴AC2+BC2=AB2∴△ACB是直角三角形,∠ACB=90°,∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);当∠PBC=90°时,PB∥AC,如图1,设直线AC的解析式为y=mx+n,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,∵BP∥AC,∴直线BP的解析式为y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直线BP的解析式为y=x﹣,解方程组得或,此时P点坐标为(﹣5,﹣3);综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);(3)存在点E,设点E坐标为(m,0),F(n,﹣n2﹣n+2)①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0),②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,∴﹣n2﹣n+2=﹣2,解得n=,得到F2(,﹣2),F3(,﹣2),根据中点坐标公式得到:=或=,解得m=或,此时E2(,0),E3(,0),③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0),综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).。
黑龙江省大庆市2017年中考数学模拟试卷(3月)(含答案解析)

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2B.23=6C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y=.13.计算:=.。
黑龙江省大庆市林甸县2017届中考数学模拟试题(含解析)

黑龙江省大庆市林甸县2017届中考模拟数学试题一.选择题(共20小题,满分60分,每小题3分)1.算式(﹣2)×|﹣5|﹣|﹣3|之值为何()A.13 B.7 C.﹣13 D.﹣72.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×1083.下列图形中是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.a﹣(b+c)=a﹣b+c B.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+1 5.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°6.如图是某几何体的三视图及相关数据,则下列判断错误的是()A.a<c B.b<c C.4a2+b2=c2D.a2+b2=c27.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<48.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A. +=1 B. +=C. +=D. +=1 9.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.10.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵11.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.512.如图,反比例函数y=的图象可能是()A. B.C.D.13.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA 与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°14.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米15.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化16.如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3 C. D.17.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.18.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠419.如图,在正方形ABCD 中,点E,F分别在边BC,DC上,AE、AF分别交BD 于点M,N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③∠DFE=2∠AMN;④EF2=2BM2+2DN2;⑤图中只有4对相似三角形.其中正确结论的个数是()A.5 B.4 C.3 D.220.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小二.填空题(共4小题,满分12分,每小题3分)21.若x为的倒数,则的值为.22.甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.23.如图,在平面直角坐标系xOy中,▱ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与▱ABCO的边相切时,P点的坐标为.24.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)三.解答题(共5小题,满分48分)25.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.26.(10分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.27.(10分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.28.(10分)如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC ﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发x s时,△BPQ的面积为y cm2,已知y与x之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1<x<2时,△BPQ的面积(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,△BPQ的面积是5cm2?29.(10分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.黑龙江省大庆市林甸县2017届中考模拟数学试题参考答案与试题解析一.选择题(共20小题,满分60分,每小题3分)1.算式(﹣2)×|﹣5|﹣|﹣3|之值为何()A.13 B.7 C.﹣13 D.﹣7【分析】原式先计算绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣2×5﹣3=﹣10﹣3=﹣13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为()A.0.11×108B.1.1×109C.1.1×1010D.11×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1100000000用科学记数法表示应为1.1×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算正确的是()A.a﹣(b+c)=a﹣b+c B.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+1【分析】根据去括号,单项式的乘法,合并同类项以及完全平方公式进行解答.【解答】解:A、原式=a﹣b﹣c,故本选项错误;B、原式=6a5,故本选项正确;C、原式=2a3,故本选项错误;D、原式=x2+2x+1,故本选项错误;故选:B.【点评】本题考查了单项式乘单项式,整式的加减,完全平方公式,熟记计算法则和完全平方公式即可解题.5.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【分析】先根据∠1=35°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出答案.【解答】解:∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.如图是某几何体的三视图及相关数据,则下列判断错误的是()A.a<c B.b<c C.4a2+b2=c2D.a2+b2=c2【分析】由三视图知道这个几何体是圆锥,圆锥的高是b,母线长是c,底面圆的半径是a,刚好组成一个以c为斜边的直角三角形.【解答】解:∵圆锥的高是b,母线长是c,底面圆的半径是a,刚好组成一个以c为斜边的直角三角形,∴a<c、b<c,∴A、B均正确;∵根据勾股定理,a2+b2=c2.∴D正确;∴错误的只有C,故选C.【点评】本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关系.7.若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【分析】首先估算和的大小,再做选择.【解答】解:∵1<2,3<4,又∵<a<,∴1<a<4,故选B.【点评】本题主要考查了估算无理数的大小,首先估算和的大小是解答此题的关键.8.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A. +=1 B. +=C. +=D. +=1【分析】根据题意可以得到甲乙两车的工作效率,从而可以得到相应的方程,本题得以解决.【解答】解:由题意可得,,故选B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.【分析】解法一:作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延长线于H.连接RF′.则四边形RCIG′是正方形.首先证明点F′在线段BC上,再证明CH=HE′即可解决问题.解法二:首先证明CG′+CE′=AC,作G′M⊥AD于M.解直角三角形求出DM,AM,AD即可;【解答】解法一:作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延长线于H.连接RF′.则四边形RCIG′是正方形.∵∠DG′F′=∠IGR=90°,∴∠DG′I=∠RG′F′,在△G′ID和△G′RF中,,∴△G′ID≌△G′RF,∴∠G′ID=∠G′RF′=90°,∴点F′在线段BC上,在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,∴E′H=E′F′=1,F′H=,易证△RG′F′≌△HF′E′,∴RF′=E′H,RG′RC=F′H,∴CH=RF′=E′H,∴CE′=,∵RG′=HF′=,∴CG′=RG′=,∴CE′+CG′=+.故选A.解法二:作G′M⊥AD于M.易证△DAG'≌△DCE',∴AG'=CE',∴CG′+CE′=AC,在Rt△DMG′中,∵DG′=2,∠MDG′=30°,∴MG′=1,DM=,∵∠MAG′=45°,∠AMG′=90°,∴∠MAG′=∠MG′A=45°,∴AM=MG′=1,∴AD=1+,∵AC=AD,∴AC=+.故选A.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.10.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.73棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选D.【点评】本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.11.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.12.如图,反比例函数y=的图象可能是( )A .B .C .D .【分析】A 、由函数图象在第一、二象限可得出结论A 不符合题意;B 、根据点的坐标求出k 值,由k 值不等式可得出结论B 不符合题意;C 、根据点的坐标求出k 值,由k 值不等式可得出结论C 不符合题意;D 、根据点的坐标求出k 值,由k 值相等即可得出结论D 符合题意.此题得解.【解答】解:A 、∵反比例函数的图象在第一、三或二、四象限,∴结论A 不符合题意;B 、k=﹣2×6=﹣12,k=4×(﹣2)=﹣8,∵﹣12≠﹣8,∴结论B 不符合题意;C 、k=4×2=8,k=﹣2×(﹣2)=4,∵8≠4,∴结论C 不符合题意;D 、k=4×2=8,k=﹣2×(﹣4)=8,∵8=8,∴结论D符合题意.故选D.【点评】本题考查了反比例函数的图象,逐一分析四个选项的正误是解题的关键.13.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA 与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()A.55°B.50°C.45°D.40°【分析】根据三角形的外角的性质求出∠B,根据圆内接四边形的性质和三角形内角和定理计算即可.【解答】解:∠B=∠DCE﹣∠F=55°,∵四边形ABCD是⊙O的内接四边形,∴∠EDC=∠B=55°,∴∠E=180°﹣∠DCE﹣∠EDC=45°,故选:C.【点评】本题考查的是圆内接四边形的性质和三角形内角和定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.14.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.15.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.16.如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3 C. D.【分析】易求得点P的坐标,即可求得点B坐标,即可解题.【解答】解:作PD⊥OB,∵P (m ,m )是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP 是等边三角形,∴BD=PD=,∴S △POB =OB•PD=(OD +BD )•PD=, 故选 D .【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m 的值是解题的关键.17.如图,∠BAC=60°,点O 从A 点出发,以2m/s 的速度沿∠BAC 的角平分线向右运动,在运动过程中,以O 为圆心的圆始终保持与∠BAC 的两边相切,设⊙O 的面积为S (cm 2),则⊙O 的面积S 与圆心O 运动的时间t (s )的函数图象大致为( )A .B .C .D .【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.【点评】此题考查动点问题的函数图象,求得函数解析式,利用函数的性质得出图象是解决问题的关键.18.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.19.如图,在正方形ABCD 中,点E,F分别在边BC,DC上,AE、AF分别交BD 于点M,N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③∠DFE=2∠AMN;④EF2=2BM2+2DN2;⑤图中只有4对相似三角形.其中正确结论的个数是()A.5 B.4 C.3 D.2【分析】①正确,只要证明△NBA≌△NBC,∠ABE+∠ANE=180°即可解决问题;②正确.只要证明△AFH≌△AFE即可;③正确.只要证明∠AMN=∠DFN,∠AFH=∠AFE即可;④正确.如图2中,首先证明△AMN∽△AFE,可得==,推出EF=MN,再证明MN2=DN2+DG2=DN2+BM2,即可解决问题;⑤错误.相似三角形不止4对相似三角形.【解答】解:将△ABN绕点A逆时针旋转90°得到△ADH.∵四边形ABCD是中正方形,∴AB=BC=AD,∠BAD=∠ABC=90°,∠ABD=∠CBD=45°,在△BNA和△BNC中,,∴△NBA≌△NBC,∴AN=CN,∠BAN=∠BCN,∵EN=CN,∴AN=EN,∠NEC=∠NCE=∠BAN,∵∠NEC+∠BEN=180°,∴∠BAN+∠BEN=180°,∴∠ABC+∠ANE=180°,∴∠ANE=90°,∴AN=NE,AN⊥NE,故①正确,∵∠3=45°,∠1=∠4,∴∠2+∠4=∠2+∠1=45°,∴∠3=∠FAH=45°,∵AF=AF,AE=AH,∴△AFE≌△AFH,∴EF=FH=DF+DH=DF+BE,∠AFH=∠AFE,故②正确,∵∠MAN=∠NDF=45°,∠ANM=∠DNF,∴∠AMN=∠AFD,∴∠DFE=2∠AMN,故③正确,∵∠MAN=∠EAF,∠AMN=∠AFE,∴△AMN∽△AFE,∴==,∴EF=MN,如图2中,将△ABM绕点A逆时针旋转90°得到△ADG,易证△ANG≌△ANM,△GDN是直角三角形,∴MN=GN,∴MN2=DN2+DG2=DN2+BM2,∴EF2=2(DN2+BM2)=2BM2+2DN2,故④正确,图中相似三角形有△ANE∽△BAD~△BCD,△ANM∽△AEF,△ABN∽△FDN,△BEM∽△DAM等,故⑤错误,故选B.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用旋转法,添加辅助线构造全等三角形解决问题,属于中考选择题中的压轴题.20.对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【分析】直接利用二次函数与x轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故此选项正确,不合题意;故选:C.【点评】此题主要考查了抛物线与x轴的交点以及二次函数的性质、根与系数的关系等知识,正确掌握二次函数的性质是解题关键.二.填空题(共4小题,满分12分,每小题3分)21.若x为的倒数,则的值为2﹣1.【分析】先对x2﹣x﹣6和x2+x﹣6分解因式,再进行化简求值.【解答】解:∵x为的倒数,∴x=+1,∴原式=÷=(x+2)(x﹣2)=(+3)(﹣1)=2﹣1.【点评】此题考查分式的化简与计算,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.22.甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.【分析】利用列表法即可解决问题.【解答】解:甲、乙两位同学各抛掷一枚质地均匀的骰子,所有可能的结果是:满足a+b=9的有4种可能,∴a+b=9的概率为=,故答案为.【点评】本题考查的是古典型概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.23.如图,在平面直角坐标系xOy中,▱ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与▱ABCO的边相切时,P点的坐标为(0,0)或(,1)或(3﹣,).【分析】设P(x,x),⊙P的半径为r,由题意BC⊥y轴,直线OP的解析式y=x,直线OC的解析式为y=﹣x,可知OP⊥OC,分分四种情形讨论即可.【解答】解:①当⊙P与BC相切时,∵动点P在直线y=x上,∴P与O重合,此时圆心P到BC的距离为OB,∴P(0,0).②如图1中,当⊙P与OC相切时,则OP=BP,△OPB是等腰三角形,作PE⊥y轴于E,则EB=EO,易知P的纵坐标为1,可得P(,1).③如图2中,当⊙P与OA相切时,则点P到点B的距离与点P到x轴的距离相等,可得=x,解得x=3+或3﹣,∵x=3+>OA,∴P不会与OA相切,∴x=3+不合题意,∴p(3﹣,).④如图3中,当⊙P与AB相切时,设线段AB与直线OP的交点为G,此时PB=PG,∵OP⊥AB,∴∠BGP=∠PBG=90°不成立,∴此种情形,不存在P.综上所述,满足条件的P的坐标为(0,0)或(,1)或(3﹣,).【点评】本题考查切线的性质、一次函数的应用、勾股定理、等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.24.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.三.解答题(共5小题,满分48分)25.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.(10分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第四象限.利用反比例函数的性质即可解决问题;【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.【点评】此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(10分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到,等量代换得到,根据相似三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.28.(10分)如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发x s时,△BPQ的面积为y cm2,已知y与x之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1<x<2时,△BPQ的面积不变(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,△BPQ的面积是5cm2?【分析】(1)根据函数图象即可得到结论;(2)设线段OM的函数表达式为y=kx,把(1,10)即可得到线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得根据得到曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x或y=10(x﹣3)2解方程组即可得到结论.【解答】解:(1)由函数图象知,当1<x<2时,△BPQ的面积始终等于10,∴当1<x<2时,△BPQ的面积不变;故答案为:不变;(2)设线段OM的函数表达式为y=kx,把(1,10)代入得,k=10,∴线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x﹣3)2,把(2,10)代入得,10=a(2﹣3)2,∴a=10,∴曲线NK所对应的函数表达式y=10(x﹣3)2;(3)把y=5代入y=10x得,x=,把y=5代入y=10(x﹣3)2得,5=10(x﹣3)2,∴x=3±,∵3+>3,∴x=3﹣,∴当x=或3﹣时,△BPQ的面积是5cm2.【点评】本题考查了平行四边形的性质,三角形的面积公式,待定系数法求函数的解析式,掌握的识别函数图象是解题的关键.29.(10分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;。
黑龙江省大庆市中考数学3月模拟试卷(含解析)

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S2=0.035,则()乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y= .13.计算: = .14.函数y=中自变量x的取值范围是.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 度.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)020.先化简,再求值:÷x,其中x=.21.解方程组:.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2017年黑龙江省大庆市杜尔伯特二中中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.2.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=26【考点】负整数指数幂;有理数的乘方;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据负整数指数幂、有理数的乘方、同底数幂的乘法、幂的乘方与积的乘方的法则计算即可.【解答】解:A、错误,应等于;B、错误,应等于8;C、错误,应等于25;D、正确.故选D.3.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°【考点】三角形的外角性质;三角形内角和定理.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD==40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B==20°.故选D.5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.035,则()2=0.006,乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较【考点】方差;算术平均数.【分析】本题考查了如何判定一组数据的稳定性,数据的方差越小,数据就越稳定.【解答】解:因为甲乙平均数相同,而S甲2=0.006,S乙2=0.035,很显然S甲2<S乙2,所以甲的成绩更稳定一些.故选A.6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是,故选A.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到几个上下相邻的长方形上面有一个小长方形.故选D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】平行线的判定.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.9.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的性质可以得到△AOC和△DBO的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|,故S1=S2.故选B.二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为1.51×109元人民币.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币,故答案为:1.51×109.12.已知|x|=5,y=3,则x﹣y= 2或﹣8 .【考点】有理数的减法;绝对值.【分析】绝对值等于一个正数的数有两个,且它们互为相反数.熟练运用有理数的运算法则.【解答】解:∵|x|=5,∴x=±5,又y=3,则x﹣y=2或﹣8.13.计算: = .【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.【解答】解:原式=.故答案为.14.函数y=中自变量x的取值范围是x≥﹣且x≠1 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 48 度.【考点】垂线;对顶角、邻补角.【分析】由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5 .【考点】三角形中位线定理;矩形的性质.【分析】根据勾股定理求AR;再运用中位线定理求EF.【解答】解:∵四边形ABCD是矩形,∴△ADR是直角三角形,∵DR=3,AD=4,∴AR===5,∵E、F分别是PA,PR的中点,∴EF=AR=×5=2.5.故答案为:2.5.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是2051 (要求写出最后的计算结果).【考点】规律型:数字的变化类.【分析】观察①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第10个数的值,从而求和.【解答】解:根据题意可知,①中第10个数为210=1024;②第10个数为210+3=1027,故它们的和为1024+1027=2051.18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.【考点】菱形的性质.【分析】本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可.【解答】解:第1个菱形的边长是1,易得第2个菱形的边长是;第3个菱形的边长是()2;…每作一次,其边长为上一次边长的;故第n个菱形的边长是()n﹣1.故答案为:()n﹣1.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)0【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1.20.先化简,再求值:÷x,其中x=.【考点】分式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式==+1=,当x=时,原式==﹣4.21.解方程组:.【考点】解二元一次方程组.【分析】此题先采用加减消元法再用代入消元法最简单,将(1)+(2)即可达到消元的目的.【解答】解:①+②,得3x=9,∴x=3.把x=3代入②,得3﹣y=5,∴y=﹣2.∴原方程组的解是.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)用单位1减去其他所占的百分比即可;(2)以第3组为基准算出总数:9÷0.3=30,那么中位数应是第15个和第16个的平均数,前两个小组的人数之和为:2+30×0.3=11,那么中位数就落在第3小组;(3)直方图能反映数据集中的趋势,扇形统计图能更好的显示出相应的百分比.【解答】解:(1)1﹣13.3%﹣6.7%﹣30%﹣30%=20%;(2)第2组的频数=30×20%=6,如图:样本数据的中位数落在第3组;(3)扇形统计图能很好地说明一半以上的汽车行驶的路程在13≤x<14之间;条形统计图(或直方统计图)能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车.23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.【解答】解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x 轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(2)解:四边形BMDF是菱形.理由:由折叠可知:BF=BM,DF=DM.由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.【考点】二次函数的应用;分式方程的应用.【分析】(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.【解答】解:(1)设乙种空调每台进价为x元,,解得,x=1500经检验x=1500是原分式方程的解,∴x+500=2000,答:甲种空调每台2000元,乙种空调每台1500元;(2)由题意可得,所获利润y(元)与甲种空调x(台)之间的函数关系式是:y=x+(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,解得,x≤12,∴当x=12时,y取得最大值,此时y=200x+6000=8400,答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).说明:每写对1个给,“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=当x=﹣1,y=0时,﹣a﹣2a+=0∴a=∴y=﹣x2+x+.(3)存在.理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).说明:少求一个点的坐标扣.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年黑龙江省大庆市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣82.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣19.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y110.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)若a x+y=6,a y=3,则a2x=.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=度.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=m.(结果保留根号)17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有个.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是.22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2017年黑龙江省大庆市中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b【解答】解:由点的坐标,得A、0>a>﹣3,故本选项错误;B、a<b﹣3故本选项错误;C、﹣a<b,故本选项错误;D、a<﹣b,故本选项正确;故选:D.3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【解答】解:∵平行四边形的对角线互相平分,∴A选项正确;∵五边形内角和=(5﹣2)×180°=540°,∴B选项正确;∵菱形的对角线互相垂直,∴C选项正确;∵只有对角线互相垂直且平分的四边形才是菱形,∴D选项错误;∴错误的是D,故选D.4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x【解答】解:∵0<x<1,∴假设x=,则x=,x2=,x3=,∵<<,∴x3<x2<x.故选C.5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个【解答】解:由俯视图易得最底层有4个正方体,由主视图第二层最多有2个正方体,最少有1个正方体,那么最少有4+1=5个立方体.故选:B.7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.【解答】解:A、有4条对称轴,故此选项正确;B、有无数条对称轴,故此选项错误;C、有2条对称轴,故此选项错误;D、有6条对称轴,故此选项错误.故选:A.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣1【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.9.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠3.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.(3分)若a x+y=6,a y=3,则a2x=4.【解答】解:∵a x+y=6,a y=3,∴a x•a y=6,∴a x=2,∴a2x=(a x)2=22=4,故答案为:4.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是2.8.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]=2.8.故答案为:2.8.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=30度.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是2692.【解答】解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2﹣k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k,有4k=(k+1)2﹣(k﹣1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2﹣y2=(x+y)(x﹣y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x﹣y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x﹣y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2﹣y2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为2017=(1+3×672),4×(672+1)=2692,所以2692是第2017个“智慧数”,故答案为:2692.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=(4+4)m.(结果保留根号)【解答】解:如图,过点D作DG⊥AF于点G,设DG=xm,则CG=(x+2)m,在Rt△BGD中,∵∠BGD=90°,∠DBG=45°,∴BG=DG=xm,∴AG=BG+AB=(x+10)m.在Rt△AGC中,∵∠AGC=90°,∠CAG=30°,∴tan30°=,∴=,∴x=4+2,∴EF=CG=CD+DG=2+4+2=4+4(m)答:广告牌的高EF=(4+4)m.故答案为(4+4).17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为π.【解答】解:连接AD,CD,∵沿直线CB将半圆折叠,点A落在点A′处,∴∠ABC=∠CBA′=30°,AB=A′B=6,∴∠ABD=60°,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD=30°,∴==,BD=AB=A′B,∴CD=BD=A′B,∠A′DC=60°,∴图中阴影部分的面积==π,故答案为:π.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有4个.【解答】解:①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH 全等,那么A、P重合;由于∠AOH=30°,设A坐标为(a,b),在直角三角形OAH中,tan∠AOH=tan30°==,设直线OA的方程为y=kx,把A的坐标代入得k==,所以直线OA:y=x,联立抛物线的解析式,得:,解得,;故A(,);②当∠POQ=∠AOH=30°,此时△POQ≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得,;故P(,3),那么A(3,);③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得、,故P(,3),∴OP=2,QP=2,∴OH=OP=2,AH=QP=2,故A(2,2);④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;此时直线OP:y=x,联立抛物线的解析式,得:,解得、,∴P(,),∴QP=,OP=,∴OH=QPQP=,AH=OP=,故A(,).综上可知:符合条件的点A有四个,且坐标为:(,)或(3,)或(2,2)或(,).故答案为:4.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.【解答】解:(π﹣2017)0++|﹣2|+()﹣1=1+2+2﹣+2=5+20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.【解答】解:∵(m﹣n)2+(m+n)2=m2+n2﹣2mn+m2+n2+2mn=2(m2+n2)=8+2=10,∴m2+n2=10÷2=5.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是x﹣1≤1(答案不唯一).【解答】解:(1)去括号得,6x+15>8x+6,移项得,6x﹣8x>6﹣15,合并同类项得,﹣2x>﹣9,把x的系数化为1得,x<4.5;(2)x﹣1≤1.故答案为:x﹣1≤1(答案不唯一).22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【解答】解:设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=32,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.【解答】(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=,∵△ABF∽△EAD,∴,即,∴BF=.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)①直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),②∵OA∥BC,∴S=S△OBC=×BO×x C=×3×4=6.△ABC26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.【解答】解:(1)由图象可知,当手机通话时间为50分钟时,A、B两种套餐的通话费用分别为10元、20元;(2)a==0.2,b==0.18,所以,a,b的值分别是0.2,0.18;(3)A种套餐超过免费时间y与x的函数关系式为y=0.2x﹣5(x>75),由图象可知,当75<x<150时,若A、B两种套餐的通话费相同,则0.2x﹣5=20,解得x=125,∴当x>125时,选择B种套餐更合算.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【解答】(1)解:直线PD为⊙O的切线证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,∴,解得OD=1∴∴PA=PO﹣AO=2﹣1=1(3)(方法一)证明:如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF ∵∠PDA=∠PBD∠ADF=∠ABF∴∠ADF=∠PDA=∠PBD=∠ABF∵AB是圆O的直径∴∠ADB=90°设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°即90°+x+2x=180°,解得x=30°∴∠ADF=∠PDA=∠PBD=∠ABF=30°∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°∴∠DBE=60°,∴△BDE是等边三角形.∴BD=DE=BE又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°∴△BDF是等边三角形.∴BD=DF=BF∴DE=BE=DF=BF,∴四边形DFBE为菱形(方法二)证明:如图3,依题意得:∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF∴AD=AF,BF∥PD∴DF⊥PB∵BE为切线∴BE⊥PB∴DF∥BE∴四边形DFBE为平行四边形∵PE、BE为切线∴BE=DE∴四边形DFBE为菱形28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。